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Abstract

Background: Clinical indexes are often selected as relevant factors for constructing prognostic models of tongue squamous cell car-
cinoma (TSCC) patients, while factors related to therapeutic targets are less frequently included. As Apigenin (API) shows anti-tumor
properties in many tumors, in this study, we construct a novel prognostic model for TSCC patients based on Apigenin-associated genes
through transcriptomic analysis. Methods: The effect of Apigenin (API) on the cell characteristics of TSCC cells was measured by
several phenotype experiments. RNA-seq was executed to ensure differentially expressed genes (DEGs) in squamous cell carcinoma-9
(SCC-9) cells after API treatment. Furthermore, reverse transcription quantitative polymerase chain reaction (RT-qPCR) and immunohis-
tochemistry were performed to verify the expression of API-related genes. Then, combined with the gene expression data and relevant
individual information of TSCC samples acquired from The Cancer Genome Atlas (TCGA), an API-related model was built through
Lasso regression and multivariate Cox regression. A receiver operating characteristic (ROC) curve and a nomogram and calibration
curve were created to forecast patient outcomes to improve the clinical suitability of the API-related signature. The relationships be-
tween the two risk groups and function enrichment, immune infiltration characteristics, and drug susceptibility were analyzed. Results:
We demonstrated that API could inhibit the malignant behavior of TSCC cells. Among API-related genes, TSCC cells treated with
API, compared to the control group, have higher levels of transmembrane protein 213 (TMEM213) and G protein-coupled receptor 158
(GPR158), and lower levels of caspase 14 (CASP14) and integrin subunit alpha 5 (ITGAS). An 7 API-associated gene model was built
through Lasso regression and multivariate Cox regression that could direct TSCC prognostic status and tumor immune cell infiltration.
In addition, we acquired 6 potential therapeutic agents for TSCC based on the prognostic model. Conclusions: Our research suggested
the inhibition effect of API on TSCC cells and provided a novel prognostic model combined with therapeutic factors that can guide the
prognosis of TSCC and clinical decision-making in TSCC.
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1. Introduction

Apigenin (4',5,7-trihydroxyflavone, API), a plant
flavonoid, has multiple antioxidant, anti-inflammatory, and
anticancer activities [1-3]. In Europe, plant preparations
containing API have been used for centuries as traditional
medicines and are commonly used in the treatment of
asthma, insomnia, neuralgia, herpes zoster, Parkinson’s dis-
ease, and degenerative disorders [4—6]. Moreover, API can
effectively inhibit various pathways that are important for
the growth of tumors, including breast, skin, and colon can-
cers [3,7-9]. In breast cancer, API reduces estrogen re-
ceptor (ER)-positive cancer cell growth via protein kinase
B (PKB)/Forkhead box protein M1 (FOXM1) molecular
mechanisms [10]. Furthermore, in SKH-1 mouse mod-
els, API was demonstrated to inhibit Ultraviolet B (UVB)-
induced carcinogenesis [11,12]. Moreover, API could ef-

fectively induce apoptosis in colon carcinoma cells and
tongue squamous cell carcinoma (TSCC) [8,13]. In vitro,
API inhibits the development of oral squamous cell carci-
noma by causing apoptosis and cell cycle arrest [13]. How-
ever, its potential application in TSCC has not yet been fully
investigated.

TSCC, which is associated with an aggressive phe-
notype and poor prognosis, is one of the most widely
diagnosed forms of oral cancer [14-16]. In addition to
functional problems such as impaired speech, chewing,
and swallowing, TSCC may also cause cosmetic changes,
which can reduce patients’ quality of life [17,18]. Cur-
rently, the treatment of TSCC includes surgery, chemother-
apy, radiotherapy, or comprehensive treatment depending
on the patient’s condition [4]. Although great improvement
has been made in cancer diagnosis and therapy, the mortal-
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ity of TSCC is still high [19]. Previous data have shown that
the 5-year survival rate for patients with advanced TSCC is
under 50%. Hence, more effective targets and therapies are
desperately needed for TSCC [20]. And it’s necessary to
build new methods to predict TSCC prognosis.

