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Abstract

Establishing reliable and reproducible animalmodels for diseasemodelling, drug screening and the understanding of disease susceptibility
and pathogenesis is critical. However, traditional animal models differ significantly from humans in terms of physiology, immune re-
sponse, and pathogenesis. As a result, it is difficult to translate laboratory findings into biomedical applications. Although several animal
models with human chimeric genes, organs or systems have been developed in the past, their limited engraftment rate and physiological
functions are a major obstacle to realize convincing models of humans. The lack of human transplantation resources and insufficient
immune tolerance of recipient animals are the main challenges that need to be overcome to generate fully humanized animals. Recent
advances in gene editing and pluripotent stem cell-based xenotransplantation technologies offer opportunities to create more accessible
human-like models for biomedical research. In this article, we have combined our laboratory expertise to summarize humanized animal
models, with a focus on hematopoietic/immune system and liver. We discuss their generation strategies and the potential donor cell
sources, with particular attention given to human pluripotent stem cells. In particular, we discuss the advantages, limitations and emerg-
ing trends in their clinical and pharmaceutical applications. By providing insights into the current state of humanized animal models and
their potential for biomedical applications, this article aims to advance the development of more accurate and reliable animal models for
disease modeling and drug screening.
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1. Introduction
Animal models as surrogates of human biology avoid

logistical and ethical restrictions of working with cells and
tissue samples from human donor. Studying the effects and
side effects of therapeutic drugs or transplantation in animal
models first is an important step before translation to hu-
man studies, particularly for safety consideration. With the
advantages of small size, rapid reproduction, ease of han-
dling, sharing of genomic and physiological properties with
humans and ability to be easily genetically edited, small ani-
mals such asmice and rats arewidely used nowadays. How-
ever, there are huge differences between humans and ro-
dents in size, behavior, lifespan, living conditions, ecologi-
cal niches and immune systems, for instance, human blood
is neutrophil rich (50–70% neutrophils, 30–50% lympho-
cytes) whereas mouse blood has a strong preponderance of
lymphocytes [1,2]; unlike human endothelia cells express-
ing both major histocompatibility complex (MHC) classes
I and II molecules, rodent endothelial cells barely express
MHC class II [3]. In fact vascularized grafts were found tol-
erable in many rodent models, while in humans they were

frequently subject to rapid rejection [4], indicating great dif-
ferences in immune responses between humans and mice.

Human-animal gaps also affect the acute presenta-
tion of human diseases and drug responses. The exper-
imental conclusions drawn by ordinary animals are often
inconsistent with the results of clinical trials, which hin-
ders the transformation towards clinical. Diabetes candi-
date drug C-peptide has been shown to have good bene-
ficial effects on the development of neuropathy, retinopa-
thy and nephropathy in a variety of diabetes rat and mouse
models, but C-peptide replacement therapy failed in Type I
diabetes (T1D) adults [5]. In model of asthma, plasma ex-
udation dominates in bronchial asthma and allergic rhini-
tis in humans, rather than little plasma exudation in mouse
airways, since the peripheral lungs of mice lack mast cells
[6]. In mice, most of the lung parenchyma is maintained by
low-pressure and high-flow pulmonary circulation, which
is largely different from human whose vascular supply of
lung tumors mainly comes from high-pressure and high-
flow systemic circulation, contributing an important impact
for modeling lung tumors [7]. Exposing mice to cigarette
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smoke to simulate emphysema to induce chronic obstruc-
tive pulmonary disease required a much longer time, while
only producing partial symptoms of human diseases; mean-
while, the pathological changes did not progress after the
stimulation stopped [7,8]. Since traditional animal exper-
iments have seriously ignored the possibility that the hu-
man internal environment contributes to the response and
therapeutic effects, it is increasingly emphasized by con-
temporary pharmacology to study the effect of intervention
measures in humanized models.

Using primates is believed to greatly reduce the gap
between animal models and disease models, however, pri-
mates are expensive and require a long cultivation time,
thus difficult to use in large quantities to date, as a novel
alternative choice, humanized animal models draw much
attentions, and generation and applications of humanized
animal models has achieved impressive progresses in the
past two decades. Genomically humanized animals are
generated by introducing specific human genomic regions
into the host genome. These animals serve as valuable
tools for advancing drug development and studying hu-
man diseases, and enable the robust production of hu-
manized antibodies by introducing human immunoglobu-
lin loci [9,10]. They can accurately mimic human dis-
ease conditions associated with genetic factors, such as
aneuploidy syndromes [11], and facilitate the prediction
of drug pharmacokinetics and toxicokinetics in humans
through CYP3A or UGT2 transchromosomic models [12].
In addition, they provide insights into specific single nu-
cleotide polymorphisms (SNPs) in drugmetabolism-related
genes [13]. However, challenges arise from the influ-
ence of host-dependent factors on transgene and protein ex-
pression, limiting the achievement of intended functional-
ity [14]. On the other hand, cell-humanized animal mod-
els involve xenotransplantation of human cells or tissues
into animal hosts, providing a more comprehensive hu-
man physiological environment by incorporating various
human cellular components with a complete set of hu-
man genetic information. This approach provides a more
reliable platform for studying diseases, drug responses,
and immune reactions, especially when multiple genes or
gene networks are involved in specific physiological pro-
cesses, disease progression, and metabolism, and is at-
tracting widespread attention. As hottest and most en-
during subject of study, hematopoiesis-immune humaniza-
tion in mice has been realized through human hematopoi-
etic stem cell (HSC) transplantation, which permitted con-
tinuous producing of human innate immune cells and es-
tablishment of adaptive immunity [15]. Liver humaniza-
tion has been achieved by transplantation of human hep-
atocyte, with human specific albumin secretion and drug
metabolic kinetics and metabolites [16]. Xenografting of
human tumors had become a mainstream approach in can-
cer research, the graft maintained the histological and cy-
tological characteristics of the original tumor [17]. Despite

of these encouraging successes, the shortage of primary tis-
sue or cell sources, the variance between different donors
and ethical issues markedly hinder the further development.
In recent years, induced pluripotent stem cell (iPSC) and
their derivation has received considerable attentions in the
fields of xenotransplantation and humanization. They have
been reportedly differentiated and transplanted into animals
to construct humanization in specific organ or system and
model certain physiological functions, organogenesis and
diseases. For instance, iPSC-derived HSCs [18] to model
human hematopoiesis and immunity; iPSC-derived HSCs
to model human drug metabolism; iPSC-derived dopamine
neurons to model human extrapyramidal system regenera-
tion [19]. iPSC-derived lung epithelial progenitor to model
human pulmonary regeneration [20]. With the development
of precise modulation of cell differentiation fate, increasing
cell types are expected to be generated which would exten-
sively broad the modeling of specific human organs or sys-
tems [21–24]. Up-to-now, there remains critical problems
to be addressed, including physiological maturation, en-
graft efficiency, long-term survival and homing, vascular-
ization and integration with host organ microenvironment
after transplantation.

With human-specific anatomical features, metabolic
profiles, immune system and stress response, humanized
models are expected to dramatically improve etiological ac-
curacy from physiologically relevant disease induction and
presentation capability to reproduce human disease charac-
teristics of animal models for human disease studies and
drug development, thus bridging the gap to preclinical ex-
periments. With rapidly developed techniques for gen-
erating immunodeficient and human xenotransplantation-
assured animals, as well as ready-to-use donors like iPSC-
derived cells or tissues, humanized animals are believed to
be widely used in biomedical research.

2. Immunodeficient Animals and Gene
Editing

Immunodeficient animals derives the primary require-
ment for generating humanized animals. As earliest im-
munodeficient mice, the nude mice, lacked T cells due to
the Foxn1 gene mutation, while retained B cells and nat-
ural killer (NK) cells, supported engraftment of most pri-
mary human solid tumors and even human hematopoietic
cells [25]. Later, the Prkdc gene mutation was established
in server combined immune-deficiency (SCID) mice with
both B and T lymphocytes deficient, which indicated a fun-
damental breakthrough in the history of immunodeficient
animals. However, the human cell repopulation rate in
SCID mice was still limited, which might be related to the
remaining activity of natural immune cells (including NK
cells and myeloid cells) and the gradual development of T
and B cells [26]. Another major breakthrough is the muta-
tion of the Interleukin-2 (IL-2) receptor, which resulted in
the complete loss of NK cells and elimination of the leaky
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Table 1. Cell sources for generating humanized animal models and their applications.
Humanized system/organ Donor cells & isolation method Transplantation route Mouse or rat host genetic background Applications

Immune and hematopoietic
systems

HSCs/CD34+ cells from FLCs by MACS or FACS Intravenous NOD/SCID Model of skin xenograft rejection reaction, 2006 [15]

Via tail vein BALB/c-Rag1−/−γc−/− BALB/c-
Rag2−/−γc−/−

Model of Zika virus infection, 2018 [45]

