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Abstract

Background: Antigen presentation may be an important factor contributing to immune evasion in cancer. This study investigated
antigen-presenting prognostic related genes (APPGs) and their potential mechanisms in hepatocellular carcinoma (HCC).Methods: We
constructed a score built upon the core APPGs (APP.Score) through nonnegative matrix factorization (NMF) clustering, weighted gene
co-expression network analysis (WGCNA), random forest (RF), and least absolute shrinkage and selection operator (LASSO) methods.
We also compared the clinical and molecular characteristics of different APP.Score. Furthermore, in vitro experiments were conducted
to validate the expression of core APPGs and investigate the effects of phospholipase A2, group 7 (PLA2G7) knockdown on HCC
cell development and programmed death-ligand 1 (PD-L1) expression. Results: APP.Score was positively correlated with immune
cell infiltration and levels of immune checkpoint inhibitor-related genes, and negatively correlated with overall survival (OS). The area
under the curve values were 0.734, 0.747, and 0.679 for survival periods of 1, 2, and 3 years, respectively, indicating that APP.Score
could be an independent prognostic factor for patients with HCC. OS of the high expression group of these genes, including PLA2G7,
musculin, heat shock protein family A, secreted phosphoprotein 1, and neutrophil cytosolic factor 2 (NCF2) was lower than that of their
low expression group. Moreover, the upregulation of key components of APPGs, except NCF2, was observed in HCC. The inhibition
of PLA2G7 suppressed HCC progression and reduced PD-L1 and phosphorylated signal transducer and activator of transcription 1 (p-
STAT1)/STAT1 levels in HepG2 and Huh-7 cells. Remarkably, the decrease in PD-L1 expression caused by PLA2G7 silencing was
reversed upon treatment with a STAT1 activator. Conclusion: The results of this study show that APP.Score could be an independent
prognostic factor for patients with HCC, and that PLA2G7 silencing inhibits cancer cell development and PD-L1 expression. We provide
a new perspective and potential target for immune research on antigen presentation in HCC.
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1. Introduction

Hepatocellular carcinoma (HCC) is a lethal malig-
nancy globally with a low survival rate [1,2]. It has been
estimated that the incidence of HCC has tripled in the last
30 years [3], and the incidence and mortality rates continue
to increase [4]. Chemotherapy and immunotherapy are cur-
rently the best treatment options for HCC patients [1]. Al-
though preclinical and clinical studies have shown that im-
mune checkpoint inhibitor (ICI) therapy provides survival
benefits to a larger population of HCC patients, including
those with cholangiocarcinoma [5], most cancer patients
still exhibit resistance to ICI blockade [6]. The molecular
mechanisms underlying the immune response and evasion
in HCC are not fully understood and thus need to be further
researched.

There are many predictive biomarkers of immunother-
apy in HCC patients, such as tumor mutation burden, the
tumor microenvironment (TME), and T cell inflammation.
However, these markers have limitations that hinder their
clinical application [7–9]. Antigen presentation is essential

for triggering the T cell immune response, serving as a link
between nonspecific and specific immunity [10]. Antigen-
presenting cells (APCs), such as dendritic cells (DCs) and
macrophages (MACs), present peptides on major histo-
compatibility complex class I or II (MHC-I or MHC-II)
to naive T cells (CD8+ or CD4+) to activate the immune
response [11]. The human MHC is usually referred to as
human leukocyte antigen (HLA) [12]. Tumor antigens al-
low tumor cells to be recognized and killed by CD8+ T
cells through the antigen-presenting mechanism [13]. Tu-
mors use various escape mechanisms in AP to evade im-
mune recognition, ultimately leading to tumor immune es-
cape [14]. However, we did not find any relevant studies
on how antigen-presenting prognostic (APP) related genes
(APPGs) of HCC affect the therapeutic immune response
and whether they can predict the prognosis.

Currently, bioinformatics analyses such as nonnega-
tive matrix factorization (NMF) clustering, weighted gene
co-expression network analysis (WGCNA), random forest
(RF) models, and least absolute shrinkage and selection
operator (LASSO) have been widely applied to data min-
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ing, genomics, proteomics, and other research fields re-
lated to disease [15–18]. NMF clustering, a matrix de-
composition method, has been widely used in prognosis-
related gene studies of various cancers [15,19]. For ex-
ample, Gao et al. [16] utilized NMF clustering to ana-
lyze m6A RNA methylation regulators, revealing that the
methylation-mediated TME regulates intercellular commu-
nication in tumor growth and antitumor immune regulation
processes. WGCNA can describe the interaction between
genes by constructing a gene co-expression network. For
instance, Tian et al. [17] identified core modules and cen-
tral genes associated with breast cancer usingWGCNA. RF,
an ensemble learning algorithm, can be used to screen prog-
nostic markers for various cancers such as prostate, breast,
and lung cancers [20–22]. LASSO is a linear regression
model and bioinformatics algorithm commonly used for
data analyses in cancer. For example, Kang et al. [23] used
a LASSO model combined with other indicators to predict
lymph node metastasis in patients with T1 rectal cancer.

