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Abstract

Similar to other polypeptides and electrolytes, proteins undergo phase transitions, obeying physicochemical laws. They can undergo
liquid-to-gel and liquid-to-liquid phase transitions. Intrinsically disordered proteins are particularly susceptible to phase separation.
After a general introduction, the principles of in vitro studies of protein folding, aggregation, and condensation are described. Numerous
recent and older studies have confirmed that the process of liquid-liquid phase separation (LLPS) leads to various condensed bodies
in cells, which is one way cells manage stress. We review what is known about protein aggregation and condensation in the cell,
notwithstanding the protective and pathological roles of protein aggregates. This includes membrane-less organelles and cytotoxicity of
the prefibrillar oligomers of amyloid-forming proteins. We then describe and evaluate bioinformatic (in silico) methods for predicting
protein aggregation-prone regions of proteins that form amyloids, prions, and condensates.

Keywords: neurodegeneration; protein aggregation; protein condensation; LLPS; membrane-less organelles; amyloid; intrinsically dis-
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1. Introduction
There are at least three states of proteins at the end-

point of folding, unfolding, and misfolding equilibria: the
native, the unfolded, and the amyloid state. A fourth state
is sometimes quoted as a metastable molten globule inter-
mediate. However, looking at the kinetics of unfolding by
several probes, even more variants of the molten-globule
intermediate are detectable [1].

Protein folding, oligomerization, misfolding, and ag-
gregation are all determined by the primary structure, the
protein sequence. However, the environment and protein
concentration also play an important role and influence the
final folding, the kinetics of folding, and the aggregation
pathway.

In general, proteins are soluble, but under some con-
ditions, they can undergo phase separation (liquid-liquid
and liquid-gel transitions), similar to other polypeptides and
electrolytes. Intrinsically disordered proteins (IDPs) are es-
pecially prone to phase separation. Together or with other
biomolecules, such as RNA, they form biomolecular con-
densates that are important for proteostasis, compartmen-
talization, and regulation of the cell [2].

The aim of this review is to update and summarize the
current research on the condensed and aggregated states of
proteins. We consider protein aggregation a normal, albeit
transient, physiological process based on physicochemical
laws. The forces at play in the processes of protein fold-
ing, misfolding, and aggregation are described at the begin-

ning of this review. We describe different forms of protein
aggregates and condensates as observed in cells. We then
highlight the membrane-less organelles and the cytotoxicity
of the prefibrillar oligomers of amyloid-forming proteins.
Finally, we review and evaluate numerous in silico predic-
tion programs for predicting the propensity of proteins to
either condense or aggregate. Prions are discussed in a spe-
cial subsection of amyloids.

2. In Vitro Studies of the Physicochemical
Backgrounds of Amyloid Formation and
Reversible Condensation of Proteins

Protein folding is a phenomenon of physical chem-
istry. The path that a protein takes to build a unique
three-dimensional structure starting from its amino-acid se-
quence, i.e., the primary structure, is pre-defined by phys-
ical forces, such as hydrogen bonds, electrostatic, dipole-
dipole, Van der Waals, and hydrophobic effect. Enthalpy-
entropy compensation occurs when protein side chains fix
and stabilize the structure. Proteins fold by following spe-
cific routes, not randomly. If a protein could attempt all
possible conformations, it would take a vast, unimaginable
amount of time (Levinthal’s paradox [3]). Some proteins
initially undergo a hydrophobic collapse, in which a hy-
drophobic core forms and others form some mobile ele-
ments of the secondary structure, following the framework
model (leading to folding intermediates of the pre-molten
globule and molten globule type and wet and dry molten
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globules) [4–7]. The structure of the molten globule has
long remained elusive, yet recent NMR studies are more
decisive [8]. During protein folding, more specific inter-
actions occur between the side chains. We studied an in-
teresting example of human stefins A and B folding [9,10].
We concluded that a mixed mechanism spanning between
a secondary structure governed framework model and hy-
drophobic collapse model with a non-native α-helix applies
in this case [10].

A large number of proteins in the human proteome,
nearly 40% [11], remain intrinsically disordered (IDPs)
[12], also termed natively unfolded proteins [13,14]. Their
folding is not dictated by hydrophobic collapse, but rather,
it is directed by another molecular surface, serving as a
template (template-like folding [11]). This type of protein
forms a secondary structure along with binding [15]. Their
interaction partners can be multiple and different IDPs can
bind to a chosen partner [16].