Intravenous NOD.CB17-Prkdcscid/J, NSG Model of pancreatic cancer, 2019 [46]
Via liver NSG Model of evaluation for CAR-T cell therapy in acute

myeloid leukemia, 2021 [47]
Via liver, vein or bone marrow SCID Model of HIV infection and therapies evaluation,

2021 [48]
Intravenous NSG Model of sepsis, 2021 [49]

Via retro-orbital vein NSG Model of human gamma delta T cell-HIV interac-
tions in vivo, 2022 [50]

Intravenous NSG Model of tumor xenotransplantation, 2022 [51]

HSCs from cord blood by MACS or FACS Intravenous BALB/c-Rag2null Il2rγnull SIRPαNOD (BRGS) Model of patient derived tumor xenograft and anti-
PD-1 immunotherapy, 2019 [52]

Intravenous NSG™, NSG™-SGM3 Patient-derived xenograft model for study immune-
oncology, 2019 [53]

Intravenous NSG Patient-derived xenograft model for evaluation of
lung cancer immune responses, 2019 [54]

Intravenous NOD/SCID/IL2rγnull Model of HIV infection and persistence, 2023 [55]
Via retro-orbital vein NBSGW Patient-derived xenograft model of ovarian cancer,

2023 [56]

HSCs from bone marrow by MACS or FACS Intravenous NSG-SGM3 Patient-derived xenograft model of estrogen-
independent, hormone receptor positive metastatic
breast cancer, 2021 [57]

HSCs from CD34+ FLCs, cord blood and bone mar-
row by MACS or FACS

Via liver, vein or bone marrow RG, NSG, NOG Model for vaccine assessment, 2013 [58]

Intravenous or intrafemoral RG, NOG, NSG Model of human immune responses and generating
human monoclonal antibodies, 2014 [59]

HPSCs from CD34+ FLCs by MACS or FACS Intravenous NSG Model of evaluation for PD-1-targeted cancer im-
munotherapy, 2018 [60]

Via retro-orbital vein NSG Model of virus dissemination, 2019 [61]
Via tail vein NOG Model of study on communication mechanism of

HIV in brain, 2021 [62]

HPCs from iPSC/iPSC-teratoma by FACS Subcutaneous injection/via bone marrow NSG Patient-derived model of chronic myelomonocytic
leukemia and therapeutic drug identification, 2018
[63]

CD34+ cells from iPSC-teratoma by MACS Via posterior orbital vein NSG Evaluation of the possibility of using iPSC-HSCs to
resistant HIV, 2021 [64]3

https://www.imrpress.com


Table 1. Continued.
Humanized system/organ Donor cells & isolation method Transplantation route Mouse or rat host genetic background Applications

HSPCs from umbilical cord blood by MACS and
FACS

Via liver Rag2tm1Fwa IL2rgtm1Cgn B2mtm1UncH2-Ab1 tm1Doi

Tg (HLA-DRA*0101, HLA-DRB1*0101)1Dma
Tg(HLA-A2) Tg(SIRPA) Hc0c-KitW41d/d (CH1-
2hSaW41)

Model of sustained Plasmodium vivax blood-stage
infections, 2022 [65]

Reprogramed HSPCs from haemogenic endothe-
lium by ERG, HOXA5, HOXA9, HOXA10, LCOR,
RUNX1 and PI1

Via bone marrow NSG Model of patient derived tumor xenograft, 2017 [66]

Reprogramed HSPCs from iPSC-CD34+ cells Via the temporal vein NSG Model of patient derived tumor xenograft, 2018 [67]

HSPCs by converting the SCD allele (HBBS) into
Makassar β-globin (HBBG)

Via tail vein NOD.Cg-KitW41JTyr+ PrkdcscidIl2rgtm1Wjl/ThomJ
(NBSGW)

Providing treatment methods for sickle cell disease
based on genome editing, 2021 [68]

HSPCs from transduction of CXCR4, CXCL12, KIT
and ITGA4 in peripheral blood cells

Via bone marrow Hyper IgM syndrome Providing a valuable strategy for hematopoietic
stem/progenitor cell gene therapy, 2022 [69]

RBCs from iPSCs, PHHs Via vein NOD-FRG (FRGN) Model of pre-erythrocytic stages of Plasmodium fal-
ciparum, 2018 [70]

Liver Perfused PHHs from healthy donor Via spleen FRG Evaluation of clinically relevant adeno-associated
viral variants, 2014 [71]

Via inferior vena cava NSG Testing of hepatocyte transplantation therapies forα-
1 antitrypsin disease, 2017 [72]

Via spleen TK-NOG Model for testing organophosphate and carbamate
pesticide exposure, 2018 [73]

Via spleen FRG Model of malaria infection, 2018 [74]
Via spleen FRGN Model of acetaminophen-induced acute liver failure,

2019 [75]
Via spleen uPA-SCID/Beige Model for hepatotropic virus infection, 2020 [76]
Via spleen SCID, uPA-SCID, TK-NOG, FRG, NSG Model of HBV infection, 2021 [77]

Via portal vein Rat/FRG Drug testing, modeling of human hepatitis virus in-
fection, 2021 [37]

Via tail vein Rat/FRG Model of xenotransplantation and viral transduction,
2022 [78]

Via tail vein, spleen and inferior vena cava FRG, TK-NOG, uPA-SCID Model of metabolic disorders, 2022 [79]
Via tail vein, spleen and inferior vena cava FRG Model of acute liver injury through alcohol binging,

2022 [80]
Via spleen TK-NOG Model of cytochrome P450-dependent drug oxida-

tion activities, 2022 [81]
Via spleen TK-NOG Model of human drug metabolism, 2022 [82]
Via spleen TK-NOG Model of metabolites of benzbromarone, 2022 [83]
Via spleen FRGN Model of nonalcoholic steatohepatitis, 2022 [84]
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Table 1. Continued.
Humanized system/organ Donor cells & isolation method Transplantation route Mouse or rat host genetic background Applications

Perfused PHHs from patient’s hepatocellular carci-
noma

Via abdominal cavity or liver NSG Model of evaluation for chemic antigen receptor T
cells target glypican 3, 2020 [85]

Perfused PHHs from CPS1 deficient patient Via spleen FRGN Model of CPS1 deficiency, 2019 [86]

Hepatic progenitors from FLCs by centrifuging at
low speed or MACS

Via liver NSG Model for HBV infection, 2015 [87]

Via liver HLA-A2 NOD-SCID Il2rg−/− (NSG) Model for HCV infection, 2016 [88]

Transdifferentiated HLCs from mesenchymal stem
cells

Via spleen Rat/WT Model of acute human liver failure, 2022 [89]

HLCs from iPSCs Via spleen FRG Model of HBV infection, 2018 [90]
Via liver Nonhuman primate/WT Model of cell therapy for liver fibrosis, 2020 [91]

Reprogramed hepatocytes from fibroblasts by trans-
duction of FOXA3, GATA4, HNF1B, HNF4A,
HHEX, PROX1, C/EBPβ and KLF4

Via spleen Fah−/−Rag2−/− Model of drug metabolism, 2014 [92]

Reprogramed liver progenitor-like cells from hepa-
tocytes by transduction of SIRT1

Via spleen Fah−/−Rag2−/− Model of hepatotropic pathogens, 2019 [93]

Abbreviations: CSP1D, carbamoyl phosphate synthetase 1 deficiency; FACS, fluorescence-activated cell sorting; FLCs, fetal liver cells; FRG, Fah−/−Rag2−/−IL2rg−/−; HBB, Sickle cell disease allele; HLCs, hepatocyte-like
cells; HPC, hematopoietic progenitor cell; HSC, hematopoietic stem cells; HSPC, hematopoietic stem progenitor cells; iPSC, induced pluripotent stem cells; NOD, nonobese diabetic mice; NOG, NOD/Prkdc SCID/IL2rγnull;
MACS, magnetic activated cell sorting; PHH, primary human hepatocyte; RBCs, red blood cells; RG, Rag2−/−IL2rg−/−; SCID, Severe combined immunodeficiency; TK-NOG, herpes simplex virus type 1 thymidine kinase
(HSVtk) transgene in NOG mice; uPA-SCID, urokinase type plasminogen activator-severe combined immunodeficiency.
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development of T and B cells. To this regard, investi-
gators introduced Interleukin-2 receptor γ chain (IL-2γ)
deficiency into SCID mice transferred on non-obese dia-
betic background (NOD/SCID) mice to produce NOG or
NSG strains with more severe immunodeficiency [27–29].
These mice could be transplanted with virtually all types
of primary human tumors, including most solid tumors and
hematologic malignancies that represented the patient’s na-
tive tumor characteristics; moreover, they could also be
transplanted with functional human immune system [30].
It is a good recipient for human liver transplantation and
other human cell xenotransplantation.

