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Abstract

Background: Bladder urothelial carcinoma (BLCA) is a malignancy with a high incidence worldwide. One-third of patients may expe-
rience aggressive progression later on, and 70% of patients who have undergone surgical intervention will still suffer from metastasis.
Materials andMethods: RNA sequencing profiles of BLCA samples were obtained from The Cancer Genome Atlas (TCGA) database.
Differential expression and univariate Cox regression analyses were performed to identify prognosis-related differentially expressed im-
mune genes (DEIGs). Subsequently, a proportional hazards model of DEIGs was then constructed by univariate regression analysis.
Differential expression and correlation analyses, CIBERSORT, Single Sample Gene Set Enrichment Analysis (ssGSEA), GSVA were
conducted on transcription factors (TFs), immune cells/pathways and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways.
The regulation network was then constructed. Eventually, ATAC-seq, ChIP-seq, scRNA-seq, and multiple online databases were em-
ployed for further validation. Results: A proportional hazards model of 31 DEIGs was constructed and risk score was calculated and
proven to be a independent prognostic factor. Then 5 immune genes were characterized to be significantly correlated with bone metas-
tasis, stage and TF expression simultaneously. 4 TFs were identified to be significantly correlated with prognosis and RBP7 expression.
5 immune cells/pathways were revealed to be significantly correlated with RBP7 expression. Only 1 KEGG pathway was identified to
be significant in Gene Set Enrichment Analysis (GSEA) and Gene Set Variation Analysis (GSVA) analyses. The regulatory relationship
was then constructed, in which the correlation between EBF1 and RBP7 (R = 0.677, p < 0.001), Th2 cells and RBP7 (R = 0.23, p <

0.001), the oocyte meiosis pathway and RBP7 (R = 0.14, p = 0.042) were the most statistically significant. The results were further con-
firmed by Assay for Transposase Accessible Chromatin with high-throughput sequencing (ATAC-seq), Chromatin Immunoprecipitation
sequencing (ChIP-seq), single-cell RNA sequencing (scRNA-seq), and multiple online databases validation. Conclusions: This study
revealed that the EBF1-RBP7 regulatory relationship had potential importance in the bone metastasis in BLCA through Th2 cells and
the oocyte meiosis pathway.
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1. Introduction
Bladder cancer has the highest incidence among uro-

logic malignancies in China and is the sixth most common
cancer globally [1,2]. One third of patients might have ag-
gressive progression later, and 70% of patients who un-
dergo surgical intervention will still experience metastasis
[3]. The pathological type of most bladder cancer patients
is urothelial carcinoma, and patients with the same patho-
logical features usually have a considerable difference in

prognostic outcome [4]. Its morbidity has risen from 2000
to 2011, and patients with metastasis were reported to have
a higher mortality rate [1]. After radical cystectomy, nearly
50% of patients will still develop varying degrees of pro-
gression. Around 5–10% of patients have already metasta-
sized at the time of diagnosis [5]. Bone metastasis occurs
frequently in bladder urothelial carcinoma (BLCA), which
has a relative incidence of 40% and only 6–9 months of
median survival from diagnosis [6,7]. Thus, there is still an
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unmet clinical need for further research to reveal the poten-
tial mechanism of bone metastasis in BLCA.

High throughput sequencing data analysis has been
widely used for the identification of significant molecular
and cellular biomarkers in the metastasis and prognosis of
BLCA [8–12]. However, little previous research has fo-
cused on immune genes and relative networks in the bone
metastasis of BLCA.

In this study, we identified differentially expressed
immune genes (DEIGs) and TFs in patients with BLCA. To
obtain valuable prognostic biomarkers, univariate Cox re-
gression was applied. Based on the DEIGs, we constructed
a proportional hazards model and validated it to have good
prognosis-predictive performance. We employed CIBER-
SORT and Single Sample Gene Set Enrichment Analy-
sis (ssGSEA) method to quantify tumor-infiltrating im-
mune cells/pathways, which were then co-analyzed with
the DEIGs. Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway analysis was carried out employing the in
silico tools Gene Set Variation Analysis (GSVA) and Gene
Set Enrichment Analysis (GSEA). Subsequently, KEGG
signaling pathways with statistically significant correlation
relationships were selected. Assay for Transposase Acces-
sible Chromatin with high-throughput sequencing (ATAC-
seq), Chromatin Immunoprecipitation sequencing (ChIP-
seq), single-cell RNA sequencing (scRNA-seq), and mul-
tiple online databases were utilized for external validation.
Taken together, we proposed a scientific hypothesis for
bone metastasis in BLCA.

2. Materials and Methods
2.1 Data Sources

RNA sequencing profiles of 408 BLCA samples were
obtained from The Cancer Genome Atlas (TCGA) database
(https://www.cancer.gov/tcga), and 209 BLCA samples
with complete demographic and prognostic characteris-
tics, especially bone metastasis information integrity, were
eventually selected. Among the 209 BLCA samples, 11
had bone metastasis. Additionally, information on cancer-
related transcription factors (TFs) was accessed through
the Cistrome database (http://cistrome.org) [13]. In ad-
dition, 2498 immune-related genes and their gene signa-
tures were retrieved from the ImmPort database (https://
immport.org) [14] and the Molecular Signatures Database
(MSigDB) v7.0 (https://www.gsea-msigdb.org) [15], re-
spectively. What is more, the single-cell RNA sequencing
profiles of the tumor sample, as well as CD4 and CD8 sam-
ples of BLCA patients were downloaded from the Gene Ex-
pression Omnibus database (https://www.ncbi.nlm.nih.gov
/geo/) (accession no. GSE164046, no. GSE149652).

2.2 Differential Gene Expression and Univariate Cox
Regression Analyses

Differentially expressed genes (DEGs) were identi-
fied between bone-metastatic and non-metastatic samples

with the cutoff value of false discovery rate (FDR) <0.05
and |log2(fold change)| >1 through the edgeR package.
And DEIGs were subsequently recognized by matching
DEGs with the 2498 immune-related genes downloaded
from the ImmPort database. Gene expression values were
pre-processed by z-score before fold change and p value
were calculated. In addition, Gene Oncology (GO) and
KEGG enrichment analysis was conducted. Subsequently,
univariate Cox proportional hazards model was constructed
to identify DEIGs significantly correlated with overall sur-
vival. Disease-free survival analysis of these identified
DEIGs was also obtained from the Gene Expression Pro-
filing Interactive Analysis (GEPIA) database (http://gepia.
cancer-pku.cn/) [16].

2.3 Construction of a Proportional Hazards Model
Using univariate and multivariate Cox regression

analyses, DEIGs with statistical significance were included
in the proportional hazards model. Risk score for prognosis
was calculated according to the following formula:

Risk scorei =
∑n

a=1
βa× (expression level of gene a)

In the formula, “i” stands for the number of the pa-
tient, “n” stands for the number of significant DEIGs in-
cluded in the model, and “βa” stands for the regression co-
efficient of the DEIGs. The median cut point of the risk
scores was used as the cutoff value for high and low risk
grouping. Model predictions were evaluated by plotting the
Kaplan-Meier curve. Predictive performance was quanti-
fied using area under the curve (AUC). In order to further
estimate the independent prognostic value of risk score, the
univariate and mulitivariate Cox regression analyses were
utilized. Moreover, 196 BLCA patients cohort from the
Therapeutically Applicable Research To Generate Effec-
tive Treatments (TARGET) database (https://ocg.cancer.g
ov/programs/target) were extracted for further validation.
Differential enrichment of tumor infiltrating immune cells
and immune pathways in BLCA was evaluated using the
CIBERSORT and ssGSEA methods.