Similar physical forces, as in folding and template-
assisted folding, apply to protein-protein intermolecular in-
teractions, leading to oligomerization and aggregation [17].
A general scheme of protein deposition (aggregation) and
condensation pathways is shown in Fig. 1 (Ref. [18]) (as
adapted from Vendruscolo, M. and Fuxreiter, M., 2022).
Specifically, linear colloidal aggregation describes the ini-
tial events in the deposition pathway of some proteins, such
as yeast Sup35, that lead to protofibrils appearing as a
string of beads [19]. The mechanism of protofibril elon-
gation is likely due to a dipole-dipole interaction between
these beads [19], also referred to as “critical oligomers”
[20]. However, the formation of amyloid fibrils is not a
simple polymerization reaction but often involves nucle-
ation and off-pathway aggregation [21,22]. This leads to
a lag phase during which disordered intermediates refold
into non-native secondary structures (β-strands), associated
with the formation of oligomers [23]. Native or amyloid
states can sometimes form from folding intermediates with
extended (non-native)α-helices in the process ofα-β struc-
ture transition [24,25]. Amyloid fibrils resulting from the
reaction of nucleated polymerization are highly ordered and
rigid protein states, held together by a network of backbone
hydrogen bonds and by the stacking of aromatic rings [26–
28] and can be of different morphologies [29].

The mechanisms of amyloid fibril formation have
been extensively studied in vitro for both pathological and
non-pathological proteins. One of the authors wrote an
overview of the mechanisms of amyloid fibril formation in
2002 [30]. Others have also discussed the nucleated poly-
merization reaction with off-pathway intermediates [21],
which has been shown for our model protein, human stefin
B [22]. Since then, many other reviews have appeared.
Among them is a comprehensive review by Chiti and Dob-
son [31], in which the authors describe, among other ad-
vances, the structures of amyloid fibrils and prefibrillar
oligomers and explain the mechanisms of amyloid transfor-

Fig. 1. Overview of the condensation and the deposition path-
ways for amyloid formation. Along the deposition pathway, pro-
teins move from the native state to the amyloid state through in-
creasingly ordered oligomer aggregates. Some of these oligomers
are highly cytotoxic. Along the condensation pathway, proteins
convert from the native state to the amyloid state through a dense
liquid state (the droplet state). For many proteins under cellu-
lar conditions, the native and droplet states are metastable. The
droplet state is functional for specific proteins, and it is stabilized
by extrinsic factors, such as RNA and post-translational modifi-
cations (adapted from Vendruscolo, M. and Fuxreiter, M., 2022)
[18]. This image is reproduced under the Creative Commons li-
cense: https://creativecommons.org/licenses/by/4.0/.

mation. They also discuss how cells combat the aberrations
caused by protein aggregates. More reviews have recently
been published [32–34].

The transition between the native and amyloid states
of proteins can proceed via oligomeric intermediates as de-
scribed above or via a condensation pathway involving liq-
uid droplet intermediates generated through liquid-liquid
phase separation [35]. Multivalent weak interactions be-
tween peptides are the driving force of phase separation.
Proteins that undergo phase separation promote biomolec-
ular condensate formation, which has a significant role in
many biological processes. Further, these proteins can be
divided into two categories according to their underlying
driving force when forming condensates: self-assembling
proteins (interacting with the same protein species and
whose interactions are mediated mainly by intrinsically dis-
ordered regions) and partner-dependent proteins (interact-
ing with different biomolecule species and whose interac-
tions are mediated by multiple modular domains or mo-
tifs). Condensate proteome validation revealed that partner-
dependent proteins are widespread in cells [36].

Similar to the amyloid transformation, the phase sepa-
ration behavior of a protein is determined by general prop-
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erties contained in the amino acid sequence and by envi-
ronmental conditions, such as temperature and protein con-
centration, as well as post-translational modifications [37].
The IDPs are more prone to phase separation, even though
condensation might be another generic property of proteins
[38]. Cited from Vazquez et al. [38]: “… any sequence or
conformation is susceptible to phase separation, provided
that the appropriate concentration, temperature, and solvent
condition are reached”.

The sequences of several RNA-binding proteins com-
prise prion-like LCDs (low complexity domains), which are
enriched in uncharged polar amino acids. Normally, these
sequences are at least 60 residues long, are predicted to
be intrinsically disordered, and enable the replication of a
particular protein conformation from one copy to another
(a template-like mechanism). LCDs are enriched in glu-
tamine and asparagine amino acid residues. Based on se-
quence prediction models, the disease-linked RNA-binding
proteins usually have the greatest tendency to aggregate.