The development of targeted gene editing in animals
paved the way for constructing specific disease models that
permitted the generation of local or systemic humaniza-
tion. Fumarylacetoacetate hydrolase (Fah) gene knockout
induced controllable liver injury [31,32], and provide the
model of metabolic liver disorder and HT-1 (Hereditary Ty-
rosinemia type I) [33], which in turn facilitated xenotrans-
plantation of human hepatocytes under regeneration sig-
nals in host liver [34]. In early study in Rag1 gene knock-
out rat model, combined with thymectomy and anti-asialo
GM1 antibody treatment, the transplantation of human hep-
atocyte reached approximately 17% repopulation rate [35].
Furthermore, combined with Rag2 and Il2rg double knock-
out, robust engraftment (up to 90%) of human hepatocytes
from was achieved in this Fah−/−/Rag2−/−/Il2rg−/−

(FRG) mice [36]. With the aid of CRISPR/Cas9 technol-
ogy, very recently we established a novel FRG rat model
by similar mutation strategy, which also permitted marked
human liver chimeras, however the peak repopulation rate
was relatively lower [36,37]. In addition to T, B and NK
cells, previous researches also implied an important role of
macrophages engaged in human cell clearance [38]. The
signal regulatory protein α (SIRPα)-CD47 axis was found
a key in macrophage related immune tolerance in human-
to-rodent xenotransplantation [39,40]. Immunodeficient
mice or rats carrying human SIRPα transgene reportedly to
support the efficient engraftment of human HSCs, cancer
cells and pluripotent stem cells (PSCs) [41,42]. The hy-
bridization of FRG and human SIRPα gene knock in ro-
dents is expected to bring possibilities to break through the
macrophage barrier hindered the robust hepatocytes xeno-
transplantation in rat [37].

Advances in gene-editing technology, particularly
CRISPR/Cas9, have opened up a wide range of possibilities
for generating immune and function deficient animals by
precise and targeted gene knockout or knock-in, the emer-
gence of liver humanized animals provides a more conve-
nient platform for liver disease modeling, drug screening
and regenerative studies. Despite of the progressive devel-
opment of mice models since 1990’s, rat model, holding
advantages in terms of size, surgery, and rich drug test-
ing profiles, achieving first success in liver humanization
since 2021 (Fig. 1). Currently, small animal models such

as mice and rats remain the predominant models for stud-
ies. Despite the advantages of efficient reproduction, they
cannot be used to assess secondary pathologies that may
occur years after xenotransplantation and have shown limi-
tations in generating clinically relevant data for human dis-
eases such as cancer, neurodegenerative diseases, diabetes
and stroke [43]. In additional, large animal models (in-
cluding dogs, pigs and non-human primates), which have
greater similarities to human anatomy and immunology,
can be studied over longer timescales with clinical dosing
regimens [44].

3. Donor Sources for Humanization
Xenotransplantation

Xenotransplantation of human cells or tissues into im-
munodeficient animals is a fundamental approach for gen-
erating humanized animal models. Human primary cells,
including adult stem cells and terminal functional cells,
have been extensively investigated for generating human-
specific organs or systems. Here, we focus on the human-
ization of the blood/immune system and liver, which have
been widely studied worldwide over the past few decades
(Table 1, Ref. [15,37,45–93]). We summarize and discuss
the development of donor sources used to achieve these
goals.

3.1 Human Hematopoietic Cells
HSCs are the core elements for blood and immune

humanization, they are typically derived from fetus, bone
marrow and umbilical cord blood. When transplanted into
the irradiated immunodeficient mice, these primary human
HSCs rapidly developed into T, B and NK cells [94], and
could sustain for several months [95,96]. However, the lim-
ited in vitro expansion capacity of HSCs presents a signifi-
cant obstacle to their broad use in xeno-transplantation. Re-
cently, a breakthrough study has identified chemical ago-
nists and a caprolactam-based polymer that allow for long-
term ex vivo expansion of human HSCs. However, de-
spite achieving a 75-fold expansion of total cells and a 55-
fold expansion of cord blood CD34+ cells in one month,
the expansion efficiency remained limited for adult CD34+
cells form peripheral blood, making it difficult for per-
sonalized modeling [97]. In the past decade, PSCs has
been proved to be an attractive source for generating var-
ious types of blood cells including lymphocytes, myeloid
cells and erythrocytes [66]. However, up to date, seldom
protocols were able to produce transplantable HSCs from
PSCs, but only HSC-like cells with low self-renewal abil-
ity and deficient migration and long-term engraftment po-
tential [98,99]. The most reliable approach was to isolate
hematopoietic stem/progenitor cells (HSPCs) from hiPSC
derived teratoma parenchyma, which permitted engraft-
ment in secondary mice for reconstructing human immune
and hematopoietic system [18], nevertheless pure pluripo-
tent stem cell-derived HSCs without tumorigenesis risk
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Fig. 1. Development and application of mice and rat models for liver humanization. In the past two decades, many types of mice
has been developed for generating liver humanization, such as uPA/rag2, uPA/SCID, FRG, TK-NOG and FRGN. However, until 2021,
the first rat model of FRG was achieved. Compared to mice, rats are much bigger in shape and easier for surgery, have richer drug testing
profiles, and more in line with the needs of pharmaceutical and clinical trials. Liver humanized rats may provide better platform for liver
disease modelling, drug testing and liver regenerative studies.

are urgently needed for safety concerns. Transcription
factor-mediated specification deserved alternative starting
approach to address this issue. Of interest was the report
that HOXA9, ERG, and RORA were found to activate self-
renewal and multilineage potential in hematopoietic pro-
genitors differentiated from hPSCs. While SOX4 and MYB
enabled myeloid and erythroid engraftment. On this basis,
multi-lineage progenitor cells were induced from lineage
restricted CD34+CD45+ bone marrow precursors. No-
tably, following transplanted in vivo, the erythroid cells
matured and underwent hemoglobin conversion with ex-
pression of adult globin, however this strategy still failed
to support long-term rebuild of myeloid and erythroid lin-
eages [100]. Later, a modified transcription factor cock-
tails (ERG, HOXA5, HOXA9, HOXA10, LCOR, RUNX1
and SPI1) has been screened and used to convert hPSC-
derived hemogenic endothelium into HSPCs that could dif-
ferentiate towards multi–lineage in primary and secondary
mouse recipients, offering considerable promise for gener-
ating humanized animals [66]. To address the complexity

and low efficiency for obtain an intermediate hemogenic
endothelium state, a single transcription factor MLL-AF4
was transiently expressed to specify hiPSC-derived blood
cells into highly engraftable HSPCs. Of note these cells
could completely reconstruct the human hematopoietic and
immune system in recipient mice without myeloid bias, and
sustained long-term engraft capability [67]. However, un-
like primary counterpart, hiPSC-derivedHSPCswere prone
to leukemic transformation during the long-term in vivo en-
graftment, it may be partly contributed by a decrease of
genomic instability of iPSC origin. Besides, the potential
safety risks involving in transfected genes cloud not be ex-
cluded since most of the screened transcription factor were
predominantly found in leukemia, for instance the imbal-
ance of HOX factor prone to lead to acute myeloid leukemia
and acute lymphoid leukemia [66,101]. Thus, safety con-
cerns merit further attentions.

In recent years, chemical compounds have emerged as
a potential alternative approach with unique advantages in
cell fate conversion and expansion [102]. Aryl hydrocar-
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bon receptor (AhR) antagonists and notch ligand agonists
activate cord blood cells expansion in vitro [103], Com-
binations of UM171, 740Y-P and butanamide, and capro-
lactam based polymers completely replace exogenous cy-
tokines and albumin to achieve long-term in vitro expan-
sion of human HSCs [97]. While, a cocktail of Bix01294,
RG108, VPA and PD0325901 successfully converted hu-
man cord blood erythroblasts into inducedmegakaryocytes,
which could produce proplatelets and release functional
platelets [104]. More key small molecules and their com-
binations are under in-depth investigation to promote the
production of human HSPCs from hiPSC with higher effi-
ciency, shorten time and lower cost.