2.4 Differential TFs Expression and Correlation Analyses
Differentially expressed TFs were identified by the

edgeR package. FDR was set to be less than 0.05 while
|log2(fold change)| greater than 1. Then, correlation anal-
ysis was performed to co-analyze DEIGs and TFs, illus-
trating their regulatory relationships with correlation coef-
ficient>0.300 and p< 0.001, in which case if the variables
conformed to normal distribution and homogeneity of vari-
ance, Pearson correlation analysis was conducted, or else
Spearman correlation analysis was used.

2.5 Immune Cells/Pathways and KEGG Pathways
Analyses

Differential enrichment of tumor infiltrating immune
cells/pathways in BLCA was evaluated using the CIBER-

2

https://www.cancer.gov/tcga
http://cistrome.org
https://immport.org
https://immport.org
https://www.gsea-msigdb.org
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
http://gepia.cancer-pku.cn/
http://gepia.cancer-pku.cn/
https://ocg.cancer.gov/programs/target
https://ocg.cancer.gov/programs/target
https://www.imrpress.com


Table 1. Baseline information of 209 BLCA samples.
Variables Total patients (N = 209)

Age, years
Mean ± SD 67.14 ± 10.14
Median (Range) 67 (60–75)

Gender
Male 160 (76.56%)
Female 49 (23.44%)

Race
Asian 39 (18.66%)
Black or African American 10 (4.78%)
White 148 (70.81%)
Not Reported 12 (5.74%)

Stage
I 3 (1.44%)
II 78 (37.32%)
III 70 (33.49%)
IV 58 (27.75%)

M
M0 198 (94.74%)
M1 11 (5.26%)

N
N0 133 (63.64%)
N1 21 (10.05%)
N2 29 (13.88%)
N3 3 (1.44%)
NX 22 (10.53%)

Abbreviation: SD, Standard deviation; M, bone metastasis; N,
lymph node metastasis.

SORT and ssGSEA tools. The correlation between key
DEIGs and immune cells/pathways was evaluated by Pear-
son/Spearman correlation coefficient. In addition, GSVA
was applied to score KEGG pathways in each sample. To
explore the potential KEGG pathways correlated with prog-
nosis and metastasis in BLCA patients, Pearson/Spearman
correlation analysis and univariate Cox regression were
conducted. Moreover, the Venn diagram was plotted using
the VennDiagram package [17].

2.6 Construction of the Regulatory Network

Focusing on the immune genes, TFs and downstream
immune cells/pathways and KEGG pathways were identi-
fied which were involved in the bone metastasis in BLCA.
Therefore, we constructed a regulatory network to further
elucidate the mechanism of bone metastasis in BLCA by
exploiting the Cytoscape package [18].

2.7 ATAC-seq, ChIP-seq and scRNA-seq Validation

To further validate the transcriptional regulation pat-
tern between EBF1 and RBP7, data related to EBF1 ac-
quired from chromatin immunoprecipitation sequencing
(ChIP-seq) of in vitro human cell lines were downloaded
from Gene Expression Omnibus (GEO) (GEO assession:

Fig. 1. The analysis flowchart.

samples GSM1958038 and GSM1958039 fromGSE75503,
GSM935375 from GSE31477, and GSM803386 from
GSE32465) [19,20]. ENCODE Transcription Factor Tar-
gets [21] and JASPAR Predicted Transcription Factor Tar-
gets [22] algorithms were then applied to re-predict the
transcriptional regulation pattern between EBF1 and RBP7.
Additionally, ATAC-seq data of BLCA samples were ob-
tained from the TGCA project of chromatin accessibility
landscape of primary human cancers (https://gdc.cancer.g
ov/about-data/publications/ATACseq-AWG), which were
then utilized to explore the chromatin accessibility in spe-
cific locations of EBF1 and RBP7. What is more, the
scRNA-seq profiles of BLCA samples from GEO were
obtained to successively go through quality control, nor-
malization, cell cycle assignment, feature selection, prin-
cipal component analysis (PCA), Uniform Manifold Ap-
proximation and Projection (UMAP)/t-distributed Stochas-
tic Neighbor Embedding (t-SNE) for dimensionality reduc-
tion and visualization, unsupervised clustering, differential
expression analysis, and cell communication analysis.

2.8 Online Databases Validation

Multiple online databases were used to access the ex-
ternal validation of our scientific hypothesis. CellMark-
ers (http://biocc.hrbmu.edu.cn/CellMarker/) [23] and Path-
Cards (https://pathcards.genecards.org/) [24] were applied
to find biomarkers related to immune genes/pathways and
KEGG pathways. What is more, UALCAN (http://ualcan
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Fig. 2. Differential gene expression analysis and univariate Cox proportional hazards model. (A) Heatmap demonstrated DEGs
between bone-metastatic and non-metastatic BLCA samples. (B) Volcano plot showed over-expressed and under-expressed DEGs with p
< 0.05. (C) Heatmap demonstrated DEIGs between bone-metastatic and non-metastatic BLCA samples. (D) Volcano plot showed over-
expressed and under-expressed DEIGs with p< 0.05. (E) Forest plot illustrated 31 DEIGs correlated with overall survival by univariate
Cox proportional hazards model. Abbreviation: DEGs, differentially expressed genes; DEIGs, differentially expressed immune genes.
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.path.uab.edu/index.html) [25], GEPIA (http://gepia.cancer
-pku.cn/) [16], LinkedOmics (http://linkedomics.org/) [26],
cBioportal (https://www.cbioportal.org/) [27], TISIDB (ht
tp://cis.hku.hk/TISIDB/) [28], UCSC xena (https://xena.u
csc.edu/) [29], OncoLnc (http://www.oncolnc.org/) [30],
and PROGgeneV2 (http://www.progtools.net/gene/) [31]
were employed for the external validation for our scientific
hypothesis.

2.9 Statistical Analysis
Survival profiles were analyzed by Kaplan–Meier sur-

vival analysis. Additionally, correlation analysis were per-
formed using Pearson/Spearman correlation analysis. In
addition, Biomarkers with prognostic value were distin-
guished by Cox univariate and multivariate analyses. All
bioinformatic and statistical analyses were implemented
with R software (Version 3.6.1; Institute for Statistics and
Mathematics, Vienna, Austria; https://www.r-project.org).
A significance level of a two-sided p value less than 0.05
was adopted.