Although IDPs, including prions, are thought to be
more prone to undergo LLPS, structured, globular proteins
may also do so under appropriate solution conditions [39].
External factors such as temperature, pH, ionic strength,
shear stress, and protein concentration strongly affect the
condensation of proteins. The molecular interactions that
stabilize condensates at high ionic strength are mainly aro-
matic, hydrophobic, and nonionic interactions, whereas
electrostatic interactions play a major role at lower ionic
strengths [40]. Depending on the pH and ionic strength of
the solution and at sufficiently high protein concentrations,
the aggregates eventually form a gel-like network.

Of interest, proteins from extremophiles show an in-
teresting shift towards intrinsic disorder [41] and, conse-
quently, a preference for condensation over amyloid fibril-
lation.

3. Protein Aggregates and Condensates in the
Cell

Protein misfolding in the cell occurs either in the cy-
toplasm or in the nucleus due to internal and external stres-
sors, such as heat shock or oxidative stress. Misfolded
proteins are prone to aggregate and are sensed by cellu-
lar defense mechanisms, such as unfolded protein response
(UPR) in the endoplasmic reticulum or two degradationma-
chineries in the cytosol. Pathological mutants, which are
prone to aggregate, can exacerbate or even cause certain
amyloidoses, among them neurodegenerative diseases.

Two types of protein aggregate deposits in eukaryotic
(yeast) cells were previously reported, already in 2008: the
IPOD and JUNQ [42,43]. The juxtanuclear inclusions har-
bor misfolded, still soluble proteins, which can exchange
with the cytoplasmic proteins; therefore, this compartment
is called “juxtanuclear protein quality control” (JUNQ).
The perivacuolar peripheral inclusion contains aggregated
and insoluble proteins, hence, the term “insoluble protein

deposit” (IPOD). Both compartments have certain features
in common, such as the binding of the chaperone Hsp 104
and probably also Hsp 70. Only JUNQ is connected with
proteasome subunits, whereas IPOD is close to autophago-
somes; therefore, it is likely that the insoluble proteins get
degraded by autophagy. By using electron microscopy, it
has been demonstrated that JUNQ has an intranuclear local-
ization adjacent to the nucleolus [44], and it was redefined
as the INQ (intranuclear quality control compartment). The
INQ serves as a deposit for both misfolded nuclear and cy-
tosolic proteins [45]. All these aggregates are sequestered
to their final location by microtubular transport, and the
composition of inclusions is regulated by other regulatory
proteins [42].

A third kind of inclusion exists in mammalian cells,
similar to JUNQ – the aggresomes [46]. They contain
fibrillar aggregates of amyloid-forming proteins, which
get sequestered into the perinuclear space by the micro-
tubule-organizing center (MTOC). The aggresomes are en-
wrapped by a shield of intermediate filament protein vi-
mentin [47]. All the described regulated protein aggregates
are thought to exert cytoprotective functions, which are vi-
tal for cell integrity and survival [45]. The escaping soluble
oligomers may bind to plasma and intracellular membranes
and cause more damage by perforating them, resembling
pore-forming toxins [48–50]. (See section 3.2)

Apart from protein aggregates, which contain mainly
one type of protein molecule in an altered conformation,
usually rich in β-structure and ending as amyloid fibrillar
deposits, smaller protein puncta, i.e., condensed bodies, ap-
pear transiently upon cellular stress [51]. Albeit condensa-
tion of biomolecules has been known for some time, many
new studies have appeared recently on the physicochemi-
cal process of liquid-liquid phase separation (LLPS), by
which condensates form from proteins and RNAs.

One of the key differences between protein aggregates
and condensates is their reversibility. Protein condensates
in distinction to more toxic forms of protein aggregates are
at least initially reversible, as Shin et al. [52] have shown.
When tagged with a light-sensitive tag, the proteins became
condensed and later dissolved when the light was turned
off. The gels were initially reversible, but over time and
using a high-intensity light or high protein concentration,
irreversible clumps formed [52], similar to those seen in
neurodegenerative diseases.