Here, we screened the APPGs of HCC using public
datasets and bioinformatics analysis to predict the progno-
sis of patients with HCC. Furthermore, we conducted pre-
liminary in vitro experiments to explore the impact of key
APPGs on HCC cells. Our study lays the foundation for
HCC diagnosis and immunotherapy.

2. Materials and Methods
2.1 Research Data Gathering

The Cancer Genome Atlas Liver Hepatocellular Car-
cinoma (TCGA-LIHC) and Gene set enrichment 14520
(GSE14520) datasets were obtained from TCGA (https:
//tcga-data.nci.nih.gov/tcga/) and Gene Expression Om-
nibus (GEO, https://www.ncbi.nlm.nih.gov/geo/) datasets.
APPGs were obtained through ImmPort (https://www.im
mport.org/home).

Construction of a Prognostic Model for Scores Built upon
the Core APPGs

Based on the TCGA-LIHC dataset, prognosis-related
APPGs were obtained by univariate Cox analysis (p <

0.01). Based on these genes, APP-related genotyping
(APP. cluster 1 and APP. cluster 2) was obtained by per-
forming NMF clustering and subjected to survival analy-
sis. The expression of all APPGs was analyzed. For the
TCGA-LIHC dataset, WGCNA was performed according
to AP-related genotyping. The module that was most rel-
evant to APP-related genotyping was found by screening.
Genes in the modules were subjected to univariate Cox
analysis (p < 0.01). Then nine genes were obtained by
performing RF analysis (relative importance >0.3). The
LASSO model was constructed to obtain the core APPGs,
including KLRB1, neutrophil cytosolic factor 2 (NCF2),
PLA2G7, msculin (MSC),HSPA6, secreted phosphoprotein
1 (SPP1), FABP5P7, in LIHC. A score built upon the core
APPGs (APP.Score) was obtained by calculating the for-

mula (APP.Score = –2.2047 × KLRB1 + 0.0197 × NCF2
+ 1.2247 × PLA2G7 + 0.7626 × MSC + 0.78 × HSPA6
+ 0.7743 × SPP1 + 0.8317 × FABP5P7). GSE14520 was
used to externally test the prognostic predictive power of
the model. The calculated APP.Score was subjected to sur-
vival and receiver operator characteristic curve (ROC) anal-
yses. The seven genes, including KLRB1, NCF2, PLA2G7,
MSC, HSPA6, SPP1, FABP5P7, in LIHC obtained from
the final screening were subjected to survival and expres-
sion analysis. The LIHC patients were categorized into two
groups (high APP.Score and low APP.Score). Supplemen-
tary Fig. 1 illustrates the study design.

2.2 Immune Cells Infiltration and GSE Analysis
The R package limma (version 3.6.1) was utilized

to process the processing of gene expression matrix data.
With the addition of APP.Score, immune scores and im-
mune cell infiltration were assessed by the ESTIMATE al-
gorithm and TIMER database, respectively [24,25]. In ad-
dition, we analyzed the expression of immune cell marker
genes with different APP.Scores of LIHC samples using the
TIMERdatabase. TheGene Set VariationAnalysis (GSVA)
package was used for analyzing the Kyoto Encyclopedia of
Genes and Genomes (KEGG, https://www.genome.jp/kegg
/) pathway via GSVA [26]. Additionally, correlation analy-
ses were conducted among prognostic scoring, gene scor-
ing, and functional enrichment pathways. Subsequently,
the ClusterProfiler R package was utilized for performing
GSE analysis (GSEA) based on the APP.Score.

2.3 Mutation and Copy Number Variation Analysis
The mutated genes in the high and low APP.Score

groups were analyzed using the “maftools” R package [27].
The copy number variation (CNV) landscape and the as-
sessment of copy number gains or losses at amplified or
deleted peaks, was evaluated using GISTIC 2.0 analysis
(https://gatk.broadinstitute.org) [28].

2.4 Prediction of Drug Sensitivity
The somatic mutations and CNV profiles were col-

lected from the TCGA-LIHC dataset. The drug sensitiv-
ity of the high APP.Score and low APP.Score groups was
analyzed using the oncoPredict package (version 0.2) [29].