3. Results
3.1 Identification of DEIGs

The analysis procedure of this studywas demonstrated
in Fig. 1. Clinical information (Table 1) and RNA-seq
data of 209 BLCA samples were accessed through TCGA
database. Between bone-metastatic and non-metastatic
samples, 1090 DEGs were identified (Fig. 2A,B). Addi-
tionally, GO and KEGG enrichment analyses, visualized as
bubble plots, were performed to uncover that these DEGs
actively participated in pathways such as axonogenesis,
metal ion transmembrane transporter activity, and neuroac-
tive ligand-receptor interaction which might play a role
in the bone metastasis of BLCA patients (Supplementary
Fig. 1A,B). In addition, using differential analysis, 86 of
1090 DEGs were found in the list of 2498 immune genes,
which were defined as DEIGs and displayed in a heatmap
plot (Fig. 2C) and a volcano plot (Fig. 2D). Moreover, in
univariate Cox regression analysis, 31 DEIGs were exhib-
ited to have a significant association with overall survival,
in which 29 risk factors and 2 protective factors were iden-
tified in a forest plot (Fig. 2E). What is more, the differ-
ences of disease free survival between low and high ex-
pression of the 31 DEIGs were displayed in survival plots
(Supplementary Fig. 2).

3.2 Construction of a Multivariate Prognostic Model
Based on the 31 prognosis-related DEIGs, we con-

structed a multivariate prognostic prediction model. The
receiver operating characteristic (ROC) curve of the model
was exhibited in Fig. 3A, in which theAUCwas 0.793, indi-
cating a good predictive value. Sub-group survival analysis
was conducted according to the median risk score, display-
ing a significant difference (p = 1.04 × 10−7) between the
low risk and high risk groups (Fig. 3B). The clinical fea-

tures of risk score were represented by a risk curve (Fig. 3C)
and a scatter plot (Fig. 3D). The expression levels of the 31
DEIGs between low-risk and high-risk groups were demon-
strated by a heatmap (Fig. 3E). Together with four clini-
cal features (age, gender, M and stage), the risk score in
our model proved to be an independent prognostic predic-
tor by univariate (HR, 1.011; 95% CI, 1.005–1.017; p <

0.001) and multivariate (HR, 1.009; 95% CI, 1.004–1.015;
p< 0.001) Cox regression analyses (Fig. 4A,B). Moreover,
significant differences of censor (p < 0.001), grade (p <

0.05), T (p < 0.05), N (p < 0.001), and stage (p < 0.001)
between low risk and high risk groups in a 196 BLCA pa-
tients cohort from the TARGET database (Fig. 4C). Addi-
tionally, the distribution of different immune cell compo-
nents in low risk and high risk groups was demonstrated in
Supplementary Fig. 3A. What is more, the comparison of
different immune cell fractions (Supplementary Fig. 3B)
and ssGSEA scores (Supplementary Fig. 3C) between
low risk and high risk groupwere displayed, which revealed
that the risk score was correlated with expression of CD8 T
cells (p < 0.001), T cells follicular helper (p < 0.05), and
macrophages M0 (p < 0.01), along with immune functions
of NK cells (p < 0.001) and Th2 cells (p < 0.001).

3.3 Regulatory Relationship between TFs and DEIGs

8 differentially expressed TFs (|log2FC| >1 and FDR
< 0.05) were illustrated by a heatmap (Fig. 5A) and a
volcano plot (Fig. 5B). Additionally, a venn diagram was
utilized to identify 5 DEIGs which were KLRK1, IL9R,
CNTFR, RBP7, and TNFSF4 related to metastasis, stage,
and TF co-expression simultaneously (Fig. 5C). Aiming to
identify the regulatory relationships between the identified
TFs and key DEIGs, Pearson correlation analysis was uti-
lized and 30 regulatory relationships were identified with
|correlation coefficient|>0.300 and p value< 0.001. Even-
tually, EBF1 positively regulating RBP7was selected as the
most potential regulatory relationship (R = 0.677, p value
< 0.001). In addition, the significant differences of RBP7
expression between metastatic and non-metastatic BLCA
samples (p= 0.018), as well as among stage i, ii, iii, and iv of
BLCA samples (p = 0.018) were demonstrated (Fig. 5D,E).

3.4 Correlation Analysis of DEIGs, Immune
Cells/Pathways and KEGG Pathways

For the purpose of exploring the potential signaling
pathways related to bone metastasis and BLCA progno-
sis, CIBERSORT, ssGSEA, and GSVA algorithms were
utilized. The correlation between expression of immune
cells/pathways and RBP7 expression was analyzed by Pear-
son’s correlation (Supplementary Fig. 4A). Moreover,
5 immune cells/pathways were identified to be statisti-
cally significant (Supplementary Fig. 4B), including
macrophages M0 (R = 0.212, p value = 0.007), Type 2
helper T (Th2) cells (R = 0.23, p value < 0.001), parain-
flammation (R = –0.201, p value = 0.003), neutrophils (R
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Fig. 3. Construction of a multivariate prognostic model. (A) ROC curve revealed a good prediction reliability (AUC = 0.793). (B)
Kaplan-Meier survival curve showed a significant difference (p = 1.04 × 10−7) between low risk and high risk groups. (C) Risk curve
displayed the distribution of patients with increasing risk scores in the low risk and high risk groups. (D) Scatter plot represented the
distribution of survival time and survival status of low risk and high risk groups. (E) Heatmap demonstrated differential expression of
the 31 DEIGs between low risk and high risk groups. Abbreviations: DEIGs, differentially expressed immune genes.
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Fig. 4. Independent prognostic analysis. (A) Univariate Cox regression analysis with age, gender, M, stage, and risk score. (B)
Multivariate Cox regression analysis with age, gender, M, stage, and risk score. (C) Heatmap visualized differences of censor, age,
gender, grade, TNM stage, clinical stage, and bone metastasis status between low risk and high risk groups in 196 TARGET patients (*:
p < 0.05; ***: p < 0.001).

= –0.179, p value = 0.009) and MHC class I (R = –0.148, p
value = 0.032). What is more, 9 prognosis-related KEGG
pathways were characterized to be significantly correlated
with RBP7 expression (Supplementary Fig. 5A,B).

3.5 Identification of Potential KEGG Pathways
Using the GSEA, 23 metastasis-related KEGG path-

ways were identified. Thus, as illustrated in the Venn plot
(Fig. 6A), the oocyte meiosis pathway was identified to
be the key KEGG pathway both significant in GSEA and
GSVA co-expression (Fig. 6B). What is more, the correla-
tion relationship between the oocyte meiosis pathway and
RBP7 (R = 0.14, p = 0.042) was shown in Fig. 6C. Besides,
GSEA result of the oocyte meiosis was demonstrated by the
enrichment plot in Fig. 6D.

3.6 Construction of the Regulation Network
The regulatory network based on TFs, RBP7, immune

genes/pathways and KEGG pathways was constructed in
Fig. 7A. Taken together, we proposed that the EBF1-RBP7
axis (representing TF-immune gene relationship) played an
important role in bone metastasis of BLCA through Th2
cells and the oocyte meiosis pathway.

