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Abstract

Background: Collagen-related cell adhesion molecules (CAMs) are a major component of the extracellular matrix (ECM) and often
accumulate in the liver during chronic liver disease or hepatocellular carcinoma (HCC). In this study we identified several promising
collagens related to CAMs that may be of clinical use for the diagnosis and prognosis of HCC. Methods: We obtained multi-omics
data including RNA sequencing (RNA-Seq) data, microarray data, proteomic data from the TCGA, GEO databases, GTEx, and NODE.
Bioinformatics analyses were then performed to investigate correlations between the expression patterns of significant genes and HCC.
Tumor tissue and para-cancerous tissue samples from HCC patients were also used to validate the results using RT-PCR. Results: A
literature research and LASSO-COX analysis identified three significant collagen-related CAM genes: SERPINH1, DCN, and ITGB1.
Immunohistochemistry images in theHuman Protein Atlas Project database showed that SERPINH1 and ITGB1 proteins weremoderately
or highly expressed in HCC tumor tissues compared to para-cancerous tissue, whereas DCN expression was lower in HCC tumor tissue.
These results were validated by RT-PCR. Low- and high-risk groups of HCC patients were distinguished by the logistic panel in the
TCGA database. These showed significantly different prognosis, clinicopathological features, and immune cell infiltration. Logistic
regression was used to construct predictive models based on the individual expression levels of DCN, SERPINH1, and ITGB1. These
showed highly accurate diagnostic ability (AUC = 0.987). Conclusions: The current findings suggest that the collagen-related CAMs
DCN, SERPINH1, and ITGB1 may be potential therapeutic targets in HCC. Logistic panels of DCN, SERPINH1 and ITGB1 could serve
as non-invasive and effective diagnostic biomarkers for HCC. Clinical Trial registration: Identifier: NCT03189992. Registered on
June 4, 2017. Retrospectively registered (https://clinicaltrials.gov/).
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1. Introduction

Liver cancer was the fourth leading cause of cancer-
related mortality in 2018 and 2019 [1], and the sixth most
commonly diagnosed cancer worldwide [2]. Approxi-
mately 85%–90% of primary liver malignancies are hep-
atocellular carcinoma (HCC) [3].

Hepatic fibrosis is one of the major causes of HCC.
Chronic liver disease often results in excessive buildup of
extracellular matrix (ECM), a condition that is closely as-
sociated with the accumulation of collagen. The ECM
is a three-dimensional structure secreted by cells and en-
veloping the extracellular space within tissues. It con-
sists of a non-cellular meshwork of collagen, proteogly-
cans/glycosaminoglycans, elastin, fibronectin, and laminin,
with the major protein being collagen. In healthy tissue,
the production and arrangement of collagen is tightly con-
trolled through a precise equilibrium between matrix met-

alloproteinases (MMPs) and their inhibitors, together with
enzymes such as lysyl oxidases [4]. As tumors grow and ad-
vance, cancer cells release substantial quantities of MMPs,
which subsequently alter and break down the basement
membrane within ECM. This remodeling triggers a break-
down of the normal ECM structure, and a complex interplay
of pro- and anti-tumor signals from the degradation prod-
ucts [5]. Tumor cell proliferation is known to alter colla-
gen functions, which are dependent on the individual colla-
gen levels [6,7]. Cancer-associated fibroblasts (CAFs) dis-
rupt the normal regulation of collagen turnover during tu-
morigenesis, thus resulting in tumor fibrosis, also known
as desmoplasia. This manifests as an over-abundance of
collagen deposition in the vicinity of the tumor [8] lead-
ing to stiffening of the tissue. The hardened ECM is asso-
ciated with increased tumor aggressiveness and correlates
with an increased propensity for metastasis and worse pa-
tient outcome [9]. Tumor fibrosis thus affects the surround-
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ing tumor cells by causing changes in cell proliferation, dif-
ferentiation, migration, and metastasis. In this way, ex-
cess collagen deposition directly affects some of the hall-
marks of cancer [10]. Emerging evidence also indicates that
fibroblast-derived stromal collagens are strongly correlated
with poorer prognosis of cancer patients [11–15].