Another key difference between protein condensates
and aggregates is the specificity of the molecular interac-
tions playing a major role. Protein aggregates of amyloid-
type tend to be formed by specific interactions. The β-
sheets are zipped together by a backbone of hydrogen bonds
and π-π bonds between the side-chain phenylalanine rings,
as well as by salt bridges between charge pairs (e.g., glu-
tamic acid–lysine) [53]. In contrast, protein condensates
are formed by more “general interactions”, including elec-
trostatic, hydrophobic, and π-π interactions, that allow dy-
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namic assembly and disassembly. These weak interactions
are less specific and involve a wide range of biomolecules,
such as RNA and other proteins, which may contribute to
their dynamic and diverse structures.

3.1 Membrane-Less Organelles

The intracellular biomolecular condensates, i.e., the
membrane-less organelles, are important for cellular com-
partmentalization and regulation. They are considered pro-
tective [54] because they sequester aggregation-prone pro-
teins and prevent amyloid formation, despite the local in-
crease in protein concentration. They can serve as reser-
voirs of peptide hormones and other proteins that are re-
leased when needed.

In recent years, membrane-less organelles have been
discovered a-new. Such bodies in the cytoplasm and the
nucleus have been known for a long time, yet their func-
tion and mechanism of formation remained unknown. Un-
der different forms of cellular stress, proteins and RNAs
undergo reversible transitions from the liquid to the gel
state, forming biomolecular condensates. Different con-
densates can be found from bacteria to eukaryotic andmam-
malian cells [55]. In eukaryotic cells, such condensed bod-
ies exist both in the nucleus and in the cytoplasm. The
two best-studied stress assemblies in the cytoplasm are the
RNA-based processing bodies (Pbodies) and stress gran-
ules (SGs) that form in response to oxidative, endoplas-
mic reticulum (ER), osmotic and nutrient stress, UV light,
etc. Stress granules (SGs) are membrane-less organelles
formed in the cytoplasm by liquid-liquid phase separation
(LLPS) of translationally-stalled mRNA and RNA-binding
proteins, such as TDP-43. P-bodies are also composed
of translationally-stalled mRNAs and proteins involved in
translation repression andmRNA turnover (see, Fig. 2 (Ref.
[56]) for a simplified view of the biomolecular condensates
in a human cell). Apart from SGs and PBs, the RNA trans-
lation initiation complex eIF2 also forms condensed bodies
in the cytoplasm [57]. Furthermore, nutrient stress (star-
vation) leads to the formation of a variety of cytoplasmic
stress assemblies, some of which do not contain RNA, such
as proteasome storage granules, metabolic enzyme bodies,
and Sec bodies [57]. Sec bodies are formed by Sec16, a
large scaffold protein important for secretion fromER to the
Golgi. The good news is that all these entities are transient–
reversible and, in most cases, pro-survival [57].

Reversible protein aggregation also occurs within the
nuclei of stress-treated cells (for a schematic view, see
Fig. 2). For example, mammalian cells protect thermosen-
sitive nuclear proteins by their condensation into amyloid
bodies (ABs). ABs assemble through the rapid accumula-
tion of proteins and ribosomal RNA spacers and promote
local nuclear translation during heat stress [56]. Nuclear
stress bodies (nSBs) are also formed in nuclei from RNA
and proteins upon heat shock. By sequestration of transcrip-
tion factors, they inhibit RNA transcription [56].

As said, IDPs or proteins with intrinsically disordered
regions (IDRs), such as prion and α-synuclein are most
prone to phase separation. From approximately 91 cases
in 2000 [58], their number increased to>1100 documented
cases in 2015 [59], and there are many more IDPs and IDRs
predicted. Their function is not unique and depends on the
binding partners, which can be very adaptable. This makes
them good candidates for regulatory and signaling functions
[60].

However, not only RNA-bound proteins or IDPs can
form condensates upon stress. Folded globular proteins
usually do not condense, yet their unfolded states can, form-
ing the so-called unfolded protein deposits — UPODs [61];
proteins that are less stable and contain many aromatic
amino acids, such as Tyr and Phe, can form UPODs [61].
Using lysozyme, a popular model protein [62], as an exam-
ple, the aggregates were found to account for ~10−4 of the
total soluble protein. The reversible aggregates undergo a
dynamic molecular exchange with the protein in solution
[63]. Another example is SOD1 (superoxide dismutase).
While soluble wild-type (WT) SOD1 forms a homodimer,
which is stabilized by metal binding and an intra-subunit
disulfide bond, a less stable mutant can unfold and is prone
to form deposits [64].