3.7 ATAC-seq Validation
ATAC-seq analysis was performed to explore the cor-

relation between EBF1 and RBP7. Open chromatin loci on
different chromosomes were displayed in Supplementary
Fig. 6A. Additionally, the venn pie and upsetplot showed
the distribution and intersection of different pick types such
as genic, intergenic, intron, and exon in Supplementary
Fig. 6B. Moreover, the distribution of binding loci rela-
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Fig. 5. Identification of differentially expressed TFs and co-expression analysis. (A) Heatmap revealed differentially expressed TFs
between metastatic and non-metastatic BLCA samples. (B) Volcano plot showed over-expressed and under-expressed TFs with p <

0.05 and |log2(fold change)| >1. (C) Venn diagram presented the overlapped number of DEIGs related to bone metastasis, stage and
co-expression. (D) Bee-swarm plot illustrated the differential RBP7 expression (p = 0.018) between metastatic and non-metastatic BLCA
samples. (E) Bee-swarm plot displayed the differential RBP7 expression (p = 0.018) among stages i, ii, iii, and iv of BLCA samples.
Abbreviations: TFs, transcription factors; DEIGs, differential expressed immune genes.

tive to TSS was visualized in Supplementary Fig. 6C.
Additionally, the correlation between EBF1 and RBP7 was
analyzed, which turned out that the expression of EBF1
was positively correlated with RBP7 (R = 0.71, p < 0.001)
(Fig. 7B). What is more, multiple binding peaks in BLCA
samples at promoters of EBF1 and RBP7, as well as vari-

ous regulatory elements binding areas in the introns and in
introns of neighboring genes were identified, which indi-
cated that these regions might function as potential regula-
tory elements on upstream of EBF1 and RBP7 sequences
(Fig. 7C,D).
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Fig. 6. Co-expression and correlation analysis of the KEGG oocyte meiosis pathway. (A) Venn plot for the KEGG pathway selected
using GSVA and GSEA algorithms. (B) GSEA analysis for the oocyte meiosis pathway. (C) RBP7 expression was positively correlated
with the oocyte meiosis pathway. (D) GSEA analysis showed a positive correlation between the oocyte meiosis pathway and RBP7
expression. Abbreviation: KEGG, Kyoto Encyclopedia of Genes and Genomes; GSVA, Gene-Set Variation Analysis; GSEA, Gene-Set
Enrichment Analysis.

3.8 ChIP-seq Validation

To further illustrate the co-expression patterns be-
tween EBF1 and RBP7, ENCODE and JASPAR algo-
rithms were utilized. In EBF1 ChIP-seq data of activated
GM12878, LCL and Mutul cell line (homo sapiens), bind-
ing peaks were all found in RBP7 sequences (Fig. 8A),
and 2 motifs of EBF1 were identified (Fig. 8B,C). Con-
sequently, the transcriptional regulation pattern between
EBF1 and RBP7 could be determined.

3.9 scRNA-seq Validation

Furthermore, in the scRNA-seq analysis of BLCA tu-
mor cell lines, 12 seurat clusters and bulk labels were shown

in t-SNE dimension reduction analysis (Fig. 9A). Addition-
ally, the top 5 marker genes of each cluster was demon-
strated in a heatmap (Fig. 9B). In addition, up- and down-
regulated marker genes of each cluster were revealed in a
point plot (Fig. 9C). More importantly, the distribution of
5 marker genes expression including EBF1, RBP7, CD24,
MKI67, and CD44 was illustrated in Fig. 9D, which indi-
cated that EBF1 and PBP7 had a co-expression relationship
in clusters 0, 1, 2, 3 and 4, and they might also be co-
expressed with tumor stemness and proliferation markers
CD24, MKI67, and CD44. What’r more, the distribution
of different stages in a cell cycle and relevant scores were
visualized in Fig. 9E, which suggested that BLCA cells with

9

https://www.imrpress.com


Fig. 7. Construction of the regulatory network. (A) Regulatory network based on TFs transcription factors, RBP7, the 5 filtered
immune cells/pathways, and 9 filtered KEGG pathways. (B) Correlation analysis between EBF1 and RBP7 (R = 0.71, p < 0.001).
(C,D) In ATAC-seq data of BLCA samples, multiple binding peaks were identified in EBF1 and RBP7 sequences. Abbreviations: TFs,
transcription factors; KEGG, Kyoto Encyclopedia of Genes and Genomes.

high EBF1 and RBP7 expression had a relative high frac-
tion of stages G2M and S cells, including clusters 2, 3 and 4.
Last but not least, the cell communication among different
clusters presented that clusters 1, 2 and 4 had the strongest
interaction with other clusters (Fig. 9F). Moreover, in the
scRNA-seq analysis of BLCA CD4 and CD8 T cell lines
(Supplementary Fig. 7), a co-expression relationship be-
tween EBF1 and RBP7 was also identified.

3.10 External Validation with Multiple Online Databases
In order to access the external validation of our scien-

tific hypothesis, multiple online databases were employed.

Three biomarkers of Th2 cells (IL1RL1, GATA3, and IL33)
and the top five genes related to the oocyte meiosis pathway
(ADCY3, ADCY5, ADCY9, MAPK3, and IGF1) were pre-
sented using the CellMarker and PathCards databases, re-
spectively. All the external validation results are summa-
rized in Table 2.

In UALCAN database validation (Supplementary
Figs. 8,9), high ADCY3 (Supplementary Fig. 8F)
and MAPK3 (Supplementary Fig. 8I) expression lev-
els were characterized as being significantly correlated
with worse BLCA patients’ prognosis. Additionally, ex-
pression levels of EBF1 (Supplementary Fig. 9A),
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Fig. 8. The results of ChIP-seq validation. In EBF1 ChIP-seq data of activated GM12878, LCL and Mutul cell lines (homo sapiens),
binding peaks were all found in RBP7 sequences (A). Two EBF1-binding motifs (B,C).
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Fig. 9. Single-cell RNA sequencing of BLCA tumor cell lines. (A) t-SNE dimension reduction analysis showed 12 seurat clusters
and bulk labels in BLCA tumor cell lines. (B) Top 5 marker genes of each cluster in a heatmap. (C) Marker genes of each cluster in
a point plot. (D) The distribution of 5 marker genes including EBF1 and RBP7. (E) UMAP dimension reduction analysis showing the
distribution of different stages in a cell cycle as G1, G2M and S, along with G2M.score and S.score in violin plot. (F) Ligand-receptors
plot among 12 clusters.
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RBP7 (Supplementary Fig. 9B), IL33 (Supplementary
Fig. 9E), ADCY5 (Supplementary Fig. 9G), ADCY9
(Supplementary Fig. 9H), and IGF1 (Supplementary
Fig. 9J) were identified to be elevated in normal tissues
compared to BLCA primary tumor tissues, while GATA3
expression was escalated in BLCA primary tumor tissues
(Supplementary Fig. 9D).

In GEPIA database validation (Supplementary Figs.
10,11), it was discovered that elevated EBF1, RBP7,
IL1RL1, IL33, ADCY3, ADCY5, ADCY9, MAPK3, and
IGF1 (Supplementary Fig. 10A–H,J) expression levels
were associated with unfavorable prognoses in BLCA pa-
tients, while over-expression of GATA3 (Supplementary
Fig. 10I) indicated better overall survival. In ad-
dition, ADCY3 (Supplementary Fig. 11A), IGF1
(Supplementary Fig. 11B), and EBF1 (Supplementary
Fig. 11G) expression were recognized to be posi-
tively correlated with RBP7 expression, while GATA3
(Supplementary Fig. 11I) expression was negatively cor-
related with RBP7 expression.