There is increasing interest in cancer biomarkers such
as cytokines, CAFs, collagens and cell adhesion molecules
(CAMs). Together, these create a unique ECM compo-
sition in different tissues. Despite numerous studies on
possible biomarkers for HCC, little is still known regard-
ing the diagnostic or prognostic value of collagen-related
CAMs. The function of CAMs in HCC and their possible
clinical application therefore require further investigation.
Interactions between cancer cells and the tumor microen-
vironment (TME) promote tumorigenesis through CAMs.
These are a group of cell surface molecules that promote in-
tercellular communication and intercellular matrix binding.
CAMs have an adhesive function, but also initiate intracel-
lular signaling pathways that impact cell survival, prolif-
eration, metastasis, and epithelial mesenchymal transition
(EMT), while potentially also impacting drug resistance in
tumor cells [16]. CAMs are expressed at increased levels
in many solid tumor types. These include ITGA9 in vari-
ous cancer types [17], PTGFRN in glioblastoma [18], and
ALCAM in epithelial-derived cancers [19]. Our previous
study focused on non-invasive biomarkers of HCC [20].
We built an edge panel (edge-based biomarker) as an ac-
curate and robust predictive model for HCC [21]. In this
model, COL5A1 was suggested to have an oncogenic func-
tion since it can stimulate cell proliferation and invasion, as
well as enhancing viability. Greater knowledge of collagen
and of related CAM genes should eventually lead to better
cancer diagnosis, inhibition of fibrosis, and reduced tumor
drug resistance [22,23]. As a highly expressed molecular
group, CAMs have good potential as cancer biomarkers.
Therefore, in the present study we systematically analyzed
the expression level of several collagen-associated CAMs
in HCC, together with their diagnostic and prognostic val-
ues.

2. Materials and Methods
2.1 Gene Screening, Literature Search, and Study
Selection

To date, 28 different collagens have been identified.
A literature search was conducted to identify the most ex-
tensively researched collagen genes in the field of cancer
studies. Search queries for each known “collagen gene”
were applied in conjunction with “cancer” to obtain studies
published in Pubmed to June 30, 2022. “Pubmed.mineR”
(version 1.0.19) packages in R (Ross Ihaka, Auckland, New
Zealand) was applied to identify the collagen genes most
frequently associated with cancer.

2.2 Network Construction
The College genes’ protein-protein interaction (PPI)

network was visualized, and the central hub gene deter-
mined using Cytoscape 3.8.2 software (UC San Diego, San
Diego, CA, USA). Transcription factor (TF) regulation re-
lationship data was also downloaded from the RegNetwork
database (https://regnetworkweb.org/).

2.3 LASSO-COX Analysis
Cox regression analysis was performed to assess

the prognostic value of candidate genes, and to examine
their association with overall survival (OS) in the TCGA
database. Diagnostic markers were screened using the least
absolute shrinkage and selection operator (LASSO)-Cox re-
gression model implemented in the “glmnet” package. The
penalty parameter (λ) was chosen based on the minimum
standard. Subsequently, a prognostic signature panel model
was constructed using logistic regression. The risk score
for each HCC patient within the TCGA and ICGC cohorts
was computed, after which they were categorized into high-
risk group and low-risk groups according to the median risk
score. The “survival” and “survminer” packages in R were
applied to calculate the OS of patients in the high- and low-
risk subgroups, with a p-value of<0.05 considered statisti-
cally significant.

2.4 Gene Mutation Analysis
The mutation analysis landscape of the three signature

genes was conducted for high and low-risk HCC patients in
the TCGA using the “Maftools” package in R version 4.1.0.

2.5 Analysis of Tumor-Infiltrating Immune Cells
Differences in the immune cell microenvironment

between high- and low-risk groups were assessed using
CIBERSORT software (Stanford University, Stanford, CA,
USA). Twenty-two types of tumor-infiltrating immune cells
were evaluated. Each risk score group’s composition of 22
immune infiltrates was calculated.