3.2 Protein Oligomers Induce Cytotoxicity Upon
Interaction with Membranes

The two-dimensional liquid environments provided
by lipid bilayers (Fig. 3, Ref. [65]) can profoundly alter
protein structure and dynamics by both specific and non-
specific interactions. Kinetic and thermodynamic studies
indicate that significant conformational changes can be in-
duced in proteins encountering lipid surfaces, which can
play a critical role in nucleating aggregate formation or sta-
bilizing specific aggregation states.

Pore-forming proteins (PFP) are found in virtually all
domains of life [49], and, by disrupting cell membranes, de-
pending on the pore size, they cause ion disbalance, small
molecules, or even protein efflux/influx, influencing cell
signaling routes and fate. Such pore-forming proteins exist
from bacteria to viruses and also shape host defense sys-
tems, including innate immunity. There is strong evidence
that amyloid toxicity is also caused by prefibrillar oligomers
forming amyloid pores in cellular membranes. It is believed
that the prefibrillar, still soluble oligomeric intermediates
would interact with cell membranes or even make the so-
called “amyloid pores” [48] that exhibit structural and func-
tional properties similar to those of pore-forming toxins.

Smaller oligomeric structures, in some cases, seem
sufficient to perforate the lipid bilayer. In amyloid-β (1-
42), pores with diameters of 1.7, 2.1, 2.4, and 2.9 nm were
observed [66]. In our studies of the model non-pathological
protein human stefin B, cytotoxicity was shown to correlate
with the type and size of the aggregates [67–70]. In contrast
to the insertion of amyloid-β (1-42) into lipid bilayers, toxi-
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Fig. 2. Schematic presentation of various condensed bodies in a human cell adapted from [56]. ABs, amyloid bodies. This image
is available via http://creativecommons.org/licenses/by/4.0/.

Fig. 3. Schematic representations of potential mechanisms
of amyloid/lipid association. (A) A schematic representation
of simplified, undisrupted lipid bilayer. This lipid bilayer struc-
ture can be perturbed by (B) membrane protein insertion or (C)
association of amphiphilic α-helices with lipid surface, leading
to membrane thinning and non-specific membrane leakage. (D)
Many amyloid-forming proteins have been shown to form pore-
like structures that can act as unregulated ion-selective channels.
Reproduced fromBurke et al. [65], Frontiers in Neurology. Copy-
right: © 2013 Burke, Yates and Legleiter. This is an open-access
article distributed under the terms of the Creative Commons At-
tribution License.

city was higher for higher-order oligomers, i.e., 6–12 mers,
>4 nm of size, in comparison to dimers or tetramers [68].

Di Scala et al. [50] described a common molecu-
lar mechanism of amyloid pore formation by Aβ and α-
synuclein (α-syn). They compared a panel of amyloid-
forming fragments of the above-mentioned proteins and
concluded that a two-stepmechanism applies, in which gan-
gliosides and cholesterol components of lipid membranes
interact with specific structural motifs of Aβ and α-syn, re-
spectively.

The mechanism of amyloid pore formation has re-
cently been followed by kinetic simulations [71] and single-
channel measurements [72]. Kayed et al. [73] de-
tected endogenous oligomeric and multimeric species in α-
synucleopathies, whereas Bode et al. [66] showed the in-
teraction of Aβ with cellular membranes. In a C. elegans
study, Julien et al. [74] showed that the membrane repair
response was turned on when Aβ was fed to animals, indi-
rectly confirming the amyloid-pore hypothesis.

Both plasma and mitochondrial membranes can
be affected by extracellular and intracellular prefibril-
lar oligomers [75]. Camilleri et al. [76] initially ob-
served that mito-mimetic lipid vesicles were more perme-
able to oligomers of Aβ (1-42), α-syn, and tau. Mito-
mimetic membranes were enriched with 15% phospholipid
cardiolipin (CL), which mimicked the mitochondrial in-
ner membrane. Electrophysiological measurements dis-
played a twofold higher permeability in CL-enriched mem-
branes. Recently, the same group investigated how the
oligomers of Aβ (1-42), α-syn, and tau interacted with
isolated mitochondria and observed that all three amy-
loidogenic peptides, prepared as soluble oligomers, trig-
gered a robust mitochondrial swelling, cytochrome c re-
lease and lowered the mitochondrial membrane potential
[77,78]. Oligomers formed by the bacterial model amy-
loidogenic protein HypF-N behaved similarly [79].