In LinkedOmics database validation (Supplementary
Figs. 12,13), it was shown that escalated expres-
sion of ADCY3 (Supplementary Fig. 12A), IGF1
(Supplementary Fig. 12B), ADCY9 (Supplementary
Fig. 12E), MAPK3 (Supplementary Fig. 12H), and
RBP7 (Supplementary Fig. 12J) were significantly cor-
related with poor BLCA patients’ prognosis, while over-
expressed GATA3 (Supplementary Fig. 12I) suggested
good prognosis. Moreover, ADCY3, IGF1, ADCY5,
IL1RL1, ADCY9, IL33, EBF1, MAPK3, and GATA3 ex-
pression (Supplementary Fig. 13A–H) were illustrated
to be positively correlated with RBP7 expression, while
GATA3 (Supplementary Fig. 13I) expression was nega-
tively correlated with RBP7 expression.

In TISIDB database validation (Supplementary
Fig. 14), up-regulation of ADCY3 (Supplementary
Fig. 14A), IGF1 (Supplementary Fig. 14B),
ADCY9 (Supplementary Fig. 14E), and MAPK3
(Supplementary Fig. 14H) were significantly linked
to worse BLCA patients’ prognosis, while up-regulated
GATA3 (Supplementary Fig. 14I) expression was
significantly related to better prognosis of BLCA patients.

In cBioportal database validation (Supplementary
Fig. 15), ADCY3, IGF1, ADCY5, IL1RL1, ADCY9, IL33,
EBF1, and MAPK3 (Supplementary Fig. 15A–H) ex-
pression were positively correlated with RBP7 expression,
while expression of GATA3 (Supplementary Fig. 15I)
was negatively associated with expression of RBP7.

In UCSC Xena database validation (Supplementary
Fig. 16), down-regulation of ADCY3, IGF1, ADCY5,
IL1RL1, ADCY9, IL33, and EBF1 (Supplementary
Fig. 16A–G) were significantly correlated with better
BLCA patients’ prognosis, while down-regulated GATA3
(Supplementary Fig. 16I) expression was significantly
correlated with better BLCA patients’ prognosis.

In OncoLnc database validation (Supplementary Fig.
17), lower expression of ADCY3, IGF1, ADCY5, IL1RL1,
ADCY9, IL33, EBF1, and RBP7 (Supplementary Fig.
17A–G,J) were revealed to be significantly correlated
with favorable prognosis of BLCA patients, while down-
regulated GATA3 (Supplementary Fig. 17I) expression
was significantly correlated with favorable prognosis of
BLCA patients.

In PROGgeneV2 database validation
(Supplementary Figs. 18,19), low-expressed IGF1
(Supplementary Fig. 18B), ADCY9 (Supplementary
Fig. 18E) and RBP7 (Supplementary Fig. 18J) were
demonstrated to be significantly associated with better
BLCA patients’ prognosis. What is more, down-regulated
combined gene expression of EBF1, RBP7, IL1RL1,
GATA3, IL33, ADCY3, ADCY5, ADCY9, MAPK3, and
IGF1 was significantly correlated with favorable prognosis
of BLCA patients (Supplementary Fig. 19).

4. Discussion
BLCA is a common cancer globally, requiring fur-

ther investigation since patients with metastatic lesions still
lack good prognosis and effective treatments. Around 25%
of new patients are diagnosed with either muscle invasive-
ness or metastasis [32]. Locally advanced and metastatic
cases usually respond poorly to current treatments and have
poorer survival outcomes [33,34]. High-throughput tech-
nologies have been widely used to explore the molecu-
lar mechanisms of BLCA. Several biomarkers with dif-
ferent clinical utilities have been identified, and some of
them are already capable of capturing prominent tumors and
their molecular biology characteristics [35]. Immune genes
have been identified as prognostic biomarkers in BLCA pa-
tients, which provide new opportunities to explore the bone-
metastatic mechanisms in BLCA [36].

In this study, we identified 31 DEIGs with prognos-
tic value in bone metastatic BLCA samples. Based on the
31 prognosis-related DEIGs, we developed and validated
a proportional hazards model with a high effectiveness in
Kaplan-Meier survival analysis (p < 0.01) and ROC curve
(AUC = 0.793). The Pearson/Spearman correlation analy-
sis was applied between DEIGs and TFs, in which EBF1
(TF) positively regulated RBP7 (DEIG) represented the
most significantly correlated relationship.

As a member of early B-cell factors (EBFs) family,
EBF1 was reported to play a pivotal role in the develop-
ment and differentiation of B cell [37]. Genetic alteration
in EBF1 was found in many B-lineage acute leukemia pa-
tients [38]. Recent research have revealed that several clini-
cal features of acute lymphoblastic leukemia, such as patho-
genesis, are related with the mutation of EBF1 [39]. Addi-
tionally, genomic loss of EBF1 has been reported in solid
tumors such as breast cancer and pancreatic cancer [39,40].
In this study, we found that EBF1 was low-expressed in
BLCA patients, and the difference in expression levels be-
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Table 2. Summary of multidimensional external validation results.
EBF1 RBP7 IL1RL1 GATA3 IL33 ADCY3 ADCY5 ADCY9 MAPK3 IGF1

UALCAN
OS: p = 0.300 OS: p = 0.490 OS: p = 0.130 OS: p = 0.096 OS: p = 0.240 OS: p = 0.021 OS: p = 0.920 OS: p = 0.062 OS: p = 0.047 OS: p = 0.092
Expression: p <

0.001
Expression: p

= 0.004
Expression: p =

0.889
Expression: p =

0.029
Expression: p <

0.001
Expression: p =

0.466
Expression: p <

0.001
Expression: p <

0.001
Expression: p =

0.618
Expression: p <

0.001

GEPIA
OS: p = 0.014 OS: p = 0.047 OS: p = 0.019 OS: p = 0.012 OS: p = 0.026 OS: p = 0.027 OS: p = 0.006 OS: p = 0.037 OS: p = 0.006 OS: p = 0.003
Correlation: R =
0.580, p < 0.001

Correlation: R >

–4.20e–4, p = 0.99
Correlation: R =
–0.150, p = 0.002

Correlation: R =
0.017, p = 0.730

Correlation: R =
0.130, p = 0.008

Correlation: R =
0.071, p = 0.140

Correlation: R =
0.054, p = 0.270

Correlation: R =
0.097, p = 0.046

Correlation: R =
0.340, p< 0.001

LinkedOmics
OS: p = 0.060 OS: p = 0.008 OS: p = 0.432 OS: p = 0.005 OS: p = 0.224 OS: p = 0.008 OS: p = 0.066 OS: p = 0.004 OS: p = 0.004 OS: p = 0.002
Correlation: R =
0.546, p < 0.001