Nowadays, prognostic models are being used exten-
sively in predicting tumor prognosis. Multiple factors are
included in the prognostic modeling because using some
single prognostic factor alone is not accurate enough [21].
Among these factors, clinical biochemical and imaging in-
dicators are the main components. Previous studies have
demonstrated that in patients with N-type breast cancer,
prognostic models can provide evidence for withholding
chemotherapy when the prognosis is favorable [22]. In
metastatic biliary tract cancer, prognostic models based
on clinical-laboratory parameters can help to accurately
risk-stratify patients and make treatment-related decisions
[23]. Moreover, prognostic models using the neutrophil-
to-lymphocyte ratio (NLR) and 18F-FDG PET standardized
uptake values can identify patients with pancreatic cancer
into 4 prognostically distinct risk groups [24]. However, the
analysis of high-throughput data and the incorporation of
therapeutic factors as prognostic factors in the construction
of prognostic models are rare. Indeed, such an approach is
more likely to assess the impact of treatment on the disease
and to regulate the dose and duration of drug administration.

In this study, we aimed to prove the potential role of
API in TSCC and explore a novel TSCC prognosis model.
The prognostic model, based on API-associated genes, was
effective in guiding TSCC prognosis and immune microen-
vironment.

2. Materials and Methods
2.1 Workflow

Firstly, API-related differentially expressed genes
(DEGs) in squamous cell carcinoma-9 (SCC-9) cells were
identified through RNA-seq and a preliminary analysis was
conducted on the molecular mechanism of possible action
of Apigenin. Next, combined with relevant individual in-
formation of TSCC patients from The Cancer Genome At-
las (TCGA) databases, 7 API-related genes were found to
create a prognostic model and to survey the underlying
mechanisms of TSCC patients [25]. The low- and high-
risk groups were constructed to estimate patients’ outcomes
by accurately predicting their overall survival (OS) from
TSCC. Furthermore, this model was used to classify the
tumor microenvironment (TME) and drug sensitivity of
TSCC patients in different risk groups. A schematic of the
analysis workflow is demonstrated (Fig. 1).

2.2 Cell Line and Treatments

The TSCC cell lines SCC-9 and CAL-27 were
purchased from the American Type Culture Collection
(ATCC). For culturing, SCC-9 cells were grown in DMEM-
F12 maintained at 37 °C with 5% CO,. And CAL-27

cells were cultured in DMEM medium in the same envi-
ronment. All cell lines were validated by STR profiling and
tested negative for mycoplasma. For experimental studies,
SCC-9 and CAL-27 cells were treated with or without API
(IA0400, Solarbio, Beijing, China) for the indicated period
with dimethyl sulfoxide (DMSO, D8371, Solarbio, Beijing,
China) as the vehicle. None of the final concentrations of
DMSO in the medium exceeded 0.1% in all treatments.

2.3 Investigation of the IC50 of API in TSCC Cells

The semi-inhibitory concentration (IC50) of API was
calculated by the Cell Counting Kit-8 (CCK-8) assay
(BA00208, Bioss, Beijing, China). In brief, 100 pL of
SCC-9 and CAL-27 cells growing exponentially at a con-
centration of 5 x 10% cells/mL were seeded into 96-well
plates and further incubated with different concentrations
of API (0, 2, 4, 8, 16, 32, 64, 128 umol/L). After 24 hours,
the CCK-8 chemical agent (10 uL) was mixed in each well,
and the mixtures were incubated at 37 °C for 120 minutes.
The OD values were tested at a wavelength of 450 nm. The
IC50 was determined by Prism 9 software (GraphPad Soft-
ware, San Dieg, USA).

2.4 Cell Proliferation Assays

SCC-9 and CAL-27 cells (3 x 103) in 100 uL of
medium were inoculated into 96-well plates. Following the
CCK-8 assay procedure, cell proliferation was analyzed at
1, 2, 3, 4, and 5 days. At the specified point in time, 10
puL of CCK-8 reagent was added to every well. After incu-
bating for 2 h at 37 °C, a wavelength of 450 nm was used
to analyze the OD values in each well, and growth curves
were created to define the growth rates.