2.5 Cell Treatment
Human normal hepatic stellate cells (LX-2, AW-

CNH008; Abiowell Biotechnology Co., Ltd., Changsha,
China) and HCC lines, including HepG2 (AW-CCH024;
Abiowell) and Huh-7 (AW-CCH089; Abiowell), were
cultured in a humidified incubator at 37 °C and 5%
CO2. Phospholipase A2, group 7 (PLA2G7) silencing (si-
PLA2G7) and its negative control (si-NC) were transfected
into HepG2 and Huh-7 cells using Lipofectamine 2000
(2028090; Invitrogen, Carlsbad, CA, USA) for a duration
of 48 h. All cell lines were validated by short tandem re-
peat profiling and tested negative for mycoplasma.
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2.6 Quantitative Real-time Polymerase chain reaction
The six selected genes were validated by quantitative

real-time PCR (qRT-PCR) using a fluorescence qRT-PCR
instrument (PIKOREAL96, Thermo, Waltham, MA, USA).
Primer sequences were designed utilizing primer 5 soft-
ware, with β-actin serving as an internal mRNA reference
and listed in Supplementary Table 1. Relative gene ex-
pression was analyzed employing the 2−∆∆Ct method.

2.7 Western Blotting
The cells were lysed, centrifuged, and concentrated.

Then the proteins were separated by electrophoresis and
electrotransferred to a nitrocellulose membrane. The mem-
brane was incubated overnight at 4 ℃ with the follow-
ing primary antibodies: killer cell lectin like receptor B1
(KLRB1), PLA2G7, musculin (MSC), heat shock pro-
tein family A (HSPA6), secreted phosphoprotein 1 (SPP1),
neutrophil cytosolic factor 2 (NCF2), programmed death-
ligand 1 (PD-L1), phosphoinositide 3-kinase (PI3K), AKT,
phosphorylated signal transducer and activator of transcrip-
tion 1 (p-STAT1), STAT1, phosphorylated nuclear fac-
tor kappa B (p-NF-κB), and NF-κB with β-actin as the
internal reference. The membrane was incubated with
horseradish peroxidase-conjugated goat anti-mouse/rabbit
immunoglobulin G (IgG) secondary antibody at 37 ℃ with
shaking for 90 min, followed by the development and vi-
sualization of the proteins. After washing with phosphate
buffer, the membrane was immersed in ECL reaction solu-
tion and incubated at room temperature for 1 minute. The
protein was exposed and imaged using a chemilumines-
cence imaging system (ChemiScope 6100, CLINX, Shang-
hai, China). Detailed antibody information was provided in
Supplementary Table 2.

2.8 Cell Counting Kit-8 Assay
The Cell Counting Kit-8 (CCK-8) assay was used to

measure cell proliferation. Cells were separately cultured
for different time points (12, 24, 48 h) and then added to
medium containing 10% CCK-8 (NU679, DOJINDO Lab-
oratories, Kumamoto, Japan). The cells were incubated at
37 ℃ for an additional 4 h, and their optical density values
were analyzed at 450 nm.

2.9 Colony Formation Assay
The cells were digested into single cells, and 200

cells/per well were seeded and maintained for 10 days. Af-
ter the cells were fixed in 4% paraformaldehyde and stained
with crystalline violet, photographs were taken for observa-
tion.

2.10 Wound Healing Assay
As previously described [30], a monolayer of cells

was scratched. The cells were rinsed three times with
phosphate-buffered saline to remove the scratched cells,
and serum-free medium was added. Cell healing was

observed under an optical microscope (DSZ2000X, Bei-
jing Zhongyantaihe Medical Instrument Co., Ltd., Beijing,
China) at 0 and 48 h.

2.11 Transwell Assay
Matrigel (354262, Becton Dickinson and Co.,

Franklin, NJ, USA) that had been prediluted was added
to the upper chamber, followed by the addition of a cell
suspension of 2 × 104 to the same chamber. The lower
chamber was filled with medium containing 20% fetal
bovine serum. After incubating and wiping down the
upper chamber, the cells were fixed, stained, and observed
under an optical microscope. The results were analyzed
using ImageJ software (version 1.49, National Institutes of
Health, Bethesda, MD, USA).

2.12 Flow Cytometry (FCM)
Cell apoptosis was detected using an apoptosis detec-

tion kit (KGA1030, KeyGEN BioTECH, Jiangsu, China)
through the instructions. After incubation, the results were
immediately evaluated using FCM (A00-1-1102, Beckman,
Brea, CA, USA).

2.13 Immunofluorescence Staining
Cells were fixed, permeabilized, and closed. Then

cells were incubated overnight at 4 °C with primary
antibody against PD-L1 (1:50, 28076-1-AP, Proteintech,
Chicago, IL, USA), followed by incubation for 90 min
at 37 °C with anti-rabbit IgG secondary antibody (1:200,
SA00013-4, Proteintech). Finally, the cell nuclei were
stained and visualized under a fluorescence microscope
(BA210T, Motic Microscopes, Chautauqua County, NY,
USA).