Correlation: R =
0.108, p = 0.030

Correlation: R =
–0.170, p < 0.001

Correlation: R =
0.137, p = 0.006

Correlation: R =
0.224, p< 0.001

Correlation: R =
0.302, p< 0.001

Correlation: R =
0.265, p< 0.001

Correlation: R =
0.221, p< 0.001

Correlation: R =
0.421, p< 0.001

TISIDB OS: p = 0.111 OS: p = 0.086 OS: p = 0.173 OS: p = 0.026 OS: p = 0.720 OS: p = 0.006 OS: p = 0.071 OS: p = 0.028 OS: p = 0.017 OS: p = 0.012

cBioportal Correlation: R =
0.547, p < 0.001

Correlation: R =
0.110, p = 0.026

Correlation: R =
–0.172, p < 0.001

Correlation: R =
0.138, p = 0.005

Correlation: R =
0.224, p< 0.001

Correlation: R =
0.301, p< 0.001

Correlation: R =
0.266, p< 0.001

Correlation: R =
0.222, p< 0.001

Correlation: R =
0.421, p< 0.001

UCSC Xena OS: p = 0.007 OS: p = 0.086 OS: p < 0.001 OS: p = 0.013 OS: p = 0.004 OS: p = 0.004 OS: p = 0.019 OS: p = 0.020 OS: p = 0.173 OS: p = 0.003

OncoLnc OS: p = 0.014 OS: p = 0.031 OS: p = 0.115 OS: p = 0.023 OS: p = 0.017 OS: p = 0.038 OS: p = 0.020 OS: p = 0.032 OS: p = 0.043 OS: p < 0.001

PROGgeneV2 OS: p = 0.070 OS: p = 0.034 OS: p = 0.068 OS: p = 0.138 OS: p = 0.156 OS: p = 0.460 OS: p = 0.092 OS: p = 0.007 OS: p = 0.125 OS: p = 0.006
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tween normal and tumor tissue was statistically significant.
Besides, high-expressed EBF1 in BLCA predicts a worse
survival outlook. It is reasonable to believe that the dys-
function of EBF1 can clarify the mechanism of tumorigen-
esis and bone metastasis in BLCA to some extent.

It has been documented that gene-based signatures re-
lated to immunology have significant prognostic value in
patients diagnosed with papillary thyroid cancer and non-
squamous non–small cell lung cancer [41,42]. Retinol
binding protein 7 (RBP7), is a member of the cellular
retinol-binding protein (CRBP) family, whose members are
required for vitamin A stability and metabolism [43,44].
More importantly, RBP7 has been reported by several re-
cent studies to be a part of immune-related gene signatures
to indicate clinical significance and predict prognosis of
BLCA patients [36,45,46]. What is more, it was revealed
that RBP7 was a significant biomarker whose high expres-
sion indicated poor prognosis of colon cancer patients, as
well as being related to tumor invasion and epithelial mes-
enchymal transition [47]. Additionally, RBP7 was also dis-
covered to be an immune-related gene signature in gastric
cancer [48]. In this study, we used bioinformatics analysis
and identified that RBP7 was statistically correlated with
stage, bone metastasis, and overall survival in BLCA pa-
tients, which may provide us with a better understanding of
bone metastasis in BLCA. Although no previous study has
reported the relationship between EBF1 and RBP7, Pearson
correlation analysis demonstrated that they are significantly
correlated with each other (R = 0.677, p value < 0.001).
What ismore, the transcriptional regulation pattern between
EBF1 and RBP7 was further confirmed by ATAC-seq and
ChIP-esq analysis. Last but not least, utilizing scRNA-seq
analysis in BLCA tumor cell lines and T cell lines, EBF1
and RBP7 was revealed to be co-expressed and related to
tumor stemness and proliferation.

An increase in bladder cancer metastasis has been con-
firmed both in humans and mice by previous study [36].
Additionally, Th2 cells can also function as a promote fac-
tor in tumor growth [49]. In addition, aberrant high levels
of cytokines were found within the immune microenviron-
ment mediated by Th2 cells in several cancer types [50].
Moreover, one of the cytokines, IL-10, was correlated with
the low efficacy of immunotherapy of Bacillus Calmette
Guérin (BCG) in bladder cancer [51]. Employing CIBER-
SORT, ssGSEA and Pearson/Spearman correlation analy-
sis, Th2 cells were identified to be the immune cells which
were actively involved in bone metastasis in BLCA. What
is more, the biomarkers of Th2 cells, including IL1RL1,
GATA3, and IL33 were also tested for the prognostic val-
ues by multiple online databases.

For further exploration of the mechanism of bone
metastasis in BLCA, we performed GSVA and GSEA
to find metastasis-related KEGG pathways, in which the
oocyte meiosis pathway was identified. The oocyte meio-
sis pathway was also significantly correlated with RBP7

expression using Pearson/Spearman correlation analysis.
Previous studies have demonstrated that the oocyte meio-
sis pathway might be related to BLCA development and
bone metastasis [52,53]. Additionally, multiple online
databases validated that biomarkers of the oocyte meiosis
pathway, including ADCY3, ADCY5, ADCY9, MAPK3
and IGF1, were significantly correlated with bone metasta-
sis and prognosis in BLCApatients. However, only in silico
analysis was performed in this study, further validation of
our hypothesis demands supplementary experiments. Un-
fortunately, for lack of corresponding clinical samples and
with limited experimental conditions, we couldn’t perform
supplementary experiments to further validate our hypoth-
esis immediately. Nevertheless, multi-omics data analysis
was utilized to make up for it. More importantly, we are
now working with several clinical departments to collect
corresponding clinical samples, and it is believed that rele-
vant experiments for the validation of our findings will soon
be performed in our follow-up research.

5. Conclusions
Taken together, we applied an integrated bioinformat-

ics analysis to identify DEIGs and related pathways in-
volved in bone metastases of BLCA and improved our un-
derstanding of the molecular mechanisms. We proposed
that the EBF1-RBP7 relationship has potential importance
in bone metastatic BLCA through Th2 cells and the oocyte
meiosis pathway.

Availability of Data and Materials
The datasets generated and/or analysed during the cur-

rent study are available in the TCGA portal (https://portal.g
dc.cancer.gov).

Author Contributions
Conception/design—YL, MF, SX, PH, MZ, XZ, HZ,

JunZ, LD, RH, JieZ, ZH. Collection and/orassembly of
data—YL, MF, SX, PH, MZ, XZ, ML, WM, DH, RH,
JieZ, ZH. Data analysis and interpretation—YL, MF, SX,
HZ, JunZ, LD, ML, WM, DH, RH, JieZ, ZH. Manuscript
writing—YL, MF, SX, XZ, HZ, JunZ, ML, WM, DH, RH,
JieZ, ZH. Final approval of manuscript—YL, MF, SX, PH,
MZ, LD, ML, WM, DH, RH, JieZ, ZH. All authors have
participated sufficiently in the work and agreed to be ac-
countable for all aspects of the work.

Ethics Approval and Consent to Participate
The study was approved by the Ethics Committee

of First Affiliated Hospital of Zhengzhou University (No.
2021-KY-190e).

Acknowledgment
We appreciate the The Cancer Genome Atlas (TCGA)

team for providing an open access resource for our study.

15

https://portal.gdc.cancer.gov
https://portal.gdc.cancer.gov
https://www.imrpress.com


Funding
This study was supported in part by the Shang-

hai Rising-Star Program (Sailing Special Program) (No.
23YF1458400); the Shanghai Municipal Health Commis-
sion (No.201940306); Henan medical science and tech-
nology research project (No. 201602031); Key project
of provincial and ministerial co-construction of Henan
Medical Science and Technology (No. SBGJ202002031).
The funders had no role in study design, data collection
and analysis, decision to publish, or preparation of the
manuscript.

Conflict of Interest
The authors declare no conflict of interest.