2.5 Wound-Healing Assay

Using a 200 pL pipette tip, a scratch was made in the
center of each well. Each well was washed 3 times with
PBS to remove cell debris. Then, the residual cells were
treated with or without 20 pM API for 24 h. The migrating
cells were imaged at 0 or 24 h by using a Leica inverted mi-
croscope (DMIS, Leica, Solms, Germany; magnification,
50x%).

2.6 Transwell Migration and Invasion Assay

In the invasion assay, transwells were pretreated with
matrigel (1:8). Following the suspension of SCC-9 and
CAL-27 cells in serum-free medium (10 x 105/mL), 200
pL of the cell suspension containing API (0, 5, 10 uM) were
added to the upper compartment, and 800 pL of medium
containing 20% fetal bovine serum (FBS) were used in the
lower chamber. Then, SCC-9 cells were incubated for 24
hours in migration and 48 hours in invasion. As for CAL-
27, cells were incubated for 48 hours in migration and
72 hours in invasion. Cells that had migrated were then
fixed with 4% paraformaldehyde, followed by crystal violet
staining. The number of migrating cells was determined af-
ter the cell chamber was photographed using a microscope
(DMIS, Leica, Solms, Germany; magnification, 50x).
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Fig. 1. Analysis workflow. TSCC, tongue squamous cell carcinoma; API, apigenin; DEGs, differentially expressed genes; GSEA, gene

set enrichment analysis; TME, tumor microenvironment.
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2.7 Colony Formation Assay

Six-well plates were used to cultivate SCC-9 and
CAL-27 cells (1000/well). 20 uM API was applied to
the cells. And every three days, the culture medium was
changed. After 10 days of incubation, cells were immo-
bilized with 4% paraformaldehyde. Then, the cells were
followed by 10 minutes of crystal violet staining. A digi-
tal camera was used to record colony images, and colonies
with more than 50 cells each were tallied.

2.8 Immunohistochemistry (IHC)

Sections were cut from formalin-fixed, paraffin-
embedded adjacent noncancerous tissues and cancer tis-
sues. The sections were routinely deparaffinized, rehy-
drated, antigen-retrieved, and blocked with 3% hydrogen
peroxide. Thereafter, primary antibodies for ITGAS (1:200,
Proteintech) were incubated on the sections overnight at
4 °C, followed by secondary antibodies that were HRP-
labeled. The sections were stained with hematoxylin and
then with diaminobenzidine. Unaware of any clinical in-
formation about our patients, two skilled pathologists inde-
pendently evaluated and scored the stained sections based
on the degree of staining and the ratio of tumor cells with
a positive stain. The staining intensity has been separated
into four groups: 0 for no staining, 1 for mild staining, 2 for
moderate staining, and 3 for intense staining. The propor-
tion of positively stained tumor cells was classified depend-
ing on the following criteria. 0 (5% positive cancer cells),
1 (5—-25% positive cancer cells), 2 (26—-50% positive cancer
cells), 3 (>50% positive cancer cells). The total score is de-
rived from the sum of the staining intensity and the stained
cell score. Based on the total score, patients were separated
into two groups: 0-2 negative and 3—6 positive.

2.9 Data collection

Transcriptome RNA sequencing data from SCC-9
cells treated with or without 20 uM API for 24 hours were
provided by Applied Protein Technology. RNA-seq data
of TSCC patients obtained from the TCGA contained 148
TSCC samples and 15 normal tissue samples. Clinical data
in 147 samples, including age, sex, tumor grade, and sur-
vival status, were also gathered from the TCGA. Besides,
data from 58 additional samples were downloaded on the
Gene Expression Omnibus database (https:/www.ncbi.nlm
.nih.gov/geo/) (ID: GSE111395, GSE75540), which later
was used a as test cohort.