4. In SilicoMethods: Prediction Methods for
Condensates and Aggregates

Based on protein sequence, environmental, and spa-
tial factors, bioinformatic (in silico) methods can predict the
propensity of proteins to transition to condensed or aggre-
gated states; however, predicting the kinetics of aggregation
remains a challenge.

Nowadays, in silico platforms provide not only sin-
gle predictors but also so-called meta-predictors that gen-
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erate highly accurate predictions based on algorithms that
combine results from multiple computational models, in-
cluding predictions of condensable, amyloidogenic, or/and
intrinsically disordered regions [36]. Here, we describe and
compare the state-of-the-art bioinformatic tools for in silico
prediction of condensates and aggregates. As prediction
methods are evolving rapidly, we have compiled a list of
>40 commonly used tools accessible on public web servers
(Support information, Supplementary Table 1).

Several computational methods are available to pro-
duce sequence-based predictions of the propensity of pro-
teins to aggregate via the deposition pathway, but the
physicochemical principles underlying condensation are
known less well [18,80]. Although prediction methods ex-
ist to estimate the propensity of proteins to undergo liquid-
liquid phase separation (LLPS), it is not clear how to predict
amyloid aggregation within condensates [81]. Recently,
Vendruscolo and Fuxreiter [18] have provided insights into
the amino acid code for protein conversion between liquid-
like and solid-like condensates. As different parameters
have been proposed to determine the propensity of proteins
to form condensates, various in silico strategies based on
machine learning models, have been developed to under-
stand the relationship between protein sequence and protein
phase behavior.

4.1 Predicting Protein Condensation

In general, most in silico tools for predicting the
propensity for condensation in two phases (liquid-liquid
phase separation — LLPS) are based on amino acid
sequences. The relatively small number of experimen-
tally validated proteins prone to phase separation and
the difficulty in detecting them remain a bottleneck in
developing accurate predictors for condensates. De-
spite this limitation, new approaches are constantly
being developed, and the integration of newly up-
dated databases into their development is increasing
the accuracy of the new predictors. PScore (http:
//abragam.med.utoronto.ca/~JFKlab/Software/psp.htm)
[82], catGRANULE (http://service.tartaglialab.com
/update_submission/277133/0b8f3740ac) [83] and
LARKS (Low-complexity Aromatic-Rich Kinked
Segments) [84] are first-generation LLPS propensity
predictors. Compared to the first-generation pre-
dictors, the second-generation predictors FuzDrop
(https://fuzdrop.bio.unipd.it/predictor) [85], DeePhase
(https://deephase.ch.cam.ac.uk/) [86], PSPer (Phase Sepa-
rating Protein, https://www.bio2byte.be/b2btools/psp) [87]
and PSPredictor (http://www.pkumdl.cn/PSPredictor)
[88] were developed based on larger training datasets
(LLPSDB (http://bio-comp.org.cn/llpsdb) [89],
PhaSepDB (http://db.phasep.pro/) [90], PhaSePro
(https://phasepro.elte.hu/) [91]), allowing for a broader
range of LLPS protein screening. Each of the new
predictors has specific properties; DeePhase is very

powerful in distinguishing LLPS-prone proteins from
structured proteins and identifying them in the hu-
man proteome. The authors of this tool highlight that
LLPS-prone proteins are more disordered, less hy-
drophobic, and of lower Shannon entropy [86]. FuzDrop
(https://fuzdrop.bio.unipd.it/predictor) can identify droplet-
promoting and aggregation-promoting regions in protein
sequences that spontaneously phase separate [85]. PSPer
prioritizes phase-separating proteins among proteins with
similar RNA-binding domains, intrinsically disordered
regions, and prions [87]. PSPredictor allows users to
determine the most similar proteins in the LLPSDB under
experimentally validated phase separation conditions [88].
PSAP (https://github.com/vanheeringen-lab/psap) is a
random forest classifier trained on a set of 90 human pro-
teins that condense with high confidence [81]. The LLPS
predictors listed above were developed based on different
underlying concepts, architectures, and training sets. This
makes comparison difficult, as each method is suitable
for different applications. Nevertheless, their combined
use can significantly increase their utility, as reported by
Pancsa et al. [92]. Their comparable analysis included five
methods: PScore, PSPer, PLAAC, catGRANULE, and
PSPredictor. By summarizing their findings, the PLAAC
performs well in identifying prion-like LLPS proteins.
PSPer and PScore show good synergy, as PSPer mainly
detects PLDs and RNA-driven phase separation, whereas
PScore detects LLPS driven by π–π stacking interactions.
CatGRANULE and PSPredictor provide the truest posi-
tives and find hits missed by other methods. The novel
meta-predictor PhaSePred (http://predict.phasep.pro/)
by Chen et al. [36] integrates several machine-learning
models for predicting phase-separating proteins, including
catGRANULE [83], CIDER [93], DeePhase [86], FuzDrop
[85], LARKS [84], PLAAC [94], PScore [82], ZipperDB
[95]. Not all tools included in PhaSePred are pure LLPS
predictors, as PLAAC and ZipperDB predict prion-like
domains and fibril-forming segments, whereas CIDER
calculates various sequence parameters associated with
disordered protein sequences. Unlike other currently
available computational tools that preferentially predict
only self-assembling proteins but perform poorly in
screening partner-dependent proteins, this predictor can
adequately predict self-assembling or partner-dependent
protein categories [36].