Supplementary Material
Supplementary material associated with this article

can be found, in the online version, at https://doi.org/10.
31083/j.fbl2808189.

References
[1] Shi JW, Huang Y. Screen and classify genes on bladder cancer

associated with metastasis. Gene Reports. 2019; 16: 100430.
[2] Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F, et al.

Cancer statistics in China, 2015. CA: a Cancer Journal for Clin-
icians. 2016; 66: 115–132.

[3] Zeng S, Yu X, Ma C, Song R, Zhang Z, Zi X, et al. Transcrip-
tome sequencing identifies ANLN as a promising prognostic
biomarker in bladder urothelial carcinoma. Scientific Reports.
2017; 7: 3151.

[4] Tan TZ, Rouanne M, Tan KT, Huang RYJ, Thiery JP. Molecular
Subtypes of Urothelial Bladder Cancer: Results from a Meta-
cohort Analysis of 2411 Tumors. European Urology. 2019; 75:
423–432.

[5] Alfred Witjes J, Lebret T, Compérat EM, Cowan NC, De Santis
M, Bruins HM, et al. Updated 2016 EAUGuidelines onMuscle-
invasive and Metastatic Bladder Cancer. European Urology.
2017; 71: 462–475.

[6] WuK, Fan J, Zhang L, Ning Z, Zeng J, Zhou J, et al. PI3K/Akt to
GSK3β/β-catenin signaling cascade coordinates cell coloniza-
tion for bladder cancer bonemetastasis through regulating ZEB1
transcription. Cellular Signalling. 2012; 24: 2273–2282.

[7] Macedo F, Ladeira K, Pinho F, Saraiva N, Bonito N, Pinto L, et
al. Bone Metastases: An Overview. Oncology Reviews. 2017;
11: 321.

[8] He RQ, Huang ZG, Li TY,Wei YP, Chen G, Lin XG, et al. RNA-
Sequencing Data Reveal a Prognostic Four-lncRNA-Based Risk
Score for Bladder Urothelial Carcinoma: An in Silico Update.
Cellular Physiology and Biochemistry: International Journal of
Experimental Cellular Physiology, Biochemistry, and Pharma-
cology. 2018; 50: 1474–1495.

[9] Avgeris M, Tsilimantou A, Levis PK, Rampias T, Papadimitriou
MA, Panoutsopoulou K, et al. Unraveling UCA1 lncRNA prog-
nostic utility in urothelial bladder cancer. Carcinogenesis. 2019;
40: 965–974.

[10] Bao Z, Zhang W, Dong D. A potential prognostic lncRNA sig-
nature for predicting survival in patients with bladder urothelial
carcinoma. Oncotarget. 2017; 8: 10485–10497.

[11] Cao R, Yuan L, Ma B, Wang G, Qiu W, Tian Y. An EMT-related
gene signature for the prognosis of human bladder cancer. Jour-
nal of Cellular and Molecular Medicine. 2020; 24: 605–617.

[12] Lin P, Wen DY, Chen L, Li X, Li SH, Yan HB, et al. A radio-
genomics signature for predicting the clinical outcome of blad-
der urothelial carcinoma. European Radiology. 2020; 30: 547–
557.

[13] Mei S, Meyer CA, Zheng R, Qin Q, Wu Q, Jiang P, et al.
Cistrome Cancer: AWeb Resource for Integrative Gene Regula-
tion Modeling in Cancer. Cancer Research. 2017; 77: e19–e22.

[14] Bhattacharya S, Dunn P, Thomas CG, Smith B, Schaefer H,
Chen J, et al. ImmPort, toward repurposing of open access im-
munological assay data for translational and clinical research.
Scientific Data. 2018; 5: 180015.

[15] Liberzon A, Birger C, Thorvaldsdóttir H, Ghandi M, Mesirov
JP, Tamayo P. The Molecular Signatures Database (MSigDB)
hallmark gene set collection. Cell Systems. 2015; 1: 417–425.

[16] Tang Z, Li C, Kang B, Gao G, Li C, Zhang Z. GEPIA: a web
server for cancer and normal gene expression profiling and inter-
active analyses. Nucleic Acids Research. 2017; 45: W98–W102.

[17] Chen H, Boutros PC. VennDiagram: a package for the genera-
tion of highly-customizable Venn and Euler diagrams in R. BMC
Bioinformatics. 2011; 12: 35.

[18] Shannon P,Markiel A, Ozier O, Baliga NS,Wang JT, Ramage D,
et al. Cytoscape: a software environment for integrated models
of biomolecular interaction networks. Genome Research. 2003;
13: 2498–2504.

[19] Gertz J, Savic D, Varley KE, Partridge EC, Safi A, Jain P, et al.
Distinct properties of cell-type-specific and shared transcription
factor binding sites. Molecular Cell. 2013; 52: 25–36.

[20] Pope BD, Ryba T, Dileep V, Yue F, WuW, Denas O, et al. Topo-
logically associating domains are stable units of replication-
timing regulation. Nature. 2014; 515: 402–405.

[21] ENCODE Project Consortium. A user’s guide to the encyclo-
pedia of DNA elements (ENCODE). PLoS Biology. 2011; 9:
e1001046.

[22] Khan A, Fornes O, Stigliani A, GheorgheM, Castro-Mondragon
JA, van der Lee R, et al. JASPAR 2018: update of the open-
access database of transcription factor binding profiles and its
web framework. Nucleic Acids Research. 2018; 46: D260–
D266.

[23] Zhang X, Lan Y, Xu J, Quan F, Zhao E, Deng C, et al. Cell-
Marker: a manually curated resource of cell markers in human
and mouse. Nucleic Acids Research. 2019; 47: D721–D728.

[24] Belinky F, Nativ N, Stelzer G, Zimmerman S, Iny Stein T, Safran
M, et al. PathCards: multi-source consolidation of human bio-
logical pathways. Database. 2015; 2015: bav006.

[25] Chandrashekar DS, Bashel B, Balasubramanya SAH, Creighton
CJ, Ponce-Rodriguez I, Chakravarthi BVSK, et al. UALCAN:
A Portal for Facilitating Tumor Subgroup Gene Expression and
Survival Analyses. Neoplasia. 2017; 19: 649–658.

[26] Vasaikar SV, Straub P, Wang J, Zhang B. LinkedOmics: analyz-
ing multi-omics data within and across 32 cancer types. Nucleic
Acids Research. 2018; 46: D956–D963.

[27] Ru B, Wong CN, Tong Y, Zhong JY, Zhong SSW, Wu WC, et
al. TISIDB: an integrated repository portal for tumor-immune
system interactions. Bioinformatics. 2019; 35: 4200–4202.

[28] Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA,
et al. The cBio cancer genomics portal: an open platform for
exploring multidimensional cancer genomics data. Cancer Dis-
covery. 2012; 2: 401–404.

[29] GoldmanMJ, Craft B, HastieM, RepečkaK,McDade F, Kamath
A, et al. Visualizing and interpreting cancer genomics data via
the Xena platform. Nature Biotechnology. 2020; 38: 675–678.

[30] Anaya J. OncoLnc: linking TCGA survival data to mRNAs,
miRNAs, and lncRNAs. PeerJ Computer Science. 2016; 2: e67.