Apart from HSCs, numerous terminally differenti-
ated immunocytes have been generated from hiPSCs, and
may benefit the studies of specific immune responses from
particular immune cell types in humanized models, hold-
ing great potential for biomedical applications. hiPSC in-
duced natural killer (NK) cells reportedly showed simi-
lar metabolic characteristics and gene expression profiles
to adaptive NK cells induced by cytomegalovirus, which
owned excellent anti-tumor activity [105], maintain high
cytotoxicity and enhance in vivo tumor control in con-
cert with T cells and anti-PD-1 therapy [106], iPSC-NK
cells containing chimeric antigen receptors (CAR) provided
better options for anti-cancer immunotherapy [107]; hiP-
SCs induced macrophages displayed similar surface and
intracellular markers of human macrophages, as well as
functional activities [108], iPSCs-derived CAR-expressing
macrophage cells enhanced phagocytosis of tumor cells,
and in vivo anticancer cell activity [109], genetically mod-
ified iPSC-derived macrophages facilitates drug screening
[110]; hiPSCs induced red blood cells were found to ex-
press mature adult globin [111], progress in vitro red blood
cell generation is expected to address the shortage of blood
demand for transfusion application [112]. Moreover, “De-
signed red cells” with custom phenotypes (Rh invalid, GPB
invalid and XK invalid/KEL low) have recently been gener-
ated from hiPSCs using CRISPR/Cas9, although the prob-
lems of low erythroblast production and poor enucleation
rate still existed [113]. Of note, Nakamura et al. [114]
transfected and generated a self-renewing and immortal-
ized megakaryocyte line from hiPSC-derived hematopoi-
etic progenitor cells, which permitted massive producing of
platelet of clinical quality and quantity. With the develop-
ment of personalized iPSC bankers, once the differentiated
cells (including HSC and their derivations) were used to es-
tablish humanized animals, it may bring great opportunity
to model hematological disease and cancer for identifying
novel diagnostic and targeted therapeutic markers in indi-
vidual patient.

3.2 Human Hepatocytes

To generate humanized liver, various human hepatic
sources have been tested. Primary human hepatocytes

(PHH) have long been considered as the most preferred
source for repopulation in the host liver in view of effi-
ciency and function, over 90% repopulation rate has been
reported in humanized mouse in the past decade [115];
while in rats, over 30% was achieved by our group very
recently [37]. In view of the shortage of PHH, alterna-
tive hepatic sources such as fetal liver cells and their de-
rived hepatic stem cells (isolated according to specific sur-
face markers such as) had been explored, these cells per-
mitted quite robust expansion in vivo, over 70% repopu-
lation could be achieved in a relatively short time around
2 months, however the human mature hepatic markers ex-
pression were extremely lower, imply the immature of the
engrafted cells [16,116]. Recently, the explore of cell signal
modulators, particularly TGFb and GSK3 inhibitors, had
paved the way to convert primary hepatocyte, which is nor-
mally considered not expandable in vitro, into expandable
progenitor state [117,118]. Of note, in one study, it was
reported that when transplanted in vivo, these cells could
achieve repopulation level comparable with primary hepa-
tocyte [116]. However, to our practical experience, the ex-
panded cells quickly loss the maturation and transplantation
potentials after 3–5 passages. Moreover, the development
of differentiation and reprogramming strategy have enabled
generation of a large number of donor hepatocytes from
pluripotent stem cells, and meanwhile permitted personal-
ized liver disease modeling and drug screening, deserved
great promises. Numerous reports have demonstrated that
hepatocyte-like cells (HLCs) directedly differentiated from
hiPSC could repopulate the damaged mouse liver [119].
Meanwhile hiHeps transdifferentiated from fibroblasts hold
similar potentials [92]. A comparation between these two
strategies from the same donor identified differences in
gene expression for phase II drug metabolism and lipid
accumulation, Importantly, both cell types markedly ele-
vated hepatic function following transplantation in vivo,
suggesting plasticity advantage for generating functional
liver [119]. However, much lower efficiency of repop-
ulation rate (less than 5%) and human albumin secretion
(around 100 ng/mL) remained major limitations. Similarly,
hepatic stem cells were induced with refined transcription
factors combinations. Importantly, they held expansion
capability and meantime owned dual-differentiation capa-
bility towards both hepatocytes and cholangiocytes, which
were supposed to meet the diversity of cellular components
in the humanized liver [120]. In our recent study, iPSC-
derived hepatic progenitor cells were induced with combi-
nation of CHIR99021, A83-101 and FGF2, and expanded
in vitro over 20 passages for billions-fold increase, without
significant decrease of maturation potential [121], holding
great promise for generating functional humanized liver in
larger animals beyond rodents.
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Table 2. Summary for humanized animal models with their advantages and limitation.
Humanized system/organ Host background Immunodeficiency and other modifications Advantages and/or Limitations Year

Hematopoietic system BRG line (BALG:
Rag1/2−/−Il2rg−/−hSIRAα+/+)

Lack of T, B and NK cells Advantages: myeloid reconstitution improved engraft-
ment and maintenance of human hematopoiesis; im-
proved lifespan of myeloid cell; without anemia or
thrombo-cytopenia; Limitations: impaired hematopoi-
etic niche formation.

2020 [139]

NOD/SCID, NOD/SCID/JAK3null Lack of effective T, B cell Advantages: iPSC-HSC could migrate from teratoma
to bone marrow and peripheral blood; multilineage
and long-term hematopoietic system was recon-structed;
Limitations: teratoma formation.

2013 [18]

NSG Lack of B, T, NK cells, and cellular complement, deficient
macrophages, dendritic cell

Advantages: bone marrow-like structure in teratoma
could generate HPSC; Limitations: teratoma formation.

2013 [129]

NOD/SCID-IL2Rγnull NSG Lack of B, T, NK cells, and cellular complement, deficient
macrophages, dendritic cell

Advantages: repeatable short-term implantation; bone
marrow and red blood cells were engrafted; Limita-
tions: express embryonic and fetal hemoglobin, not adult
hemoglobin.

2013 [100]

Immune system NOD/SCID Lack of effective T, B cell, and thymus, low levels of NK
cells

Advantages: human thymic microenvironment sup-
ported the development and selection of human T cells;
improved the survival rate of human HSCs transplanta-
tion; Limitations: host T cells remained; higher inci-
dence of GVHD.

2022 [140]

NSG (engrafted with CD34+ HSCs) Lack of T, B and NK cells, and cellular complement, de-
ficient macrophages, dendritic cell

Advantages: mediate human cellular and humoral im-
mune responses; strong proinflammatory response to T-
cell receptors; the engraft functions: inhibit allograft tu-
mor growth and promote effective Ig class conversion;
Limitations: host immune cells remained.

2022 [140]

C.B-17 SCID Lack of effective T, B cell, thymus, lymph nodes and
spleen atrophy

Advantages: human immunoglobulin secretion; specific
human antibody reaction; Limitations: graft versus host
disease (GVHD).

2022 [127]

MISTRG (Rag2−/−Il2rg−/−, knock in M-CSF,
IL-3/GM-CSF, TPO, hSIRPα)

Lack of T and B cells, express M-CSF, IL-3, GM-CSF,
TPO; MISTRG mice also expressed hSIRPα

Advantages: high efficiency of human hematopoietic
cell engraftment; robust development of diverse sub-
sets of human innate immune cells, including NK and
macrophage; Limitations: weak human adaptive im-
mune responses; with low cytotoxic and humoral immune
responses.

2021 [141]

NSG Lack of T, B and NK cells Advantages: eliminate the autologous white blood cells
ofmice;Limitations: human immune cells are immature;
without strong T cell-mediated immune response.

2021 [142]

Transgenic HLA-expressing NOG Lack of T cells and B cells, NK maturation disorder; ex-
press human HLA

Advantages: human HLA restricted T cell response;
Limitations: remain innate immunity.

2019 [143]9
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Table 2. Continued.
Humanized system/organ Host background Immunodeficiency and other modifications Advantages and/or Limitations Year

NSG Lack of B, T, NK cells, and cellular complement, deficient
macrophages, dendritic cell.

Advantages: B and T cells and myeloid cells implant; no
bone marrow bias; Limitations: more unstable genome
than the original HSPCs; susceptible to leukemia after
long-term transplantation.

2018 [67]

NSG engrafted with fetal tissue Lack of T, B, NK cells, and cellular complement, deficient
macrophages, dendritic cell

Advantages: robust human T cell mediated immune
response, can’t mounting an effective alloimmune re-
sponse, unable to fully reject differentiated hESC-EC
grafts; Limitations: form teratoma.

2017 [128]

NSG Lack of B, T, NK cells, and cellular complement, deficient
macrophages, dendritic cell

Advantages: implant B and T cells, myeloid cells are
mature and functional and implant; Limitations: with-
out clear and efficient induction protocol.

2017 [66]

HLA-A2+/+DR1+/+H-2-
β2m−/−IAβ−/−Rag2−/−IL2rγ−/−Perf−/−

Lack of T, B, NK cells and no residual cytolytic activity;
Lack of murine MHC; HLA transgene expression

Advantages: high lymphocytes engraftment rate without
GVHD; Limitations: hematopoietic and immune sys-
tems not reconstituted.

2017 [132]

NOD-SCID-SIRPα Lack of effective T, B cell and thymus; low levels of
murine NK cells; inhibit phago-cytosis of macro-phages

Advantages: enhancement of human PBMCs engraft-
ment; Limitations: Preservation of the activity of NK
cells and other intrinsic cells; spontaneous thymic lym-
phoma; Short-term graft survival and failure of immune
and haematopoietic reconstitution.