2.10 Establishment of the Prognostic Model

The “limma” package, containing p as well as false
discovery rate (FDR) <0.05 as the cutoff points, was em-
ployed to detect DEGs between tumor tissues and normal
tissues acquired from TCGA datasets [26]. This “limma”
package was also used to analyze DEGs in SCC-9 cells
treated with or without 20 uM and prognosis-related genes
of TSCC patients. Next, API-related DEGs were found

in both tissue DEGs, and prognostic genes were identi-
fied. Furthermore, API-related genes with prognostic value
were selected by univariate Cox analysis of overall sur-
vival (OS). Then, interacting networks based on these API-
related genes were created via the STRING database (ver-
sion 11.5, developed jointly by the Swiss Institute of Bioin-
formatics, the Novo Nordisk Foundation Protein Research
Center and the European Molecular Biology Laboratory).
Aiming to create a prognostic model, Lasso Cox regres-
sion analysis further revealed target genes with the “glm-
net” package. In addition, multivariate Cox analysis was
also carried out to evaluate the prognostic sign of the genes.
While calculating the penalty parameter () using the small-
est possible criterion, normalized expression of the genes in
TSCC patients and coefficients were gathered to analyze to-
tal risk scores. The algorithm was as follows: risk score =
sum (each gene’s expression in each TSCC patient x cor-
responding coefficient). Then, TSCC patients in the TCGA
cohort were allocated to the high- or low-risk group as well
as the Gene Expression Omnibus (GEO) cohort [27]. Prin-
cipal component analysis (PCA), from running the “stats”
R package, was conducted to estimate this model’s ability
to isolate samples into two groups [28]. In addition, the
“Rtsne” R package was run to create t-distributed stochastic
neighbor embedding (t-SNE) and then further determine the
groups’ distribution. For the survival analysis of each gene,
the optimal cut-off expression value was determined by the
“surv_cutpoint” function of the “survminer” R package.
Kaplan—Meier (K-M) analysis by the “survminer” package
was built to predict the OS of TSCC patients between the
high- and low-risk groups.

2.11 Independent Prognostic Analysis of this Model

Receiver operating characteristic (ROC) curve analy-
sis was performed using the “survival”, “survminer”, and
“timeROC” packages. The 1-year, 3-year, and 5-year OS
were determined by ROC curves to estimate the anticipa-
tion capacity of the model. The relationship between clini-
cal data acquired from the TCGA and API-related gene ex-
pression was analyzed with Cox regression analyses. More-
over, the results were visualized through forest maps.

2.12 Gene Set Enrichment Analysis

The input data were split into high- and low-risk
groups obtained by risk scoring, and the underlying molec-
ular pathways in API-related genes were further analyzed.
Gene set enrichment analysis (GSEA) was performed by
GSEA software (version 4.3.2, Broad Institute, UC San
Diego, CA, USA). Simulated value = 1000, p-value < 0.05,
which was conducted as the criterion for statistical signifi-
cance.

2.13 Immune State in Diverse Risk Groups

Each sample in the high- or low-risk group was an-
alyzed to compute the number of 22 types of immune
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Table 1. Primer sequences for PCR.
TCGA cohort

CTGGTGGATGTGTTCACGAAGAGG
AGGGTGCTTTGGATTTCAGGGTTC

Variables

CASP14 (forward primer)
CASP14 (reverse primer)

TMEM213 (forward primer)
TMEM213 (reverse primer)
GPR158 (forward primer)
GPR158 (reverse primer)
ITGAS (forward primer)
ITGAS (reverse primer)
GAPDH (forward primer)
GAPDH (reverse primer)

GCAGAAGCAAGCAGCAGCAAC
ATCCAGCCGTACTCGTCCACTC
CTGCGGAGGAGCCAAGAAAGC
ATCTGGGTGGTGCCTGGGTTC
CATCGCTCTCAACTTCTCCTTGGAC
CGGCTCTTGCTCTGATAATGTAGGG
GTCAGTGGTGGACTGACCT
TGCTGTAGCCAAATTCGTTG

qPCR, quantitative polymerase chain reaction; TCGA, The Cancer

Genome Atlas.

cells infiltrating the tumors. Furthermore, the CIBERSORT
method was used to assess the correlation between patient
risk scores and immune cell density [25]. The risk score was
determined to explore the connection between API-related
genes and 22 levels of immune cell infiltration. Addition-
ally, between the high- and low-risk groups, the immune
status and stromal scores were evaluated by the ESTIMATE
algorithm [29].