2.6 GEPIA, HPA, and TIMER Datasets
GEPIA 2 (available at http://gepia.cancer-pku.cn/inde

x.html) was utilized to validate gene expression [15,16].
This web-based tool offers key interactive and customizable
functions derived from the TCGA and GTEx (Genotype-
Tissue Expression) datasets. Gene expression profiles were
analyzed from the immunohistochemistry results available
in the Human Protein Atlas Project (HPAP) dataset (HPA,
https://www.proteinatlas.org/) [24]. TIMER2.0, accessible
at https://cistrome.shinyapps.io/timer/ [25], was employed
to investigate correlations between signature gene expres-
sion and immune cell types within the TME. Spearman’s
rho correlation values depicting the relationship between
the expression of specific genes and different immune cells
were visualized in a heatmap.
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2.7 Kaplan-Meier Plotter
The Kaplan-Meier Plotter (www.kmplot.com) was

utilized to investigate the prognostic values of 8 colla-
gen genes (https://kmplot.com/analysis/index.php?p=serv
ice&cancer=liver_rnaseq). To assess associations with OS,
HCC patient samples were first divided into two groups
according to the median expression value (i.e., high- and
low-expression). Kaplan-Meier survival analysis was per-
formed to calculate the hazard ratio (HR), 95 % confidence
interval (CI), and log-rank p-value.

2.8 Patient Clinical Information and Collection of Tissue
And Serum

After obtaining written informed consent, the tumor
tissue and adjacent normal tissue were collected prospec-
tively from 31 HCC patients who attended the Shuguang
Hospital, Shanghai University of TCM. Comprehensive
clinical information for these participants is presented in
Table 1. Tissue samples were collected before any treat-
ment or surgery. Tissue samples underwent centrifugation
at 3000 g for 15 min at 4 °C. All samples were stored at –80
°C before subsequent processing.

Table 1. Clinical characteristic of HCC patients in
independent cohort.

Group HCC

(n = 31)

Age (years) 55.28 ± 6.95
Gender (M/F) 19/2
TBIL (µmol/L) 22.37 ± 11.37
ALB (g/L) 39.19 ± 3.52
ALT (IU/L) 37.71 ± 25.64
AST (IU/L) 33.9 ± 15.81
BUN (umol/L) 4.83 ± 0.97
UA (umol/L) 286.28 ± 56.92
GLOB (g/L) 17.86 ± 2.81
CEA (ng/mL) 3.45 ± 1.94
CA199 (U/mL) 17.15 ± 14.16
AFP (µg/L) (n)

≤20 9
20–400 10
≥400 12

Clinical stage(n)
I 6
II 18
III 7

TBIL, total bilirubin; ALB, albumin; ALT, alanine amio trans-
ferase; AST, aspartate transaminase; BUN, blood urea nitro-
gen; UA, uric acid; GLOB, Globulin; CEA, carcinoembryonic
antigen; CA199, carbohydrate antigen 199; AFP, alpha-feto
protein.

2.9 Functional Analysis
The ClusterProfiler package in R [26,27] was used to

conduct the functional analysis of selected genes, including
Gene Ontology (GO) analysis and Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway enrichment analy-
sis.

2.10 RNA Extraction and RT-qPCR
Extraction of total RNA and RT-qPCR were carried

out as previously described [21]. Primer sequences are pre-
sented in Supplementary Table 1. Gene expression levels
were quantified compared to the expression of ACTB.

2.11 Transcriptome and Proteome Data Acquisition
Transcriptome data was obtained from GEO

databases. RNA-seq data for HCC was ob-
tained by downloading from the TCGA website
(https://portal.gdc.cancer.gov/). Microarray data
(GSE36376, GSE112790) [14,28] was obtained from the
NCBIGEOdatabase. In addition to the validation data from
GEO, proteomics data was also acquired from the study by
Gao et al. [29]. This information is accessible for viewing
on NODE (https://www.biosino.org/node) by entering the
accession code (OEP000321), or via the following URL:
https://www.biosino.org/node/project/detail/OEP000321.
The investigation involves a study of hepatitis B virus
(HBV)-related HCC using paired tumor and adjacent liver
tissues from 159 patients.