2007 [39]

Liver Fah–/–Rag2–/–Il2rg–/– Fah deficiency, lack of T B NK cell Advantages: feasible to serial transplantation; the repop-
ulation rate reached 80%; Limitations: could not provide
a growth advantage for immature liver progenitor cells.

2022 [78]

Fah–/–Rag2–/–Il2rg–/– Fah deficiency, lack of T, B and NK cells Advantages: high survival rate with stable repopulation;
Limitations: repopulation rate limited to 30%.

2021 [37]

Fah–/–Rag2–/– Fah deficiency, lack T and B cells Advantages: supported infection or reactivation of hep-
atitis B virus; improved the liver functions of F/R mice
and their survival; Limitations: does not reconstitute
liver parenchymal cells.

2019 [93]

Alb-TRECK/SCID Expressed human heparin-binding epidermal growth
factor-like receptor (HB-EGF)

Advantages: functional humanized liver, repopulation
rate reached nearly 100% in some cases; Limitations: re-
cipient liver recovered quickly by host cells.

2017 [144]

Fah–/–Rag2–/– Fah deficiency Advantages: restored the liver function without ter-
atoma; Limitations: low survival rate after 9 weeks.

2014 [92]

Fah–/– Fah deficiency Advantages: efficient derivation of both hepatocytic and
cholangiocyte lineages; Limitations: low survival rate
after 8 weeks.

2013 [120]
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Table 2. Continued.
Humanized system/organ Host background Immunodeficiency and other modifications Advantages and/or Limitations Year

Brain YAC128 transgenic Huntington’s disease Non immune deficiency Advantages: differentiate into neurons, oligodendro-
cytes and astrocytes, improve motor and cognitive func-
tions; Limitations: Motor and cognitive functions are not
at normal levels. No intact humanized nervous system.

2021 [145]

NOD/SCID Lack of T and B cells, hSIRPα polymorphism Advantages: iPSC-derived neural precursor cells could
integrate into mouse neural projections; Limitations:
without functional verification and without fully human-
ized nervous system.

2020 [136]

NOD/SCID Lack of T, B and NK cells, hSIRα polymorphism Advantages: implant into cortex, differentiate into pyra-
midal neurons and gradually mature; Limitations: with-
out functional verification and without fully humanized
nervous system.

2020 [146]

MITRG mice: Rag2−/−IL2rγ−/−,
hCSF2−/−hTPO−/−

Lack of T, B and NK cells, expressed hCSF Advantages: differentiated into functional microglia and
other central nervous system macrophages; responsive
to both acute and chronic insults; Limitations: without
functional verification and without fully humanized ner-
vous system.

2019 [137]

Cynomolgus monkey Non-human primate, no immune deficiency Advantages: implant into putamen, improve functional
motor improvement of Parkinson’s disease (PD) model;
Limitations: without functional verification and without
fully humanized nervous system.

2015 [19]

NOD-SCID Lack of TB cells, hSIRPα polymorphism Advantages: integrate into neural network and vascular,
showed neuronal activity, synaptic connection; Limita-
tions: form glioma.

2018 [138]

Islet NOD-SCID IL2Rγnull Lack of T, B and NK cells, hSIRPα polymorphism Advantages: grafts matured into functional β cells and
reversed diabetes; Limitations: Non-endocrine pancre-
atic islet cells are not humanized.

2015 [134]

NOD-Rag1−/−IL2rg−/− Ins2Akita Lack of T, B and NK cells; hSIRPα polymorphism; spon-
taneous hyperglycemia

Advantages: permitted to restore normal blood glucose
in vivo; Limitations: 60% recipients occurred xeno-
geneic rejection.

2010 [135]

Alopecia areata NSG Lack of T, B and NK cells, hSIRPα polymorphism Advantages: effectively mimicked the immune effec-
tor activity of human alopecia areata; avoid of perma-
nent scarring alopecia produced by graft-versus-host re-
actions; Limitations: rejection; cytokines affect the ac-
curacy of the model.

2020 [131]
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Table 2. Continued.
Humanized system/organ Host background Immunodeficiency and other modifications Advantages and/or Limitations Year

Androgen alopecia, immune system NSG Lack of T, B and NK cells, hSIRPα polymorphism Advantages: humanized hematopoietic system facili-
tated human skin engraftment; Limitations: could not re-
flect the clinical complexity of human androgen alopecia.

2016 [130]

Melanocyte KSN/Slc nude Lack of T, B and thymus gland Advantages: displayed melanin deposition; melanocytes
in dermis could migrate to epidermis; Limitations: rejec-
tion present, product contains low levels of melanin.

2018 [133]

Melanomas, immune system NOD-SCID IL2Rγnull Lack of T, B and NK cells, hSIRPα polymorphism Advantages: high-affinity T cell receptor with allogeneic
reactivity was abolished; Limitations: Unable to simu-
late full human skin.

2021 [147]

Abbreviations: ESCs, embryonic stem cell; HSCs, hematopoietic stem cells; HSPC, hematopoietic stem progenitor cells; iPSCs, induced pluripotent stem cells; NOD, nonobese diabetic mice; SCID, Severe combined immunodeficiency;
NOG, NOD/Shi-SCID/IL2rγnull; NSG, NOD/SCID/IL2rγnull; PBMC, peripheral blood mononuclear cell; TRECK, toxin receptor-mediated cell knockout; Tx, xenotransplantation.
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Although primary human cells, including HSCs and
hepatocytes remain the first choice for building effective
humanized animals, the shortage of sources, ethical is-
sues, and differences in the genetic background in differ-
ent sources make them difficult to use in a stable and large
scale. Alternatively, iPSC source is considered nearly infi-
nite, with highly homogeneity in the same batch. Further-
more, constant breakthroughs have been made in using in
human iPSCs derived cells other than liver and hematopoi-
etic system, such as neurons [122], beta cells [123], alveo-
lar type 2 cells [124], intestinal cell [125], and keratinocytes
[79,126]. Undoubtedly this progress will pave the way to
generate more specific and complex humanized models in
the near future.

4. Generation of Humanized Animals
The development of humanized animal models allows

more closely resembling of human organs and systems, has
the potential to greatly improve our understanding of how
diseases work and how they can be treated, as well as ac-
celerate the development of new drugs and therapies. The
commonly used humanized animals, mainly rodents, are
summarized along with their advantages and limitations in
Table 2 (Ref. [18,19,37,39,66,67,78,92,93,100,120,127–
147]), which highlights the need for further improvements
of current models.

4.1 Humanized Immune and Hematopoietic System
The idea of constructing a transient human immune

system in mice dates back to the 1970s. Early experi-
ments sparked interest inmodifying themouse immune sys-
tem to accommodate cells and tissues from the human im-
mune system. Human peripheral blood mononuclear cells
(PBMCs), or human lymphocytes has been isolated from
lymph nodes/spleen and injected into the immunodeficient
mice, However, these early attempts were limited by the
short lifespan of human lymphocytes in the mouse periph-
eral blood [148]. Subsequently, HSCs transplantation was
considered as more effective approach to realized human-
ization. However, initial attempts to engraft HSCs into ir-
radiated CB17-SCIDmice were limited by the high activity
of host NK cells and spontaneously generated B and T cells,
leading to low levels of human cell engraftment and a risk
of graft versus host disease (GVHD) [127,149,150]. Ad-
vances in mouse strain mutations, including the develop-
ment of the IL2γ mutation, have enabled superior human
hematopoietic and immune cell engraftment [44]. Multi-
lineage differentiation of HSCs was observed in various
studies, and engrafted CD4+T cells showed memory phe-
notype [16,113,116]. However, the engrafted human B
cells were typically immature [113], and T cell, NK cell
and myelomonocytic lineage also displayed some func-
tional impairment due to blocked lymphoid differentiation
[16,116]. Moreover, due to the lack of HLA on the thymus,
robust human T cell-mediated immune response was failed

to establish [151,152]. Besides, residual activity of host NK
cells as well as other innate immune system functions inter-
fered with human HSC engraftment, leading to a tendency
to develop spontaneous thymic lymphoma [153].

The transplantation of human fetal liver and thymus
fragments has been a promising approach to create the BLT
(bone marrow, liver, thymus) model, which enables the de-
velopment of human hematopoiesis and functional human
immune system in mice [15]. The BLT models provided
a human thymic microenvironment that allowed the sus-
tained development of human hematopoiesis and functional
human immune system, supporting the development of hu-
man T cells and their selection on human MHC molecules,
and eventually mediate strong immune responses in vivo
[15,154]. However, bone marrow microenvironment re-
quired for innate immune cell development was still lack,
the incidence of GVHD was higher than CD34+ model,
and some subpopulations of abnormal recombination were
found in the BLT model [16].