[31] Goswami CP, Nakshatri H. PROGgeneV2: enhancements on the
existing database. BMC Cancer. 2014; 14: 970.

[32] Chen Z, He S, Zhan Y, He A, Fang D, Gong Y, et al. TGF-β-

16

https://doi.org/10.31083/j.fbl2808189
https://doi.org/10.31083/j.fbl2808189
https://www.imrpress.com


induced transgelin promotes bladder cancer metastasis by reg-
ulating epithelial-mesenchymal transition and invadopodia for-
mation. EBioMedicine. 2019; 47: 208–220.

[33] von der Maase H, Sengelov L, Roberts JT, Ricci S, Dogliotti
L, Oliver T, et al. Long-term survival results of a randomized
trial comparing gemcitabine plus cisplatin, with methotrexate,
vinblastine, doxorubicin, plus cisplatin in patients with bladder
cancer. Journal of Clinical Oncology. 2005; 23: 4602–4608.

[34] von der Maase H, Hansen SW, Roberts JT, Dogliotti L, Oliver T,
MooreMJ, et al. Gemcitabine and cisplatin versus methotrexate,
vinblastine, doxorubicin, and cisplatin in advanced or metastatic
bladder cancer: results of a large, randomized, multinational,
multicenter, phase III study. Journal of Clinical Oncology. 2000;
18: 3068–3077.

[35] Vlachostergios PJ, Faltas BM. The molecular limitations of
biomarker research in bladder cancer. World Journal of Urology.
2019; 37: 837–848.

[36] Qiu H, Hu X, He C, Yu B, Li Y, Li J. Identification and Valida-
tion of an Individualized Prognostic Signature of Bladder Cancer
Based on Seven Immune Related Genes. Frontiers in Genetics.
2020; 11: 12.

[37] Liao D. Emerging roles of the EBF family of transcription fac-
tors in tumor suppression. Molecular Cancer Research: MCR.
2009; 7: 1893–1901.

[38] Somasundaram R, Prasad MAJ, Ungerbäck J, Sigvardsson M.
Transcription factor networks in B-cell differentiation link de-
velopment to acute lymphoid leukemia. Blood. 2015; 126: 144–
152.

[39] Jones S, Zhang X, Parsons DW, Lin JCH, Leary RJ, Angenendt
P, et al. Core signaling pathways in human pancreatic cancers
revealed by global genomic analyses. Science. 2008; 321: 1801–
1806.

[40] Neve RM, Chin K, Fridlyand J, Yeh J, Baehner FL, Fevr T, et al.
A collection of breast cancer cell lines for the study of function-
ally distinct cancer subtypes. Cancer Cell. 2006; 10: 515–527.

[41] Lin P, Guo YN, Shi L, Li XJ, Yang H, He Y, et al. Development
of a prognostic index based on an immunogenomic landscape
analysis of papillary thyroid cancer. Aging. 2019; 11: 480–500.

[42] Li B, Cui Y, Diehn M, Li R. Development and Validation of
an Individualized Immune Prognostic Signature in Early-Stage
Nonsquamous Non-Small Cell Lung Cancer. JAMA Oncology.

2017; 3: 1529–1537.
[43] Napoli JL. Cellular retinoid binding-proteins, CRBP, CRABP,

FABP5: Effects on retinoid metabolism, function and related
diseases. Pharmacology & Therapeutics. 2017; 173: 19–33.

[44] Hu C, Keen HL, Lu KT, Liu X, Wu J, Davis DR, et al. Retinol-
binding protein 7 is an endothelium-specific PPARγ cofactor
mediating an antioxidant response through adiponectin. JCI In-
sight. 2017; 2: e91738.

[45] Liu L, Hu J, Wang Y, Sun T, Zhou X, Li X, et al. Establishment
of a novel risk score model by comprehensively analyzing the
immunogen database of bladder cancer to indicate clinical sig-
nificance and predict prognosis. Aging. 2020; 12: 11967–11989.

[46] Jin K, Qiu S, Jin D, Zhou X, Zheng X, Li J, et al. Develop-
ment of prognostic signature based on immune-related genes
in muscle-invasive bladder cancer: bioinformatics analysis of
TCGA database. Aging. 2021; 13: 1859–1871.

[47] Elmasry M, Brandl L, Engel J, Jung A, Kirchner T, Horst D.
RBP7 is a clinically prognostic biomarker and linked to tumor
invasion and EMT in colon cancer. Journal of Cancer. 2019; 10:
4883–4891.

[48] Li M, Cao W, Huang B, Zhu Z, Chen Y, Zhang J, et al. Es-
tablishment and Analysis of an Individualized Immune-Related
Gene Signature for the Prognosis of Gastric Cancer. Frontiers in
Surgery. 2022; 9: 829237.

[49] Ellyard JI, Simson L, Parish CR. Th2-mediated anti-tumour im-
munity: friend or foe? Tissue Antigens. 2007; 70: 1–11.

[50] Clerici M, Shearer GM, Clerici E. Cytokine dysregulation in in-
vasive cervical carcinoma and other human neoplasias: time to
consider the TH1/TH2 paradigm. Journal of the National Cancer
Institute. 1998; 90: 261–263.

[51] Krajewski W, Kołodziej A, Dembowski J, Zdrojowy R. Genetic
and immunologic determinants of intravesical BCG therapy in
non-muscle-invasive urothelial bladder cancer. Postepy Higieny
i Medycyny Doswiadczalnej (Online). 2014; 68: 291–300.

[52] Zhang DQ, Zhou CK, Chen SZ, Yang Y, Shi BK. Identification
of hub genes and pathways associated with bladder cancer based
on co-expression network analysis. Oncology Letters. 2017; 14:
1115–1122.

[53] Li S, Liu X, Liu T, Meng X, Yin X, Fang C, et al. Identification
of Biomarkers Correlated with the TNM Staging and Overall
Survival of Patients with Bladder Cancer. Frontiers in Physiol-
ogy. 2017; 8: 947.

17

https://www.imrpress.com

	1. Introduction
	2. Materials and Methods
	2.1 Data Sources
	2.2 Differential Gene Expression and Univariate Cox Regression Analyses 
	2.3 Construction of a Proportional Hazards Model 
	2.4 Differential TFs Expression and Correlation Analyses
	2.5 Immune Cells/Pathways and KEGG Pathways Analyses
	2.6 Construction of the Regulatory Network
	2.7 ATAC-seq, ChIP-seq and scRNA-seq Validation
	2.8 Online Databases Validation
	2.9 Statistical Analysis

	3. Results
	3.1 Identification of DEIGs
	3.2 Construction of a Multivariate Prognostic Model
	3.3 Regulatory Relationship between TFs and DEIGs 
	3.4 Correlation Analysis of DEIGs, Immune Cells/Pathways and KEGG Pathways 
	3.5 Identification of Potential KEGG Pathways
	3.6 Construction of the Regulation Network
	3.7 ATAC-seq Validation
	3.8 ChIP-seq Validation
	3.9 scRNA-seq Validation
	3.10 External Validation with Multiple Online Databases

	4. Discussion
	5. Conclusions
	Availability of Data and Materials
	Author Contributions
	Ethics Approval and Consent to Participate
	Acknowledgment
	Funding
	Conflict of Interest
	Supplementary Material