2.12 Statistical Analysis
Differences in gene expression levels between groups

were compared using the Mann-Whitney U test. The diag-
nostic marker was developed using a stepwise logistic re-
gression model. A p-value < 0.05 was considered statisti-
cally significant.

3. Results
3.1 Literature Screening for the Collagen Gene Family

To date, 28 collagen types encoded by 44 genes have
been identified. To identify the most well-studied of these
in cancer research, a literature search was conducted as
described in the Methods (Supplementary Fig. 1A). A
total of 2175 records were retrieved from Pubmed (ht
tps://pubmed.ncbi.nlm.nih.gov/) by scanning the title and
abstract, with 1053 relevant articles retained for further
evaluation after the exclusion of duplicate articles. Of
the 28 known collagen genes, the most frequently stud-
ied in cancer research were COL1A1, COL1A2, COL3A1,
COL4A1, COL4A2, COL5A1, COL6A1, and COL6A3
(Supplementary Fig. 1B).

To investigate the role of frequently altered neighbor-
ing genes associated with these 8 collagen genes, we con-
structed a collagen regulation network. This merged the
PPI and TF networks and identified the hub genes. The
collagen regulation network was found to consist of 252
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Fig. 1. Collagen genes and functional analyses in hepatocellular carcinoma (HCC) tissues. (A) Regulation network for collagen
genes. (B) Hub gene network for collagen genes and first neighbor genes. (C,D) Functional analyses of genes in the regulation network.
GO, Gene Ontology.

nodes and 681 edges (Fig. 1A). First-neighbor genes related
to the 8 collagen genes were extracted to construct a hub
gene network (Fig. 1B). Fibril-organization-related genes,
including SPARC, SERPINH1, DCN, PCOLCE, LUM, and
ITGB1, were found to be closely associated with the 8 col-
lagen genes. The GO and KEGG databases were used to
conduct functional analyses of the 8 collagen genes in the
regulation network. Most of the identified pathways were
associated with CAMs, while some were also related to
ECM-receptor interaction (Fig. 1C,D). These pathways are
closely involved with the tumorigenesis and pathogenesis
of HCC [11,30].

3.2 Construction of Prognostic Models Based on Least
Absolute Shrinkage and Selection Operator (LASSO)
Model and Survival Analysis

Fourteen genes (8 collagen genes and 6 neighbor
genes) underwent LASSO-Cox regression analysis. The
model included 10-time cross-validation for tuning parame-
ter selection, and resulted in the identification of three CAM
genes (Fig. 2A,B). The prognostic signature for these genes
(DCN, SERPINH1, ITGB1) was constructed using logistic
regression. The resulting risk score panel was: –4.647 –
0.391 × DCN + 0.989 × SERPINH1 + 0.137 × ITGB1.
Kaplan–Meier survival curves for HCC patients within the

TCGA database revealed significantly longer OS for pa-
tients with a low-risk score compared to those with a high-
risk score (Fig. 2C, p < 0.001). The Kaplan-Meier and
log-rank test analyses also indicated significant correlations
between elevated levels of SERPINH1 and ITGB1 mRNA
and lower survival rates (p = 0.013 and 0.022, respectively,
Fig. 2D,E). Decreased levels of DCN mRNA were associ-
ated with significantly longer OS (p = 0.02, Fig. 2F).