To address these limitations, researchers have ex-
plored alternative approaches, such as hu-SRC and hu-BLT
mice, which do not reject human ESCs transplantation but
suffer from inadequate reconstitution of the innate immune
system and the development of a wasting disease-like syn-
drome that renders them inadequate for long-term trans-
plantation [128]. Recent studies have shown that hiPSC-
thymus organoid can support the de novo generation of
a diverse population of functional human T cells, poten-
tially overcoming the limitations for immune cell matura-
tion after transplantation [128]. Additionally, in the latest
study of human hepatocyte transplantation, it was revealed
that xenografts recruited macrophages and neutrophils that
cleared themselves. Therefore, the elimination or modula-
tion of macrophage activities was suggested to support the
long-term repopulation [38]. Future studies should focus on
the mechanisms of immune recognition of xenografts, such
as the SIRPα-CD47 axis, and on the generation of immun-
odeficient mice genetically expressing HLA molecules.

In recent years, research on human iPSCs and trans-
differentiated HSCs have attracted much attention. iPSC-
HSCs were confirmed to migrate from teratomas into the
mice bone marrow (BM) after transplantation. and sustain
multi-lineage and long-term reconstructive ability when re-
transplanted into secondary mice [18]. However, iPSC-
HSCs avoid of teratoma phase have not yet differentiated
successfully. Although the efficiency of direct reprogram-
ming method of HSCs increases rapidly, it is still unable to
generate functional and transplantable HSCs. Transcription
factor combinations SOX4,MYB,HOXA9, ERG, and RORA
have been identified to specify myeloid-restricted precur-
sors into short-term transplantable pluripotent progenitor
cells with low engraftment level and a strong tendency to-
wards bone marrow differentiation, while absent of adult
hemoglobin expression [100]. On the other hand, seven fac-
tors (ERG,HOXA5,HOXA9,HOXA10, LCOR, RUNX1 and
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SPI1) reportedly convert hematopoietic endothelial cells
into long-term transplantable HSPCs that could develop
into functional red blood cells, B cells and T cells in vivo, al-
though the rate of red lineage denuclearizationwas still very
limited [66]. Furthermore, BM differentiation bias remains
a major obstacle to the derivation of functional HSPCs from
hiPSCs. A single transcription factor MLL-AF was found
to induce iPSC as a source of highly transplantable HSPC
without lineage bias, allowing for the complete reconstruc-
tion of the human hematopoietic system, However, since
the genome was unstable compared to the primary HSPC,
the risks of leukemia transformation increased [67].

However, there are still significant challenges ahead,
such as how to completely replace mouse MHCs with di-
verse HLA molecules and express human-derived growth
factors and cytokines [92]. Rebuilding red blood cells and
granulocytes, as well as prolonging the maintenance dura-
tion, are also yet to be addressed [93,94]. Further investi-
gation of the hematopoietic developmental signals and the
identification of critical gene network regulators may help
overcome these limitations.

The development of immune humanized models has
significantly advanced our understanding of immune sys-
tem development and related diseases [155,156]. Com-
bined transplantation of HSC with islet cells facilitated the
modeling of autoimmune diseases type 1 diabetes (T1D)
[157]; meanwhile, the human immunity provided an un-
precedented platform for antiviral research, including the
transmission and pathogenesis of pathogen, such as human
immunodeficiency virus and human herpesvirus 4 [158,
159]. Additionally, novel tumor immunotherapy strategies
are also being evaluated in immunized humanized mouse
models [158,160,161]. These models have greatly im-
proved our understanding of immune processes at the cellu-
lar and molecular levels, accelerating the current develop-
ment of translational medicine. So far, neither BM or um-
bilical cord blood has yet achieved the immune functions
as well as BLT in humanized mice [118], partly due to the
deficiency of thymic microenvironment essential for innate
immune development. iPSCs are considered as attractive
and promising source to address these issues, although di-
rect differentiation of functional HSCs was not succeeded
yet [18,129]. How to completely replacemouseMHCswith
diverse HLA molecules and express human derived growth
factors and cytokines remains large challenges ahead [162],
while rebuilding red blood cells and granulocytes, as well
as prolonging the maintenance duration are yet unsettled
[163]. Further investigation of the hematopoietic develop-
mental signals and the identification of the critical gene net-
work regulators may help overcome these limitations.

4.2 Humanized Liver

By introducing human liver genes into the mouse
genome, researchers have generated a series of liver gene-
humanized mice, including mice expressing human ex-
ogenous receptors, drug-metabolizing enzymes and trans-
porters, as well as combinatorial models [164]. However,
transgenic mice do not possess a complete “humanized
metabolic network” within the liver and was not sufficient
for studying human livermetabolism. Animal liver with hu-
man hepatocyte replacement was considered much similar
to human liver with respects to liver zonation, and phase
I, II and III enzymes expression, thus particularly suited
for studying drug metabolism and pharmacokinetics, drug-
drug interactions and hepatotoxicity [165]. The chimeric
liver is a mixture of endogenous mouse hepatocytes and
human hepatocytes, and the level of human liver character-
istics were greatly depended on the human hepatocyte re-
population ratio [79]. Currently, PHHs are the most widely
used source for liver humanization. In FRG mice model,
PHH could stably achieve an impressive 80% repopulation
rate [37], ALB TRECK/SCID mice also allowed efficient
repopulation of human primary fetal liver cells and hepatic
stem cells, with a near 100% in some cases. While adult
human hepatocytes failed to survive in this mouse model
[16]. Although humanized liver models have been success-
fully generated in mice, practical applications, particularly
in the pharmaceutical industry, require larger animals such
as rats. Very recently, our team made a remarkable break-
through in generating humanized liver in a rat model using
similar gene knockout strategy as for FRG mice. Unlike
the robust repopulation in mice (usually took 3–4 month to
achieve over 70%), liver humanization in rat took around 7
months to reach a maximum level of around 30%, suggest-
ing that generating humanized liver in larger animals other
than mice is challenging. Since most applications, partic-
ularly drug testing requires humanization level over 30%
in animal liver, transplantation of much larger amount of
human hepatocyte was required to achieve efficient liver
humanization [37]. While, PHHs have been shown to be
the best source for in vivo repopulation and functionality,
their limited availability, genetic and phenotypic diversity,
and rapid differentiation in culture greatly limit their ap-
plications. The discovery of PSCs and their potential to
differentiate into hepatocytes has drawn much attention as
an alternative. Recent research has focused on increasing
the repopulation efficiency and enhancing the hepatic func-
tions to be closer as PHHs. Co-culture of mesenchymal
and endothelial cells has been shown to significantly pro-
mote differentiation and engraftment of hiPSC-derived en-
dodermal progenitor cells in vivo, achieving 70% repopu-
lation rate in IL2rg−/− rats with damaged liver, although
the maintenance period was limited to 22 days [166]. No-
tably, short-term repopulation of hiPSC-HLCs have been
achieved in nonhuman primate liver fibrosis model [91],
implying the possibility to generate humanized animals in
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big animals. In addition to repopulation efficiency and
functionality [167], yet some critical factors such as intesti-
nal obstruction, portal vein thrombosis, and intestinal is-
chemia have been found to be potential causes of death due
to poor blood flow of the grafts [168]. With the develop-
ment of iPSC-based organoid technologies, hiPSC-derived
three-dimension hepatic grafts with vascularized structures
and enhanced functionality have been established. Unlike
single cell transplantation, they showed no translocation to
the other organs, no sign of massive necrosis or portal vein
thrombus [166]. Thus, organoid transplantation appealed to
be a novel way to achieve more effective and safer human-
ization. Liver humanized animals are valuable models for
studying viral infections such as Hepatitis B Virus (HBV)
which cannot naturally infect most animals, includingmice.
These animal models allow for the study of viral infections,
host-virus interactions, and testing of new antiviral drugs.
Currently, Alb-uPA/SCID, FRG and TK-NOGmice are ex-
tensively reported for HBV infection modeling potentials,
nevertheless, absence of human immunity makes these hu-
manized mice unsuitable for studying virus-induced im-
mune responses [169]. Integration of humanized immunity
maywell lead tomore accurate modeling of viral infections.
Additionally, these models have been widely used in drug
researches due to their superior advantages overwhelming
current preclinical models [170] (Fig. 1), since they were
capable of studying human-specific metabolites that do not
exist in other species and revealing human-specific drug re-
sponses. Particularly, iPSC-derived humanized liver is be-
lieved to better mimic the patient specific liver metabolism
and drug response, may serve as ideal platform for personal-
ized disease modeling and drug testing. However, it is still
difficult to control the degree of chimerism, and the remain-
ing mouse hepatocytes may recover unexpectedly, or have
higher affinity for certain drugs than their human coun-
terparts [171]. Meanwhile, human specific extrahepatic
drug metabolism and interactions cannot be identified in
these humanized mice due to lack of humanization in other
metabolic organs like intestine [172], more comprehensive
and systematic humanization was required to achieve the
human metabolism modeling.