2.14 Drug Sensitivity Analysis

To explore drug sensitivity in the low- and high-risk
groups, IC50 values of TSCC treated with multidrug treat-
ment were determined through the “prophetic” software
package.

2.15 Authentication of Genes in this Signature

Based on the Human Protein Atlas, each API-related
DEG used to build a prognostic model was subjected to im-
munohistochemistry imaging to further confirm the protein
expression of these genes.

2.16 Reverse Transcription-Quantitative Real-Time PCR
(RT-qPCR)

Total RNA was obtained from SCC-9 cells treated
with or without 20 uM API via TRIzol (Invitrogen, Carls-
bad, CA, USA). Then, complementary DNA (cDNA) was
generated using the Verso complementary DNA synthesis
kit (Invitrogen, Carlsbad, CA, USA). Sequences of primers
for detecting target genes are described in Table 1.

2.17 Statistical Analysis

During data collection, gene expression was calcu-
lated through Student’s #-test. Survival analysis was deter-
mined using the R survival package. In addition, the log-
rank test was used to test the survival rate of each group.
The Kaplan—Meier curve was utilized to predict the survival
probability of the high- and low-risk groups in the data. In-
dependent forecast factors of OS were employed through
univariate and multivariate Cox regression. Moreover, the
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correlation of the two subgroups in the tumor immune mi-
croenvironment, including immune cells and immune path-
ways, was assessed employing the Mann—Whitney test.
Additionally, the correlation coefficient was measured by
Spearman analysis. R version 4.1.0. (The R Foundation for
Statistical Computing, Boston, MA, USA) was used for all
statistical analyses, and the p-value was <0.05.

3. Results
3.1 API inhibited TSCC Cell Aggressive Characteristics

To determine the API (Fig. 2A) IC50 value of the
TSCC cell line, SCC-9, and CAL-27 cells were treated
with API at progressively higher concentrations (0, 2, 4,
8, 16, 32, 64, 128 uM) for 24 hours (Fig. 2B). As shown
in Fig. 2B, the IC50 value was approximately 35.16 uM
in SCC-9 cells and 39.21 uM in CAL-27 cells based on
the CCKS assay. Cell proliferation was also evaluated us-
ing the CCKS8 assay (Fig. 2C,D). The effect of API on the
migratory capacity of SCC-9 and CAL-27 cells was then
clarified by wound-healing assay. Our data showed that
API could decrease gap closure at concentrations of 20 uM
(Fig. 2E,F). Meanwhile, we also verified that API could ef-
fectively suppress cell migration and invasion by transwell
assay (Fig. 2G,H). Furthermore, the colony-formation as-
says demonstrated that API could effectively inhibit clono-
genic capacity in SCC-9 and CAL-27 cells (Fig. 2L,J). Our
results show that API could markedly suppress cell prolifer-
ation, migration, and clonogenic ability of SCC-9 and CAL-
27 cells.