2.14 Statistical Evaluation
We conducted our statistical analysis and data visu-

alization by utilizing R version 3.6.1 along with the gg-
plot2 package. Additionally, for variables that were not
normally distributed, we employed both Wilcoxon and
Kruskal-Wallis tests as part of our analytical approach. To
calculate correlation coefficients, we used Pearson correla-
tion. To generate and display survival curves for our sub-
groups, we used the Kaplan-Meier method. All of our tests
were two-sided. To determine statistical significance, we
used GraphPad Prism software package version 8.0 to per-
form analysis of variance (ANOVA) or unpaired Student’s
t tests. Statistical significance was determined by a p-value
less than 0.05.

3. Results
3.1 Recognition of Antigen-presenting Prognostic
(APP)-Related Genotyping

Based on the 23 APP genes, we obtained two geno-
types through cluster analysis: APP cluster 1 and APP
cluster 2 (Fig. 1A). The principal component analysis plot
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Fig. 1. Recognition of antigen-presenting prognostic (APP)-related genotyping. (A) Cluster analysis. (B) Principal component
analysis (PCA) analysis. (C) Survival analysis. (D) Heatmap. (E) Bar plot. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001; ns
means no statistical significance; vs. the APP. cluster 1.

showed that APP cluster 1 and APP cluster 2 had good
dispersion (Fig. 1B). We conducted survival analysis on
the two clusters. When the survival rate was 0.5, the sur-
vival time of cluster 2 was longer than that of cluster 1
(Fig. 1C). Subsequently, the differential expression of the
23 APP genes in cluster 1 and cluster 2 was analyzed

(Fig. 1D,E). The results showed that compared with clus-
ter 1, 17 genes including adaptor-related protein complex 3
subunit beta 1, Fc Fragment of IgE Receptor Ig (FCER1G),
HSP90AA1, HSP90AB1, HSPA4, HSPA6, HSPA8, nuclear
transcription factor Y subunit gamma, proteasome 26S sub-
unit ATPase 4, proteasome 26S subunit, non-ATPase 11

4
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Fig. 2. Weighted gene co-expression network analysis (WGCNA). (A) Network topology analysis. (B) Module clustering tree. (C)
Phenotypic and module correlation plot. (D) Correlation analysis between genes and phenotypes in modules.

(PSMD11), PSMD14, PSMD2, PSMD7, proteasome acti-
vator complex subunit 3, retinoic acid early transcript 1G
(RAET1G), RAET1L, and transient receptor potential cation
channel, subfamily C, member 4 associated protein were
downregulated in cluster 2. The above results reveal that
the APP-related genotyping analysis is reasonable.

3.2 Acquisition of Green Gene Modules Using WGCNA

The minimum soft threshold value for building a
scale-free network was 5 (scale-free fit index = 0.9). There-
fore, 5 was chosen as the optimal soft threshold value for
subsequent analyses. Another Figure showed the network
connectivity under soft thresholding power (Fig. 2A). Sub-
sequently, a gene clustering tree was constructed (Fig. 2B).
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The correlation and significance of different gene modules
with cluster 1 and cluster 2 are shown in Fig. 2C. The green
gene module exhibited the highest correlation with both
cluster 1 and cluster 2. Further analyses revealed a posi-
tive correlation between module membership and gene sig-
nificance (Fig. 2D), suggesting that genes highly related to
cluster 1 and cluster 2 were also crucial in the green gene
module.

3.3 Construction of APP.Score
Subsequently, 39 genes were obtained by perform-

ing univariate analysis on the genes in the green mod-
ule (Fig. 3A). Nine significant genes, including KLRB1,
NCF2, PLA2G7, MSC, HSPA6, NPL, FCER1G, SPP1,
and FABP5P7, were obtained through further RF anal-
ysis (Fig. 3B). Then a LASSO model was constructed.
Seven genes, including KLRB1, NCF2, PLA2G7, MSC,
HSPA6, SPP1, and FABP5P7, were selected. Finally,
the APP.Score was obtained by calculating the formula
(APP.Score = –2.2047 × KLRB1 + 0.0197 × NCF2 +
1.2247 × PLA2G7 + 0.7626 × MSC + 0.78 × HSPA6 +
0.7743 × SPP1 + 0.8317 × FABP5P7) (Fig. 3C). Upon
further investigation, it was discovered that patients with
a high APP.Score experienced a greater number of deaths
than those with a low APP.Score (Fig. 3D). The area under
the curve (AUC) values were 0.734, 0.747, and 0.679 for
survival periods of 1, 2, and 3 years, respectively (Fig. 3E–
G). These results suggest that APP.Score is a risk factor for
HCC.