3.3 Correlation between High- and Low- Risk Score
Groups and Tumor Mutation Burden

Genetic variations were compared between the high-
and low- risk score groups defined by the three signa-
ture genes. The high-risk score group showed signifi-
cantly more frequent mutations of the 20 top mutated genes
(Fig. 3). The “maftool” package was utilized to compute
somatic mutation rates and to show the top 20 mutated
driver genes. Gene mutations occurred more frequently in
the high-risk score group. The most significant difference
between the two groups was for TP53 mutations (p = 3.7
× 10−11). This could indicate that patients with a high-
risk score had a greater likelihood of amplifications and
more DNA replication errors. However, the TP53mutation
frequency (40%) was slightly higher in the low-risk score
group (Fig. 3).
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Fig. 2. Prognostic models based on eight collagen genes and six first-neighbor hub genes. (A) Vertical line: minimum partial
likelihood deviation of LASSO coefficient distribution. (B) Lasso coefficient profiles of candidate genes exhibiting non-zero coefficients
determined by the optimalλ. (C) Survival analysis with the 3-gene risk score panel, and the predictive efficacy of the risk score panel in the
TCGA cohort. (D–F) Prognostic values of DCN, SERPINH1, and ITGB1 mRNA expression in HCC patients from the TCGA database.
LASSO, Least Absolute Shrinkage and Selection Operator; TCGA, The Cancer Genome Atlas; HR, Hazard Ratio; CI, Confidence
Internal; mRNA, messenger RNA.

3.4 Differences in Immune Infiltration Level between
High- and Low-Risk Groups, and TIMER Analysis

The infiltration of memory B cells (p< 0.001), plasma
cells (p < 0.05), T cells follicular helper (p < 0.01), T
regulatory cells (Tregs) (p < 0.01), macrophages M0 (p <

0.001) and neutrophils (p < 0.05) was significantly higher
in the high-risk group from the TCGA dataset compared
with the low-risk group. In contrast, the infiltration of T
cells CD8 (p < 0.001), T cells CD4 memory naive (p <

0.05), T cell gamma delta (p < 0.05), NK cell resting (p
< 0.001), monocytes (p < 0.001), macrophages M1(p <

0.05), and resting mast cells (p < 0.01) was significantly
lower (Fig. 4A).

We next employed the TIMER tool to investigate po-
tential associations between the three signature genes and
the inflammatory response. The three genes linked to
changes in ECM and collagen formation showed negative
correlations with the abundance of T CD8+ cells, Treg

cells, mast cells, NK cell activated cells, and NK resting
cells (Fig. 4B). However, significant positive correlations
were found with the presence of B cells, T CD4+ cells,
macrophages, neutrophils, and dendritic cells. Interest-
ingly, DCN was strongly correlated with CAFs (R = 0.67,
p < 0.001), which is a predictor of poor prognosis in HCC.

3.5 Gene and Protein Expression Levels of the Signature
Genes in HCC from the TCGA Dataset and HPA (Human
Protein Atlas)

The mRNA expression levels of the three signature
genes were compared between tumor tissue and adjacent
normal tissue in HCC from the GEPIA dataset. Of the 8 col-
lagen genes, the mRNA levels for SERPINH1 and ITGB1
were notably elevated in HCC tumor compared to normal
tissue (Fig. 5A,B). In contrast, the mRNA level of DCN in
HCC tumor tissue was notably lower than in normal tissue.
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Fig. 3. Waterfall plots of high- and low-risk score groups showing somatic mutations. Red: High-risk score group; Green: Low-risk
score group.

Hepatic expression of the signature genes (SER-
PINH1, DCN, and ITGB1) was further examined using im-
munohistochemistry results from the Human Protein Atlas
Project (HPAP) dataset. This analysis confirmed that SER-
PINH1 and ITGB1 showedmoderate to high expression lev-
els in tumor tissue compared to normal tissue. In contrast,
DCN showed moderately higher expression levels in nor-
mal tissue compared to tumor tissue, consistent with the
mRNA result (Fig. 5C).

3.6 Validation of Hepatic Expression of Signature Genes in
Transcriptome and Proteome Datasets

Fig. 6A,B shows the expression levels of SERPINH1,
DCN, and ITGB1 in tumor and normal tissues from the
GSE36376 and GSE112790 cohorts. Similar patterns of ex-
pression for the three signature genes were observed in both
datasets (Fig. 6A,B).