3.2 Determination of Prognostic API-Related DEGs

To explore the underlying molecular mechanism of
how API restrains the malignancy of TSCC, we ob-
tained the results of API-treated and untreated groups of
DEGs through transcriptome RNA sequencing (Fig. 3A,B).
Then, we also analyzed DEGs in RNA-seq data between
TSCC samples and normal tissue samples from the TCGA
(Fig. 3C,D). The individual information of these TSCC
patients was generalized in Table 2. Integrated analy-
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ses were performed to demonstrate relationships between
DEGs in SCC-9 cells and DEGs in the RNA-seq group or
the prognosis-related group with | log2 (fold change) | >1
and FDR <0.05 (Fig. 3E). As shown in Fig. 3E, some API-
related genes were differentially expressed between nor-
mal and tumor tissue samples. Nine of them (SLC7A414,
ETNPPL, TMEM?213, GPR158, GJB7, CASP14, HOXD-
AS2, ITGAS5, and MIR503HG) were correlated with OS
by univariate Cox regression analysis (Fig. 3F). Unexpect-
edly, SLC7A14 and ETNPPL were downregulated in tu-
mor samples. However, their HR expression was much
higher, which can upregulate offset possibility. Conse-
quently, these two genes were ruled out for further study.
In total, 7 API-related prognostic DEGs were retained. (all
FDR <0.05, Fig. 3G). The correlation between these 7
DEGs is presented in Fig. 3H.

Table 2. Clinical characteristics of the TSCC patients
involved in this research.

Variables TCGA cohort
No. of patients 156
Age (years)
<60 78 (50%)
>60 78 (50%)
Gender (%)
Female 50 (32.1%)
Male 106 (67.9%)
Grade
1 20 (12.8%)
2 99 (63.4%)
3 28 (17.9%)
4 4 (2.5%)
Unknown 5(3.1%)
Stage
I 13 (8.3%)
I 24 (13.5%)
I 35 (22.4%)
v 65 (41.5%)
Unknown 19 (12.1%)

Survival status
Alive 97 (62.1%)
Dead 59 (37.8%)

TSCC, tongue squamous cell car-

cinoma.

3.3 Validation of Genes in this Prognostic Model

In the Human Protein Atlas database, only 4 genes
(CASP14, TMEM213, GPR158, and ITGAS) of this prog-
nostic model have been analyzed immunohistochemically.
Asdisplayed in Fig. 4A, the protein expression of these four
genes was shown to be different in normal tissues than in
tumor tissues (Fig. 4A).
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To validate these 4 genes in SCC-9 cells, RT-qPCR
was utilized to evaluate their mRNA expression. These
SCC9 cells were treated with or without 20 uM API for 24
hours. According to the results, TMEM213 and GPR158
mRNA levels were increased in the API group. In com-
parison with the CTRL group, the mRNA expression of
CASP14 and ITGAS was downregulated (Fig. 4B). In these
4 genes, ITGAS5 and CASP14 are oncogenes, and API in-
hibits their expression. Since HR in /7GA5 is much higher
(Fig. 3G), we further confirmed that ITGAS was enhanced
in tumor tissues than in paracancerous tissues through IHC
(Fig. 4C).

3.4 Establishment and Validation of an API-Related
Prognostic Model

Then, a prognostic model was constructed from the 7
genes noted above using LASSO Cox regression analysis.
The risk score formula is listed below [26]: ¢ (0.070 x ex-
pression level of CASP14 + 0.216 x expression level of
ITGAS + 0.212 x expression level of GPR158 + 0.319 x
expression level of MIR503HG + 1.99 x expression level
of ETNPPL + 0.214 x expression level of GJB7 +0.309 x
expression level of TMEM213). In accordance with the cut-
off value, the TSCC patients in the TCGA cohort were di-
vided into two groups: a low-risk group (n=74) and a high-
risk group (n =73) (Fig. 5A). In addition, high-risk patients
had a higher death rate than low-risk patients (Fig. 5B).
Moreover, patients in the high-risk or low-risk group were
determined to be located independently via PCA and t-SNE
analysis (Fig. 5SC,D). The Kaplan—Meier curve steadfastly
demonstrated that patients with TSCC in the low-risk cate-
gory had notably better OS than those in the high-risk group
(Fig. 5E, p < 0.001).