Despite the abundance of existing computational
tools, accurately predicting protein phase transitions re-
mains a challenge, and the establishment of research and in-
novation hubs seems to be a possible future prospect. The
PhasAGE project (https://phasage.eu/, PhasAGE – Excel-
lence Hub on Phase Transitions in Aging and Age-Related
Disorders) could be a good example of such an approach.
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4.2 Predicting Aggregation Propensity

In recent decades, researchers have attempted to gain a
better understanding of protein aggregation and to develop
computational methods to predict aggregation propensity.
It has been more difficult to predict the kinetics of aggre-
gation. However, AggreRATE-Pred (http://www.iitm.ac.
in/bioinfo/aggrerate-pred/) is the first tool to determine ag-
gregation regions (APR prediction) and detect the change
in aggregation kinetics [96]. Compared to several previ-
ous aggregation prediction models, AggreRATE-Pred con-
siders both structural and sequence-based properties. It
also predicts the change in aggregation rate upon point
mutations. Compared with first-generation APR predic-
tion methods such as TANGO (http://tango.crg.es) [97],
AGGRESCAN (aggregation-prone segments in proteins,
http://bioinf.uab.es/aggrescan/) [98] and GAP (General-
ized Aggregation Proneness, http://www.iitm.ac.in/bioinfo
/GAP) [99], the aggregation propensities determined by
these methods do not correlate with the aggregation rate de-
termined by AggreRATE-Pred [96]. The old methods only
calculate the overall aggregation propensity of a polypep-
tide chain and do not provide information on the growth of
aggregates over time. GAP deficiency is a small data set
used in its development [99]; whereas the AGGRESCAN
algorithm is simple and fast, the last implementation of the
online software was performed in early 2023 [100]. In gen-
eral, APRs are usually buried in the hydrophobic core of the
native protein and enriched with residues that favor the for-
mation of β-strands, contributing to increased hydrophobic-
ity and low charge content [101]. These principles are also
integrated into the TANGO statistical mechanics algorithm
[97]. However, recent studies have shown that mutations
outside APRs also affect aggregation kinetics [96].

SODA (Protein SOlubility based on Disorder and Ag-
gregation, http://old.protein.bio.unipd.it/soda/) provides, in
addition to aggregation propensity, information about the
intrinsic disorder, hydrophobicity, and secondary structure
preferences. In addition, a score to evaluate the difference
in aggregation and solubility introduced by mutations can
be evaluated [102]. In general, most tools for identify-
ing APRs use amino acid residue composition and/or se-
quence patterns [96]. In this regard, ANuPP (Aggrega-
tion Nucleation Prediction in Peptides and Proteins, https:
//web.iitm.ac.in/bioinfo2/ANuPP/homeseq1/), a web meta-
classifier for ARP identification, is a novelty [103]. It is
unique since it is based on atom-level features and consid-
ers the diversity of aggregation mechanisms. The perfor-
mance of ANuPP was evaluated on several datasets, and
the results show that ANuPP is one of the best prediction
methods for both the prediction of amyloidogenic hexapep-
tides and the identification of APRs compared with other
currently available methods.