In addition, we validated the results and tested the
prognostic value of the signature gene score panel using
an independent proteomics dataset generated by Gao et al.
[29] and deposited in the National Omics Data Encyclo-
pedia (NODE) database. The study by Gao et al. [29]
focuses on HBV-related HCC and includes paired tumor
and non-tumor liver tissues from 159 patients. The signa-
ture genes were able to separate the non-tumor and HCC
groups (Fig. 6C,D). Receiver operator characteristic (ROC)
analysis further revealed the high efficacy of the signa-
ture gene panel in differentiating the non-tumor and HCC
groups (Fig. 6C). We also developed and tested predictive

models based on SERPINH1, DCN, and ITGB1. The logis-
tic panel showed excellent diagnostic performance for dif-
ferentiating between non-tumor and HCC samples, with an
area under the curve (AUC) of 0.987. This result suggests
the logistic panel identified here may have broad applica-
tion in the clinical diagnosis of HCC (Fig. 6D). The three
signature genes are therefore promising independent diag-
nostic markers for patients with HCC.

3.7 RT-PCR Validation of Collagen and Hub Genes

To explore the robustness of the above signatures for
HCC diagnosis, we examined the mRNA expression pro-
files of core genes using in samples from an independent
cohort. This comprised 31 HCC patients from which tumor
tissue and adjacent normal tissues were collected and evalu-
ated (Table 1). The results showed significant up-regulation
of SERPINH1 expression (p = 0.035) and ITGB1 expression
(p = 0.006) in HCC tumor tissue. In contrast, DCN expres-
sion was notably decreased (p = 0.025) in HCC tumor tis-
sues compared to normal tissues (Fig. 7).

4. Discussion
TME formation involves interactions between host

and cancer cells that are mediated through CAMs [30]. Al-
terations in the collagen content within the TME are intri-
cately associated with tumor onset and progression, mainly
through changes in the level of collagen expression and its
density, direction, length, and cross-linking [31]. These
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Fig. 4. Different immune cell infiltration levels in high- and low-risk groups from the TCGA dataset. (A) Differences in immune
infiltration between the high- and low-risk groups. (B) Spearman’s rho analysis shows correlations between the three signature genes
and 11 primary immune cell types within the tumor microenvironment (TME). ns, p > 0.05; *p < 0.05; **p < 0.01; ***p < 0.001.

changes can have major effects on the invasive and metas-
tasis properties of tumors. A comprehensive understanding
of the relationship between collagen and tumors is therefore
required to improve the prevention and treatment of cancer
[32].

Collagen fibrils form the core of ECM molecular or-
ganization and the cellular microenvironment. Changes in
collagen fibrils affect the adhesion and migration of cancer
cells [33]. Alterations in the composition of ECM compo-

nents, such as collagens, alter their interaction with CAMs
and affect various cell functions such as growth, migration,
and gene expression [34]. Both collagen and CAMs there-
fore play crucial roles in the development and progression
of HCC. However, the diagnostic and prognostic signifi-
cance of collagen-related CAMs in HCC still requires ex-
tensive research.

Collagen plays an important role in HCC, and the 8
collagen genes identified in the current literature search are
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Fig. 5. Expression of the signature genes in HCC from the TCGA dataset (mRNA, left panel) and from the HPA dataset (protein
analysis of tumor and normal tissue by immunohistochemistry, right panel) (Human Protein Atlas, http://www.proteinatlas.org/).
(A) Expression of SERPINH1 in TCGA and HPA. (B) Expression of ITGB1 in TCGA and HPA. (C) Expression of DCN in TCGA
and HPA. The images from HPA database are available from version 23.0.proteinatlas.org. TPM, transcripts per million; LIHC, liver
hepatocellular carcinoma.