Integration of human immunity may potentially lead
to more accurate modeling of viral infections. Moreover,
these models are also beneficial in drug research as they
can study human-specific metabolites that are not present in
other species, providing insights into human-specific drug
responses. Particularly, a promising technique for per-
sonalized disease modeling and drug testing is the use of
iPSC-derived humanized liver models. These models are
thought to better replicate patient-specific liver metabolism
and drug response. However, controlling the degree of hu-
manization is challenging. Additionally, remaining mouse
hepatocytes in the model may unexpectedly recover or have
a higher affinity for certain drugs than their human coun-
terparts [102]. Moreover, without humanization in other

metabolic organs like the intestine, it is impossible to iden-
tify human-specific extrahepatic drug metabolism and in-
teractions in these humanized mice [103]. Therefore, a
more comprehensive and systematic approach to humaniza-
tion is necessary to achieve better human metabolism mod-
eling.

4.3 Humanized Skin
Mice with humanized skin are commonly used to

study transplantation rejection and infectious diseases, by
surgically grafting human skin onto mice, researchers can
visualize and assess skin diseases. Currently these mice
have been widely used to investigate autoimmune and
inflammatory skin diseases such as pemphigus vulgaris,
GVHD and genetic skin diseases. The human atopic der-
matitis (AD) mouse model and humanized alopecia areata
(AA) model are both induced lesions in mice transplanted
with human skin. However, due to the differences in skin
structure and immune function between mice and humans,
and the different pathogenesis of various AD subtypes, this
model can only simulate acute AD not other complex AD
dermatitis [130–132,173]. A systemic lupus erythematosus
model was successfully generated after transplanting hu-
man PBMC from active patients into the dorsal intradermal
region of BALB/c nude mice, followed by daily ultraviolet
radiation B, resulting in persistent and stable patchy ery-
thema with scaling in the implanted area [174]. However,
the expression patterns of adhesion molecules in grafted
skin differed from those in original grafts, which signifi-
cantly affected the homing and recirculation of human lym-
phocytes in the graft, directly affecting the observations of
immunoreaction [175]. Therefore, the construction of hu-
manized animals for skin and immunity is highly in line
with the research needs.

Human iPSC-derived skin cells are also increasingly
used in the construction of humanized animals. Melanocyte
derived from hiPSCs permitted to induce melanosis in
nude mice skin where melanocytes aggregated [133]. The
hiPSC-derived dermal papilla could partially mimic the role
in hair follicle development, and when combined with ker-
atinocytes, it could simulate the three-dimensional assem-
bly of nature hair follicle structure in vitro [176]. An in vitro
3D iPSC-skin organ system with mature hair follicle and
sebaceous gland was transplanted into the wound of mouse
skin, and it displayed the most skin functions [177]. How-
ever, the construction of complete skin organs from iPSCs
remains a major obstacle. So far, only melanocyte, ker-
atinocyte, and 3D skin organ system have been success-
fully induced from iPSC, while it is currently unavailable
to simulate complete skin functions. Additionally, different
parts of the skin have different thicknesses, with or without
hairs, and accessory organs such as sweat glands are differ-
ent, so establishing partial and localized skin humanization
may not thoroughly reflect all aspects of human skin.
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In a study, human PSC-derived pancreatic endoderm
cells developed into islet-like structures that produced hu-
man insulin and maintained normal glycemia when trans-
planted. Immunotherapies targeting T cell costimulatory
pathways attenuated the rejection of xenograft, suggesting
that PSC-derived islets may serve as a potential substitute
for T1D with proper immunological interventions [122].

4.4 Humanized Pancreatic Islets
To facilitate diabetes drug screening and disease mod-

eling, researchers have been developing functional pancre-
atic β cells from adult stem cells, ESCs and iPSCs. In
a study, human PSCs-derived pancreatic endoderm devel-
oped into islet-like structures that produced human insulin
andmaintained normal glycemiawhen transplanted. imply-
ing the potential that under proper immunological interven-
tions PSC-derived islets may serve as potential substitute
for T1D [134].

To determine the in vivo differentiation potential and
functionality, β cells derived from PSCs were transplanted
in situ into the pancreas of newborn mice, which survived
and expressed β cell transcriptional factors and markers as-
sociated with functional maturation [178]. Additionally,
hiPSC-derived mature human islet-like organoids contain-
ing endocrine-like cell types exerted hypoglycemic func-
tion and rapidly re-established glucose homeostasis in dia-
betic NOD/SCID mice and non-human primates with di-
abetes [179,180]. These functional and transplantable
sources make the fundamental basis for generating human-
ized islets.

In clinical experiment, T1D patients indeed restore
glucose homeostasis following islet transplantation, but
most patients lose islet function due to allograft rejection
Human islet xenografts were found to have a 60% oc-
currence of rejection, which affected the long-term obser-
vation of graft outcome [135]. The construction of hu-
man islets with human immune system in mice is an ideal
model to study the mechanism of xenograft rejection and
to develop therapeutic or preventive strategy. NSG mouse
model reconstituted by CD34+stem cell and regulatory T
cell was utilized as an excellent platform for assessing
the natural immune response to islet allografts in humans
[181]. Although the technology for constructing human-
ized pancreatic islets seems relatively mature, immune re-
jection remains the main obstacle to the long-term existence
and functions of humanized pancreatic islets. The break-
through of pancreatic humanized mice majorly depended
on progress in establishing immune tolerance or immune-
humanization.

Although the technology for constructing humanized
pancreatic islets seems relatively mature, immune rejection
remains the main obstacle to the long-term existence and
functions of humanized pancreatic islets. The breakthrough
in pancreatic humanized mice mainly depends on progress
in establishing immune tolerance or immune-humanization.

4.5 Humanized Brain

The newly developed tools such as brain organoids,
while a promising tool for studying the human brain, lack
the full complexity of in vivo systems, including microen-
vironments, neuronal circuits, vascular circulation, and im-
mune systems. As a result, they cannot fully capture the
complexity of brain development, function, and dysfunc-
tion, which limits their use in precise disease modeling or
drug screening applications [182,183]. Humanized animal
of brainmay better assist in preclinical drug testing of brain-
like organs from patient under physiological conditions.

While humanized animal models of the brain have
successfully shown the integration of human cells and func-
tional neural networks, questions remain about their abil-
ity to accurately simulate aging and dementia in the brain.
Nonetheless, the integration of human brain organoids in
immunodeficient animals, such as intracerebral integra-
tion into NOD-SCID mice, has been achieved, where neu-
rons gradually mature, synapse occur, and functional neu-
ral networks form. Additionally, transplantation of induced
pluripotent stem cell-derived dopaminergic progenitor cells
in a monkey model of Parkinson’s disease expressed mark-
ers of dopaminergic neurons in the midbrain, and human
iPSC-derived neural precursor cells implanted into the cor-
tex of newborn mice showed potential. Encouragingly, en-
grafted human microglia into the central nervous system
through in vivo differentiation in mice brain responded dy-
namically to local and peripheral injury.

Since primary brain cells are not readily available,
currently induction from hPSCs is the main strategy to
obtain neurons, astrocytes and oligodendrocytes for neu-
rodegenerative and myelin diseases studies. In a crab-
eating monkey model with Parkinson’s disease (PD),
induced by the neurotoxin MPTP (1-methyl-4-phenyl-
1,2,3,6-tetrahydropyridine), hiPSC-derived dopaminergic
progenitor cells expressed markers of dopaminergic neuron
in the midbrain after transplanted in vivo [184]. Moreover,
hiPSC-derived neural precursor cells could implant into the
cortex of newborn mice [136]. Functional and healthy mid-
brain dopamine neurons cells from iPSC can effectively
restore motor function and re-operate the host brain after
transplanting into the rodent model of PD [19]. Followed
immune humanization by iPSC-derived hematopoietic pro-
genitor cell transplantation, human microglia could be en-
grafted into central nervous system though in vivo differ-
entiation in mice brain, and responded dynamically to lo-
cal and peripheral injury [137]. Encouragingly, up to 80%
microglial chimeras were achieved under optimized differ-
entiation and xenotransplantation methods [185]. Nonethe-
less, the integration of human brain organoids in immunod-
eficient animals, such as intracerebral integration has been
achieved in NOD-SCIDmice, where neurons gradually ma-
ture, synapse occur, and functional neural networks formed
[138]. However, neurons derived from PSCs have signif-
icant differences from primary cells, despite sharing the
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same genotypes and exhibiting similar electrophysiological
properties [186]. Neurons derived from fetal iPSC could
not simulate the neurodegenerative diseases in the elderly,
while the majority of iPSC-neurons generated by direct
differentiation were prone to be fetal or neonatal cell-like
[187]. These differences arise from variations in epigenetic
profiles, which result in significant differences in gene ex-
pression. The modification of the epigenetic characteristics
of reprogrammed cells is an important obstacle to realizing
human neurodegeneration, not to mention the importance
of disease epigenetics for disease modeling [188,189]. It is
still doubtful whether iPSC-derived neurons and other cen-
tral nervous cells can accurately simulate aging and demen-
tia in the brain. Major concerns raised how these differ-
ences would affect when hiPSC-derived neurons are used
as predictors of human neural responses upon chemical or
pathological challenges [190].