3.4 Immune Cell Infiltration and Immune Checkpoint
Supplementary Fig. 2A shows that with the in-

crease in APP.Score, the expression of KLRB1, NCF2,
PLA2G7, MSC, HSPA6, SPP1, and FABP5P7 was signif-
icantly increased. With the increase in APP.Score, stro-
mal score, immune score, estimate score, B cells, CD4+
T cells, CD8+ T cells, neutrophil, MAC, and DC enrich-
ment were significantly increased, whereas tumor purity
enrichment was significantly decreased (Supplementary
Fig. 2B). With the increase in APP.Score, the related genes
were significantly enriched including AP-related (e.g.,
HLA-DRB5, HLA-DQB1, and HLA-DPB1), cell adhesion-
related (integrin subunit beta 2 and intercellular adhesion
molecule 1), co-inhibitor-related (e.g., cluster of differenti-
ation 274 [CD274], butyrophilin subfamily 3 member A2
[BTN3A2], and BTN3A1), co-stimulator-related (CD80 and
CD28), ligand-related (e.g., tumor necrosis factor [TNF],
TNFSF4, CD70, and interferon alpha 1), receptor-related
(e.g., T cell immunoreceptor with Ig and immunoreceptor
tyrosine-based inhibitory motif domains, interleukin 2 re-
ceptor subunit alpha, and TNF receptor superfamily mem-
ber 14), and others (e.g., indoleamine 2, 3-dioxygenase 1,
granzyme A, perforin 1, high mobility group box 1 pro-
tein, and ectonucleoside triphosphate diphosphohydrolase
1), whereas ARG1 enrichment was significantly decreased
(Supplementary Fig. 2C).

3.5 Mutation and CNV Analyses
We further analyzed the correlation of mutated genes

in the high and low APP.Score groups. In the high
APP.Score group, tumor protein p53 (TP53) and retinoblas-
toma 1 (RB1) might have co-occurringmutations; β-catenin
(CTNNB1) might have co-occurring mutations withWD re-
peat domain 87 (WDR87), obscurin (OBSCN), and mucin
16 (MUC16); TTN might have co-occurring mutations
with low-density lipoprotein receptor-related protein 1B
(LRP1B) and dedicator of cytokinesis protein 2 (DOCK2);
MUC16 might have co-occurring mutations with ATP-
binding cassette sub-family A member 13 (ABCA13); al-
bumin (ALB) might have co-occurring mutations with Pic-
colo presynaptic cytomatrix protein (PCLO); ryanodine re-
ceptor 2 (RYR2) might have co-occurring mutations with
WDR87, adhesion G protein-coupled receptor V1 (AD-
GRV1), and DOCK2; OBSCN might have co-occurring
mutations with filaggrin (FLG); PCLO might have co-
occurring mutations with WDR87 and ABCA13; ABCA13
might have co-occurring mutations with CUB and Sushi
domain-containing protein 3; DOCK2 might have co-
occurring mutations with FLG; and ADGRV1 might have
co-occurring mutations withWDR87. In the lowAPP.Score
group, TP53 might have co-occurring mutations with
KMT2D; MUC16 might have co-occurring mutations with
RYR2; ALBmight have co-occurringmutationswithXIRP2;
HMCN1 might have co-occurring mutations with RYR2;
LRP1B might have co-occurring mutations with FBN2;
and CTNNB1 might not have co-occurring mutations with
AXIN1 and TP53. These results indicate that the number of
gene pairs with simultaneous mutations would be greater
in the high APP.Score group than in the low APP.Score
group (Fig. 4A). In addition, there were differences in CNV
frequency between the high and low APP.Score groups
(Fig. 4B). These results indicate the significant involvement
of APP.Score in both mutations and CNVs.

3.6 Prediction of Drug Sensitivity
We further analyzed the difference in drug sensitivity

between the high and low APP.Score groups. In all of the
drug sensitivity analyses, including temozolomide 1375,
otx015 1626, leflunomide 1578, i-bet-762 1624, gdc0810
1925, dasatinib 1079, bpd-00008900 1998, bdp-00009066
1866, and azd5153 1706, the drug sensitivity of the high
APP.Score group was higher than that of the low APP.Score
group (Fig. 5).