known to be strongly associated with HCC. Type I colla-
gen is the most prevalent collagen type within the body [35]
and has been shown to affect the invasive behavior of tumor
cells, leading to metastasis [36,37]. COL1A1 and COL1A2
are the main components of ECM and are involved in ECM
remodeling, tumor cell adhesion, cell migration, and vas-
cular development [38]. Similar to type I collagen, high
expression of COL3A1 has been reported in lung [39] and
ovarian cancers [40]. Moreover, COL3A1 participates in
the invasion andmetastasis of glioblastoma cells [41]. Type
V collagen is expressed along with types I and III colla-

gen, but is a less abundant fibrillary collagen. Huang et al.
[42] reported that ablation of α3(V) in a mouse mammary
tumor model (Col5a3−/−) impedes cancer progression by
reducing the proliferative ability of tumor cells. In our pre-
vious study, COL5A1 was a member of the edge panel of
biomarkers for HCC [21]. COL5A1 expression was found
to be elevated in cirrhosis compared to chronic hepatitis B,
suggesting it may be important during the onset and activa-
tion of liver fibrosis. The main function of type IV collagen
is the formation of networks. COL4A1 andCOL4A2 encode
the alpha-1 and alpha-2 chains of collagen IV, respectively,
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Fig. 6. Validation of collagen expression with proteomic data, and diagnostic assessment of the collagen and hub genes. (A)
Expression of the three signature genes in the GSE36376 database. (B) Expression of the three signature genes in the GSE112790
database. (C) Principal component analysis (PCA) of the HCC (n = 159) and non-tumor liver tissues (n = 159) using the logistic panel in
the NODE dataset. (D) ROC curve analysis of each of the signature genes and of the logistic panel in the NODE dataset. DCN : AUC =
0.875 (95 % CI, 0.833 to 0.916); SERPINH1: AUC = 0.827 (95 % CI, 0.781 to 0.8740; ITGB1: AUC = 0.530 (95 % CI, 0.465 to 0.596);
logistic panel of three genes: AUC = 0.987 (95 % CI, 0.974 to 1.000). ROC, receiver operating characteristic; AUC, area under curve;
NODE, National Omics Data Encyclope.

which are subsequently secreted into the basement mem-
brane of ECM [43]. COL4A1 is highly expressed in gastric
[44], colon [44] and breast cancers [45], and is also strongly
associated with the proliferation, differentiation, andmigra-
tion of cancer cells [43]. Wang et al. [46] reported that in-
creased expression of COL4A1 facilitated the proliferation
and metastasis of HCC cells.

Collagen-related CAMs are also important since they
function with collagen to promote the formation of pre-
cancerous liver lesions, or even cancer. Through network
analysis, we found that LUM, SERPINH1, DCN, SPARC,
PCOLCE and ITGB1 were closely connected to the colla-
gen gene regulation network. The degrees for these 6 genes
in the network were all >20 (Fig. 1A,B).
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Fig. 7. RT-PCR validation of DCN, SERPINH1 and ITGB1 expression in an independent HCC cohort. (A–C) The vertical axis
depicts the relative mRNA expression values of genes normalized to ACTB, together with the corresponding variance calculated by the
Mann-Whitney U test. Non-tumor: normal adjacent tissue samples (n = 31); tumor: tumor tissue samples (n = 31). RT-PCR, reverse
transcription polymerase chain reaction; mRNA, messenger RNA; ACTB, actin-β.

Our LASSO-Cox analysis led to the construction of a
prognostic signature consisting of three CAM genes (DCN,
SERPINH1, and ITGB1). Based on this risk score panel,
the high- and low-risk HCC groups derived from the TCGA
dataset showed significant differences in gene mutation sta-
tus (Fig. 3) and immune cell infiltration (Fig. 4), suggesting
the possibility of stratified treatment for HCC patients using
this panel.

CIBERSORT analysis indicated an elevated propor-
tion of infiltrating Treg cells in the high-risk score sub-
group of HCC. Treg cells are often enriched in HCC and
function to suppress IFN-gamma secretion and the cyto-
toxicity of CD8+ T cells [47]. The transformation of M0
macrophages into the M2 subtype is commonly observed in
the TME during cancer cell invasion [48]. Cytokines such
as IL-10 and transforming growth factor-β were secreted by
the M2 subtype, thereby promoting inflammation in tumor
[49]. The increased proportion of M0 macrophages within
the tumor immune microenvironment might therefore sig-
nificantly contribute to liver carcinogenesis. Resting NK
cells could convert to activated NK cells and target tumor
cells [50]. In the present study, the fraction of resting NK
cells was lower in the high-risk score subgroup, but the pro-
portion of activated NK cells showed no difference between
the high- and low-risk groups. Collectively, these findings
indicate that high-risk scores may correlate with immuno-
suppression in HCC.