Subsequently, to verify the reliability of the model es-
tablished in the TCGA cohort, the patients from the GEO
cohort were also placed in either a high- or low-risk group
by the median value obtained as the same formula as that
in the TCGA cohort (Fig. 5A). And from Fig. 4B, Patients
in the low-risk group were more probably to own a longer
OS (Fig. 5B). Similar to the outcome received from the
TCGA cohort, PCA and t-SNE analysis revealed that the
distribution of patients in two subgroups was in discrete di-
rections (Fig. 5C,D). In addition, patients in the high-risk
group had worse survival rates compared to the low-risk
group (Fig. 5E).

After eliminating samples with inconclusive clinical
information, ROC analysis was utilized to calculate AUCs.
As revealed in Fig. 5F, the AUCs of the 7-gene model for
1-, 2-, and 3-year survival were 0.736, 0.718, and 0.709,
respectively. The risk score was proven to be a stand-alone
forecaster of OS in TSCC patients through univariate and
multivariate Cox regression analyses (Fig. 5G). Then, all
associated clinical factors for patients in the TCGA were
used to build a predictive nomogram for OS (Fig. SH). The
red dot represents the total clinical characteristics score in
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a TSCC patient from the TCGA, which is 263 points. This
red dot also indicates that the survival probabilities in this
patient for 1, 3, and 5 years were 85.4, 69.5, and 53.2%,
respectively. The 1-, 3-, and 5-year OS of TSCC patients
were also evaluated using calibration curves (Fig. 51).

3.5 Functional Analysis Based on the Prognostic Model

Aiming to determine the function of API-related prog-
nostic genes, GSEA was utilized to diagnose relative un-
derlying pathways between the low- and high-risk groups.
Based on the results, the enriched pathways in the high-risk
group were mostly specialized in focal adhesion, ECM re-
ceptor interaction, viral myocarditis, regulation of actin cy-
toskeleton, leishmania infection, and coagulation cascades
(Fig. 6A). The enriched mechanisms of the low-risk group
were Parkinson’s disease, oxidative phosphorylation, Hunt-
ington’s disease, Alzheimer’s disease, seven amino acid
metabolism, and one carbon pool by folate (Fig. 6B).

3.6 Relationship between Risk Score and TME or Drug
Susceptibility

As shown in Fig. 7A, the risk score was linked to regu-
latory T cells (Tregs), follicular helper T cells, CD8 T cells,
resting mast cells, memory B cells, and M1 macrophages
(Fig. 7A). In addition, a correlation between the 7 genes
and the number of immune cells was also observed. The
results showed that some immune cells were easily affected
by these 7 genes (Fig. 7B). Additionally, T cells can be in-
hibited by stromal activation of the TME. The tumor stroma
and ESTIMATE scores were much lower in the low-risk
group than in the high-risk group (Fig. 7C).

A drug susceptibility test was performed to analyze
the effect of anticancer drugs in different risk groups. In the
high-risk group, the results indicated that the IC50 values of
bexarotene, bicalutamide, pazopanib, and W02009093972
were much lower. The chemotherapeutic agents in the high-
risk group, including A443654 and vinorelbine, had higher
IC50 values than those in the low-risk group (Fig. 7D).

4. Discussion

Previous studies have demonstrated that API has
various biological functions, including antitumor, anti-
inflammatory, and antioxidant activities [30]. Regarding
antitumor function, a recent study pointed out that API
could induce apoptosis in the A431 cell line by downreg-
ulating sulfiredoxin expression [31]. In addition, in the
KRAS-mutant NSCLC model, API could effectively re-
duce the proliferation ability [32]. Moreover, under hy-
poxic conditions in gastric cancer cells, API initiates au-
tophagic cell death through inhibition of HIF-1« and Ezh2
expression [33]. Despite the antitumor effect of API having
been demonstrated in various cancers, the effect of API in
TSCC has not been well-proven.