While mixed cortical neurons from iPSC have been
successfully established, the identification of specific cor-
tical subtypes remains a challenging task [191]. The gener-
ation of these subtypes from hiPSCs with correct transcrip-
tome and epigenomic characteristics is crucial to improving
the validity and accuracy of disease modeling. However,
nervous system is a complex and interconnected integra-
tor, in this regard, animals brain replaced with human brain
organoid provide the platform for evaluating the differenti-
ation, axonal growth, and synaptic integration of neural or-
gans from patient specific iPSCs under physiological con-
ditions in vivo, promoting research on the pathogenesis of
neurodevelopment, neuropsychology, and neurodegenera-
tive diseases.

4.6 Other Humanized Models

Human lung, intestinal and cancer cells have also been
successfully transplanted into mice to generate humanized
models. Wahl et al. [192] transplanted up to 40 cell types
(including non-hematopoietic cells) from human lung tis-
sue into immunocompromised mice to form highly vascu-
larized lung grafts. In this BLT-based humanized mice,
the lung grafts and autologous human hematopoietic cells
mediated robust humoral and T-cell responses, making it
suitable model for studying pathogenic infections in vivo
[192]. Human colonic and intestinal epithelial organoids
have also been used to reconstruct intestinal epithelial cells
in mice, providing a technical basis for organoid transplan-
tation in case of colonic injury [193]. Additionally, trans-
plantation of patient-derived tumor tissue or cells has been
widely used to develop individualized xenograft models for
studying cancer biology, metastasis, and new therapies.

With the rapid development of transplantation sources
and humanization strategies, gene editing techniques have
further advanced the creation of humanized models, over-
coming limitations inherent in conventional models. For in-
stance, transgenic mice expressing human MHC class I and
HLA II were reportedly compatible with human T cells en-

graftment [194,195], while mice expressing human p53, a
tumor suppressor gene, are ideal for cancer cell engraftment
[196]. In mice expressing urokinase fibrinogen activator,
which inhibits mouse hepatocyte function, drugmetabolism
occurs exclusively through engrafted human hepatocytes,
which may facilitate the monitoring of human-specific drug
pharmacokinetics [197].

5. Challenges with PSC-Derived Humanized
Model

With the development of in vitro differentiation strat-
egy, human PSCs-derived function cells have been exten-
sively used in disease modeling, drug screening, and trans-
plantation therapy trails, providing significant successes
for building humanized animal models [131,132]. Patient-
derived induced pluripotent stem cells (iPSCs) have a dis-
tinct advantage over traditional animal models, particu-
larly in complex diseases such as neurodegenerative and
HBV-induced liver diseases, as they not only originate from
human cells but also possess unique genetic backgrounds
[198]. To date, PSC-derived cells show great promise in
the field of refractory diseases and injuries, particularly for
patients who do not respond to standard drugs or medica-
tions, such as spinal cord injury, heart failure and diabetes
[199–201].

Although PSCs provide an attractive source for xeno-
transplantation due to their ease of accessibility, high pro-
liferation rate, and homogeneity, three significant chal-
lenges remain: tumorigenicity, maturity, and immuno-
genicity (Fig. 2). The unlimited proliferative potential of
PSCs increases the risk of tumorigenesis, such as teratoma
formation [202]. Furthermore, retention of undifferenti-
ated or immature cells in the terminal population, integrated
transcriptional factors activity, and mitochondrial gene mu-
tations obtained during passages pose potential risks [180].
To address these challenges, genetic stability and purity of
the terminally differentiated cells must be considered, par-
ticularly when billions of cells are required. While it may
be impossible to produce iPSCs completely free of muta-
tions, measures such as using hematopoietic cells from um-
bilical cord bloodwith the least pre-existing variation [203],
non-virus integrated reprogramming methods, hypoxia cul-
ture to minimize DNA oxidative damage, and clustering
passage to prevent malignant mutation can minimize mu-
tation rates [204,205]. For immaturity of iPSCs, with an
increasingly comprehensive understanding of gene regula-
tion network involved in cell differentiation, gene manip-
ulation has significantly addressed the functional deficien-
cies in PSC-derived cells [66,120], enabling them to reach
a level comparable to primary cells. In addition, the emerg-
ing role of chemical compounds in cell fate conversion and
functional maturation offers a complementary approach for
generating functional cell types with high efficiency and
cost-effectiveness [102]. For immunogenicity, ischemia-
reperfusion [206] and inflammatory factors [207,208] are
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Fig. 2. Challenges of PSCs for generating humanized animals. (A) Risk of tumorigenicity: The risk of tumorigenicity arises from
undifferentiated PSCs and chromosome abnormalities during in vitro culture, together with integrated reprogramming factors that may
lead to tumor formation after transplantation. Safety can be improved by using genetically stable cell sources, non-viral integrated
reprogramming strategies, clustered passages, and hypoxic culture conditions. (B) Lack of maturation: PSCs often differentiate into
immature states, producing cells such as unnucleated erythrocytes and progenitor-like hepatocytes and neurons, due to limitations in
differentiation approaches. Overcoming this challenge will require further exploration of specific small molecules and transcription
factors to promote cell maturation. (C) The issue of immunogenicity: Graft clearance is closely related to the host immune response,
ischemia-reperfusion, and HLA restrictions. Strategies such as the transplantation of 3D cultured vascularized organoids can attenuate
inflammatory factors. In addition, HLA-universal iPSCs and immunosuppressive pre-treatment offer potential solutions to reduce graft
immunogenicity and minimize immune rejection.

known causes of clearance of implanted cells, 3D culture
can reduce the expression of dedifferentiated inflammatory
factors [38], immunosuppressive pretreatment before trans-
plantation also can promote the engraftment of human cells
and reduce immune rejection reactions in vivo [209].

Notably, our on-going studying in humanized have
highlighted the critical barrier of macrophages phagocy-
tosis in the case of hepatocyte xenotransplantation into
rat, indicating the significant importance of remolding the
macrophage activity, particularly in bigger animals other
than mice [40]. Transgenic expression of human SIRPα
in mice was found allowed activation of “Don’t eat me”
pathways [210], which markedly inhibited the phagocyto-
sis of macrophages and facilitated human hematopoietic
cell engraftment [211]. More “Don’t eat me” pathways

or molecules, such as SLAM family receptors [212], pro-
grammed cell death ligand 1 (PD-L1) [213], toll-like re-
ceptor 4 [117], stimulator of IFN genes (STING) pathway
[214], PI3Kγ/AKT Pathway [215], CDC42/JNK Pathway
[216], and mTORC1-c/EBPβ pathway [217] are nowadays
being progressively studied and reported [218], and was
supposed to facilitate more efficient human donor engraft-
ment in wide range of animal models.

Taken together, a comprehensive understanding of
the PSC differentiation and maturation route, as well as
advanced genetic manipulation of tumorigenesis and im-
munogenicity, is necessary to obtain large amounts of pure,
safe, and functionally mature cell sources for practical use
of iPSCs in humanized animal models.
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6. Conclusion and Future Perspectives
In conclusion, the use of humanized animal models

has provided invaluable insights into human disease pro-
gression and drug development. While mice have tradition-
ally been the most widely used model in the past, it is be-
lieved that bigger models like rats are more important and
urgent for biomedical and pharmaceutical research and ap-
plications. With our increasing understanding of immune
rejection and tolerance mechanisms, as well as the advance-
ment of gene editing technology, even larger humanized an-
imal models such as pigs and monkeys are expected to be
established in the future.

Human iPSCs have emerged as a promising source
for humanized models and shown great potential due to
their unlimited proliferative potential and ability to pro-
vide personalized platforms for drug and therapy innova-
tion. However, challenges remain in achieving complete
functionalities and maturity of induced cells without tu-
morigenesis risks through differentiation strategies. Fur-
ther breakthroughs may be made through the combination
of gene editing and chemical-defined modulation, multilin-
eage organogenesis, optimization of culture microenviron-
ment, to extend the number, functionality, and quality of
desired cell types. Multi-organ humanized animal model
is expected to be made to achieve complete human phys-
iologic functions, such as metabolism, in animals. This
will require a concerted effort to integrate different organ
systems and establish crosstalk between them. Continued
research in these areas will lead to a better understanding
of human physiology and disease progression, ultimately
leading to the development of more effective treatments and
therapies for patients.
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