DCN belongs to a small, leucine-rich proteoglycans
family that suppresses tumor growth [51]. Initially, it
was identified as an efficient collagen-binding partner cru-
cial for fibrillogenesis, and was therefore named decorin
(DCN). DCN has since been reported to influence various
biological processes such as cell growth, proliferation, ad-
hesion, spread, and migration. Additionally, DCN plays
a regulatory role in inflammation and fibrillogenesis [52].
A lack of DCN facilitates tumor development, and hence
dysregulatedDCN expression is observed in several cancer
types including pancreatic and breast [52]. Consistent with
the current results, deep RNA sequencing found that DCN

expression levels were significantly decreased in HCC sam-
ples [53]. In summary, DCN could be an ideal target for
treating solid malignancies. Interestingly, TIME analysis
also revealed a strong association betweenDCN expression
and CAFs in this study (Fig. 4B). CAFs are recognized as
key cells in tumor development and invasion through their
secretion of cytokines and growth factors. CAFs also pro-
mote tumor cell proliferation and can cause immunotherapy
failure. The significant correlation observed between DCN
and CAFs suggests an important role for DCN in HCC.

Serpins occur widely in animals, plants and micro-
organisms. They participate in various biological pro-
cesses, such as fibrinolysis, tumor development, blood co-
agulation, programmed cell death and inflammation [47].
SERPINH1 is upregulated in cancers and fibrotic diseases
[17,54], and could therefore serve as an EMT-related target
[33]. The expression of SERPINH1 is related to collagen
synthesis and fibrosis diseases, with recent studies demon-
strating its role in solid tumors [50]. SERPINH1 was found
to be a potential prognostic biomarker in pan-cancer analy-
sis [34], and may also be a target for immunotherapy [51].
Little is known about the specific mechanism of SERPINH1
in HCC. Wu et al. [16] reported the tumorigenic effects
of long non-coding RNA SNHG6 and SERPINH1 in HCC
cells. Their overexpression was shown to induce in vivo
and in vitro progression of HCC.

ITGB1 is one of the most important members of the
integrin family and has been linked to tumor cell adhesion,
tumor immunity, and metabolism [19]. ITGB1 is a tumor
promoting factor that can induce the proliferation, migra-
tion, and invasion of cancer cells. ITGB1 also has the abil-
ity to bind to EpCAM, thereby regulating cancer cell adhe-
sion [55]. Previous research demonstrated that breast can-
cer [56], colon cancer [57] and other solid tumor types ex-
pressed high levels of ITGB1. There are also some reports
on the mechanism of action of ITGB1 in HCC. For exam-
ple, Shi et al. [58] reported that Integrin Alpha 5 and ITGB1
cause resistance to Sorafenib by inducing the formation of
vasculogenic mimicry in HCC.
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Finally, by integrating the expression of hub genes
from the RT-PCR and transcriptome data, we selectedDCN,
SERPINH1, and ITGB1 for additional diagnostic analyses.
The combination of these three biomarkers showed very
strong diagnostic accuracy for HCC (AUC = 0.987).

5. Conclusions
In summary, we carried out a systematic analysis

of the expression and diagnostic value of three collagen-
related CAM genes in HCC. Our results showed that the
expression of DCN, SERPINH1, and ITGB1 were signif-
icantly altered in HCC. Moreover, we developed a com-
bined logistic panel that proved to be an effective biomarker
for HCC diagnosis. Our findings also suggest that DCN,
SERPINH1, and ITGB1 are potential therapeutic targets
for HCC. A logistic panel comprising these three genes
could serve as a future non-invasive and effective diagnos-
tic biomarker for HCC.
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