3.7 In Vitro Validation of Gene Expression of APP.Score
We further analyzed the expression differences in

KLRB1, PLA2G7, MSC, HSPA6, SPP1, and NCF2 be-
tween the tumor and normal groups using the TCGA-LIHC
dataset. Compared with the LX-2 group, the expression of
KLRB1, PLA2G7, MSC, HSPA6, and SPP1 but not NCF2
was significantly upregulated in the HepG2 and Huh-7
groups. The difference in KLRB1 and PLA2G7 expres-

6

https://www.imrpress.com


Fig. 3. APP.Score was a risk factor for Liver Hepatocellular Carcinoma (LIHC). (A) Univariate analysis. (B) Random forest (RF).
(C) Lasso analysis. (D) Risk evaluation of APP.Score. (E) The Cancer Genome Atlas (TCGA) survival analysis. (F) Receiver operator
characteristic (ROC) curve. (G) GSE14520 survival analysis.
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Fig. 4. Mutation and copy number variation (CNV) analysis. (A) Correlation analysis between mutated genes. (B) CNV frequency.

sion at the gene and protein levels was the most signifi-
cant (Fig. 6A,B). The OS rate was 0.5, and the survival time
of patients with high expression of PLA2G7,MSC, HSPA6,
and SPP1 was shorter, whereas that with high KLRB1 ex-
pression was longer (Fig. 6C). Therefore, PLA2G7 was se-
lected for further study.

3.8 Inhibiting PLA2G7 Affects the Functions of HCC Cells
HepG2 and Huh-7 Cells

Firstly, PLA2G7 was silenced in HepG2 and Huh-7
HCC cell lines (Fig. 7A,B). Compared to the si-NC group,
the cell proliferation, migration, and invasion abilities of the
si-PLA2G7 group were suppressed, while the level of cell
apoptosis was significantly increased (Fig. 7C–G).

3.9 PLA2G7 Affects PD-L1 Expression via STAT1
We performed GSEA for PLA2G7, which was en-

riched for PD-L1 expression and the PD-1 checkpoint
pathway in cancer, and the PI3K/AKT, and Janus ki-
nase/STAT pathways; si-PLA2G7 inhibited PD-L1 expres-

sion (Supplementary Fig. 3 and Fig. 8A–C). The lev-
els of PI3K, AKT, and p-NF-κB/NF-κB were elevated in
the si-PLA2G7 group, while the level of p-STAT1/STAT1
was clearly diminished (Fig. 8D). The STAT1 activator, 2-
NP, reversed the decreased PD-L1 expression caused by si-
PLA2G7 (Fig. 8E), showing that PLA2G7 can affect PD-L1
expression via STAT1.

4. Discussion

Dysfunctional antigen presentation has been identified
as a key factor that causes tumor progression and immune
therapy resistance [31]. Antigen presentation gene disrup-
tion is one of the reasons for the loss of antigen presenta-
tion and a common event leading to immune escape in can-
cer [13,32]. This study focused on APPGs, and screened
for core APPGs that might affect HCC. Based on this,
APP.Score was calculated. APP.Score was positively as-
sociated with immune cell infiltration, expression of ICI-
related genes, immune and inflammatory pathways, antigen

8
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Fig. 5. Prediction of drug sensitivity.

mutations occurring simultaneously, and drug sensitivity,
and was negatively correlated with OS. The AUC values
were 0.734, 0.747, and 0.679 for survival periods of 1, 2,
and 3 years, respectively, indicating that APP.Score may
serve as an independent prognostic factor for patients with
HCC. SPP1 was obviously overexpressed in HCC in the
TCGA-LIHC dataset. With the exception of KLRB1, the
high expression group of the five core APPGs (PLA2G7,
MSC, HSPA6, SPP1, and NCF2) had lower survival rates
than the low expression group. Furthermore, in vitro ex-
periments showed that the significant expression of the five
core APPGs (KLRB1, PLA2G7, MSC, HSPA6, and SPP1)
was increased in HCC cell lines, and PLA2G7 silencing in-
hibited the development of cancer cells.

In recent years, several studies have used methods
such as WGCNA, RF, and LASSO to reveal the related
risk factors and potential mechanisms of immune escape in
different tumors [33,34]. For example, Zhong et al. [33]
mainly used WGCNA to reveal that syndecan-1 may be re-
lated to immune infiltration and regulate AP. Chen et al.
[34]mainly usedWGCNA and LASSOmethods to find that
the high-risk group (based on the hypoxia-related gene risk
model) displayed a unique immune-suppressive microenvi-
ronment, lower levels of AP, and higher levels of suppres-
sive cytokines. However, the screening of core APPGs and
its potential immune function prediction in HCC have been
poorly reported. The current study found that seven core
APPGs (KLRB1, PLA2G7, MSC, HSPA6, SPP1, NCF2,
and FABP5P7) and APP.Score were obtained through NMF
clustering, WGCNA, RF, and LASSO methods in HCC.
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Fig. 6. In vitro validation of gene expression of APP.Score. (A,B) The expression of genes (KLRB1, PLA2G7, MSC, HSPA6, SPP1,
and NCF2) of APP.Score. (C) Survival curves of the six genes (KLRB1, PLA2G7,MSC, HSPA6, SPP1, and NCF2) used to construct the
APP.Score were analyzed. Analysis of variance (ANOVA). *p < 0.05, vs. LX-2.