In the present work, we first proved that API can ef-
ficiently reduce cell proliferation and migration in TSCC
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cells, which provides new drug options for clinical treat-
ment. Then, through RNA-seq data and the GEO database,
we identified 7 key API-related prognostic genes (CASP14,
TMEM?213, GPRI158, MIR503HG, HOXD-AS2, GJB7, and
ITGAS5). These genes all displayed potential as prognostic
biomarkers. In terms of CASP14, alterations in CASP14
expression could lead to tumor pathogenesis and progres-
sion [33]. It was discovered that CASP14 expression was
decreased in some malignant cancers. In addition, high ex-
pression of TMEM213 could promote the development of
renal cell carcinoma [34]. Regarding GPR158, a study re-
vealed that GPR158 is essential in prostate cancer growth
and progression [35]. In vascular disease, MIR503HG defi-
ciency enhanced the conversion of endothelial cells to mes-
enchymal cells [36]. In vivo, silencing of IncRNA HOXD-
AS2 prevents glioma cell proliferation, and its expression
level relates to tumor grade and prognosis in GBM [37].
Additionally, GJB7 was found to be mutated in gastric and
colorectal cancers [38]. ITGAS, a member of the integrin
alpha chain family, has been shown to function in promot-
ing cancer cell infiltration and migration [39]. In breast
cancer, high expression of ITGAS in tumor cell-derived ex-
tracellular vesicles can increase metastasis probability [40].
In our research, ITGAS was performed as an oncogene with
higher HR value and elevated in TSCC tumor tissues com-
pared to paraneoplastic tissues of patients. Previous studies
show that ITGAS could effectively promote TSCC cell pro-
liferation and migration [41], which is consistent with our
findings.

Next, we demonstrated a novel independent prognos-
tic model based on these 7 key API-related prognostic
genes. At present, there are some other prognostic mod-
els for TSCC patients. Prognostic models incorporating
age, tumor nodal metastasis (TNM) stage, erythrocytes,
platelets, and platelet-to-lymphocyte ratios can be effec-
tive in improving the accuracy of OS prediction for TSCC
[42]. Besides, prognostic models that include the variables
of inflammatory response, tumor outgrowth, and depth of
infiltration are strongly associated with TSCC lymph node
metastasis and recurrence and can be used as predictors of
survival in patients with TSCC [43]. Additionally, some
researchers have developed prognostic models using 11
key predictor genes through Cox and LASSO analysis of
The Cancer Genome Atlas and the GSE65858 database (on
overall survival) [44]. The risk model had a better prognosis
than other clinical features. However, there are no prognos-
tic models in TSCC that incorporate treatment-associated
genes into the construct system at this time. We integrated
API-associated genes into the TSCC prognostic modeling
system, which can better evaluate the ability of API to in-
fluence the prognosis of patients. Our study also found that
the risk score based on this prognostic model was closely
correlated with immune cells and the TME, which means
that API may inhibit SCC-9 cellular activity by affecting
immune cells. The TME, composed of various cellular and
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noncellular actors, has been demonstrated to impact cancer
progression and the outcomes of cancer therapy [45]. Can-
cer immune escape is an active process that regulates im-
mune responses with the help of immunosuppressive cells
[46,47]. And TSCC patients mostly suffer from CD8" T
or Foxp3™ regulatory T-cell (Treg) infiltration [45]. More-
over, patients in diverse risk groups showed a difference in
their sensitivity to drug treatment, which can provide ben-
eficial insight for developing treatment strategies combin-
ing API and other drugs and bring hopeful prognostic out-
comes.

In summary, several limitations were present in this
study. First, the data in this research were mostly obtained
from TCGA databases, and more real-world data are needed
to validate their accuracy. Second, the API-associated
genes obtained in this study that can guide TSCC prognosis,
immune microenvironment, and combination drug therapy
need to be further investigated for their biological functions.

5. Conclusions

In conclusion, our research validated the efficacy of
API in inhibiting cancer progression using in vitro exper-
iments. Furthermore, we incorporated therapeutic factors
with disease occurrence and progression factors to construct
a fusion of innovative prognostic models for TSCC tu-
mor patients. The API-related prognostic model was well-
predicting patient OS and the immunological status of the
TME. In addition to API, we identified six drugs that may
be potentially efficacious in the treatment of TSCC. The
results of this study have the potential to improve clinical
outcomes and overall survival in patients with TSCC.
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