KLRB1, encoded by the killer cell lectin-like receptor
B1 gene, is a newly reported candidate inhibitor of tumor-
infiltrating T cells [35]. KLRB1 is a potential a potential
new immune checkpoint, andmay synergize with other ICIs
to regulate the immune microenvironment, thus it can be
used to develop new immunotherapeutically targeted drugs
[36]. CD8+ T cells overexpressing KLRB1 are in a state
of low innate cytotoxicity in recurrent HCC [37]. MSC
(also known as activated B-cell factor 1, ABF-1) inhibits
plasma cell differentiation but promotes memory B-cell for-
mation [38]. HSPA6 is an antigen processing and presenta-
tion gene. When HSPA6 is released into the extracellular
space, it serves as a source of antigen as it enables pep-
tide conjugation and induces cross-presentation of antigen
from DCs to T cells [39]. In cervical cancer, the expres-
sion level of HSPA6 is negatively correlated with survival
[40]. High levels of HSPA6 may be associated with the
early recurrence of HCC [41]. Similarly, our study found
that the expression of HSPA6 (one of the core APPGs) was
significantly elevated and negatively correlated with sur-
vival. Liu et al. [42] found that SPP1 is an immune-
related predictive factor for low survival rates in HCC pa-
tients. SPP1 upregulates PD-L1-mediated macrophage po-
larization and promotes immune escape from lung adeno-
carcinoma [43]. NCF2 is a subunit of a multiprotein com-
plex known as nicotinamide adenine dinucleotide phos-

phate (NADPH) oxidase, which has been shown to regulate
antigen processing and MHC-I cross-presentation in den-
dritic cells. Thus NCF2 has been shown to be an APPGs
[44]. PLA2G7 is a protein produced by macrophages. Re-
duction of PLA2G7 may mediate the immunometabolic ef-
fects of caloric restriction and be used to reduce inflamma-
tion and extend healthy lifespan [45,46]. Bioinformatics
analysis and experiments confirmed that PLA2G7 can serve
as a potential immune-related biomarker and contribute to
chronic obstructive pulmonary disease progression by pro-
moting the expansion and inhibitory function of myeloid-
derived suppressor cells [47]. PLA2G7 has also been found
to be strongly associated with TME composition, so that pa-
tients with diffuse large B-cell lymphoma expressing higher
levels of this gene exhibit higher levels of localized mono-
cytes and gamma delta T cells [48]. PLA2G7 is highly ex-
pressed in subgroups of metastatic and invasive breast can-
cer and metastatic samples from various origin tissues, pro-
moting the development of cultured breast cancer cells [49].
However, the occurrence of core APPGs, such as KLRB1,
PLA2G7, MSC, HSPA6, and SPP1, in HCC is rarely doc-
umented. In short, the current research showed the signif-
icant upregulation of five core APPGs (KLRB1, PLA2G7,
MSC, HSPA6, and SPP1) in HCC cell lines, and PLA2G7
silencing inhibited cancer cell growth and promoted cells
apoptosis. In addition, our study identified PLA2G7, a
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Fig. 7. Inhibiting PLA2G7 affects the functions of hepatocellular carcinoma (HCC) cells HepG2 and Huh-7. (A,B) The expression
of PLA2G7 was detected. (C) The cell proliferation (0, 12, 24, 48 h) was measured. (D) The cell proliferation ability was analyzed. (E)
The cell migration was measured. (F) The cell invasion was analyzed. (G) The cell apoptosis level was assessed. ANOVA. *p < 0.05,
vs. the si-PLA2G7 group (HepG2); #p < 0.05, vs. the si-PLA2G7 group (Huh-7).

novel regulator of PD-L1, as a potential target for cancer
therapy. PD-L1 may increase the inflammatory response in
the TME and promote neoantigen presentation, as well as
anti-tumor immune escape [50]. Therefore, we hypothesize
that PLA2G7 may regulate antigen presentation through
PD-L1. However, this needs to be further investigated in
the future.

It is well known that common APCs include DCs,
MACs, and B cells [51]. Dysregulation of APCs is an im-
portant cause of tumor immune escape [14]. In cancer,
APCs present peptides on their HLA to naïve T cells (CD8+
or CD4+) to activate an immune response [11,12]. APCs
are associated with many genes related to immune func-
tion, such as CD80, CD274 (encoded PD-L1), and CD276
[52,53]. This study found that APP.Score was positively
correlated with immune cell infiltration (e.g., CD8+ T cells,
DCs, and MACs), expression of ICI-related genes (e.g.,
APCs, receptor, co-inhibitor, and cell adhesion molecules),

and immune and inflammatory-related pathways (e.g., PD-
L1 expression and PD-1 checkpoint, antigen processing
and presentation, and p53 pathways). It is known that
the successful completion of antigen-presenting machinery
(APM), i.e., tumor antigens are correctly recognized and
processed, and then presented to immune effector cells such
as CD8+ cytotoxic T-cells, which is a key prerequisite for
the efficacy of immunotherapy [54]. However, the mecha-
nism between APPGs and immune evasion in HCC is still
not fully investigated, which is a limitation of our study.

Mutations or heterozygous loss of MHC-I can also
cause damage to the antigen presentation system [55]. Cai
et al. [56] found that the most common mutated genes pre-
dicting MHC-II neoantigens in lung adenocarcinoma pa-
tients included TTN, RYR2, MUC16, and TP53. In breast
cancer, TP53 mutation is linked to both a poor prognosis
and immune cell infiltration [57]. Long et al. [58] found
that TP53 mutation is commonly associated with HCC and
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Fig. 8. PLA2G7 affects PD-L1 expression via STAT1. (A) PLA2G7 was enriched in the PD-L1 pathway. (B) The expression of PD-L1
was detected. (C) PLA2G7 was enriched in the PI3K-Akt, JAK-STAT, and nuclear factor kappa B (NF-κB) pathway. (D) The expression
of PI3K, Akt, phosphorylated signal transducer and activator of transcription 1 (p-STAT1), STAT1, p-NF-κB, and NF-κB was measured.
(E) The cells were treated with STAT1 activator (2-NP, 45 µmol/L) for 1 h. The fluorescence intensity of PD-L1 was observed. ANOVA.
*p < 0.05, vs. the si-NC group; #p < 0.05, vs. the si-PLA2G7 group.
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negatively impacts its progression and outcome. It also im-
pairs the immune response of patients with HCC. Wang et
al. [59] reported that these are the most frequently mu-
tated genes in Chinese patients with HCC include TP53,
RB1, CCND1, and AT-rich interactive domain-containing
protein 1A. Among these mutated genes, TTN mutation
is usually associated with poor immune infiltration and a
worse HCC prognosis [60]. Our study found that a high
APP.Score might be associated with more gene pairs with
a concurrent mutation in tumor antigens (e.g., TP53 and
RB1), suggesting that APP.Score might be related to poor
prognosis. Zhou et al. [61] reported that MHC-I antigen-
presenting enhanced cancer immunotherapy. Enhanced tu-
mor antigen-presenting contributes to synergistic anti-PD-1
therapy for metastatic breast cancer [62]. Our study discov-
ered a positive correlation between APP.Score and expres-
sion of ICI-related genes, a positive correlation between
APP.Score and drug sensitivity, and a negative correlation
between the APP.Score and survival. ROC curve analysis
showed the AUC values were 0.734, 0.747, and 0.679 for
survival periods of 1, 2, and 3 years, respectively, indicating
that the APP.Score may serve as an independent prognos-
tic factor for patients with HCC. In conclusion, APP.Score
may help to facilitate the clinical management of HCC.

Activation of STAT1 promotes PD-L1 expression, en-
hancing the effect of PD-L1 blockade in a mouse model of
lung cancer [63]. STAT1 can bind to the PD-L1 promoter
and thus transcriptionally regulate PD-L1 expression [64].
In HCC, activation of STAT1 promotes PD-L1 expression
[65]. Our results suggest that si-PLA2G7 may inhibit PD-
L1 expression by repressing the STAT1 pathway. Our study
identified PLA2G7, a novel regulator of PD-L1, as a po-
tential target for cancer therapy. PLA2G7 may be a novel
target for ICI therapy.

Due to the complexity and difficulty of collecting clin-
ical specimens, the expression of the core APPGs in HCC
tissue has not been further validated. We did not explore the
effects of PLA2G7 on immune cells for the study, which
is a limitation of our study. In addition, considering that
FABP5P7 is a mostly non-coding pseudo genes [66], we
have not yet studied its expression and functional effects in
HCC. We plan to study this further in the future.

5. Conclusions
In this study, a risk scoring model, APP.Score, was

successfully constructed based on seven core APPGs in
LIHC, namely, KLRB1, PLA2G7, MSC, HSPA6, SPP1,
NCF2, and FABP5P7. In vitro experiments showed the
significant upregulation of five core APPGs (KLRB1,
PLA2G7, MSC, HSPA6, and SPP1) in HCC cell lines, and
inhibition of PLA2G7 significantly suppressed cancer cell
development and PD-L1 expression. The study provides a
new perspective and potential target for immune research
on antigen presentation in HCC.
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