Predicting the aggregation propensity of folded pro-
teins is a bottleneck due to the lack of known 3D struc-
tures with high resolution. Although algorithms for detect-

ing aggregation-nucleating sequences from the primary se-
quences of proteins work reasonably well, many of these
sequences in the folded state become part of the inner core
of the protein, which does not contribute to aggregation un-
less the protein unfolds extensively [104]. Therefore, the
development of algorithms that can detect APRs at protein
surfaces is of great interest and has been under constant de-
velopment in recent years. These new tools, which combine
structure- and sequence-based features into integrated pre-
dictors, bear improved accuracy. Such servers for aggrega-
tion propensity prediction and protein solubility engineer-
ing based on features associated with the 3D structure of
proteins are SAP (Spatial Aggregation Propensity) [105],
Aggrescan3D (A3D, http://biocomp.chem.uw.edu.pl/A3D
/) [106], Aggrescan3D 2.0 (A3D2, http://biocomp.chem.u
w.edu.pl/A3D2/) [107], SOLart (http://babylone.ulb.ac.be
/SOLART/) [108], SolubiS (https://solubis.switchlab.org/)
[109], CamSol Structurally Corrected (https://www-coh
software.ch.cam.ac.uk/) [110], and AggScore [111].

With the advent of AlphaFold [112] and the estab-
lishment of AlphaFoldDB (https://alphafold.ebi.ac.uk/), the
limitations due to the number of 3D protein structures iden-
tified are disappearing. Consequently, it is likely that in the
next few years, we will foresee the development of many
new tools for predicting the aggregation of protein 3D struc-
tures, which will enable new biomedical applications such
as antibodies and beta-sheet-breaking peptides to treat dis-
eases caused by protein aggregation [100]. In any case, the
last decade has seen impressive innovations in ARP predic-
tion. Several currently available algorithms enable an au-
tomated, sequence, and structure-based design strategy to
improve the aggregation properties of proteins of scientific
or industrial interest.

4.3 Predicting Amyloidogenicity
The transition of soluble proteins into insoluble amy-

loid fibrils is driven by specific self-propagating short-
sequence segments that can be predicted from input se-
quences at the genomic level. In this regard, the propen-
sity of different protein sequences to aggregate into amy-
loids mostly depends on the stability of the amyloid cross-
β structure. Nowadays, the prediction of amyloidogenicity
can be performed using various computational tools. Nev-
ertheless, accurate prediction of amyloid-forming determi-
nants remains a challenge [101].

AmyLoad (http://comprec-lin.iiar.pwr.edu.pl/amylo
ad/database/) is a web server of amyloidogenic sequence
fragments (over 1480 different entries, and continues to
increase). It allows users to add their sequences to the
database in FASTA format and to analyze the queried se-
quences with implemented amyloid predictors [113]. In
addition, the updated and significantly expanded database
WALTZ-DB 2.0 (http://waltzdb.switchlab.org/) is now the
largest freely accessible repository for determinants of amy-
loid fibril formation, determined experimentally based on
amyloid-forming hexapeptide sequences [101].
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First-generation amyloid predictors such as
FoldAmyloid (http://bioinfo.protres.ru/fold-amyloid/)
[114], Waltz [115], SALSA (http://amypdb.genouest.
org/e107_plugins/amypdb_aggregation/db_prediction
_salsa.php, are integrated into the AMYPdb database
[116]. The aggregation prediction method PASTA 2.0
(http://protein.bio.unipd.it/pasta2/) [117] is complemented
and enriched by other information, such as intrinsic disor-
der and secondary structure predictions. In this regard, the
amyloid-forming regions can be correctly identified with
high specificity from a larger dataset of globular protein
domains [117]. Further, more advanced amyloid identi-
fication methods based on machine learning approaches
are available: NetCSSP (Neural networks for calculating
Contact-dependent Secondary Structure Propensity),
http://cssp2.sookmyung.ac.kr/) [118], FiSH Amyloid
(http://comprec-lin.iiar.pwr.edu.pl/) [119], AmyloGram
(http://biongram.biotech.uni.wroc.pl/AmyloGram/) [120],
APPNN (Amyloid Propensity Prediction Neural Net-
work), https://cran.r-project.org/web/packages/appn
n/index.html) [121], BAP (Budapest Amyloid Pre-
dictor https://pitgroup.org/bap/) [122] and AmyLoad
(http://comprec-lin.iiar.pwr.edu.pl/amyload/database/)
[113]. However, meta-predictors based on a consensus
approach, which combines the strength of different in-
dividual predictors into a single predictor, exceed the
accuracy of these individual predictors. Such meta-
predictors are MetAmyl and AmylPred2. MetAmyl
(http://metamyl.genouest.org) produces a meta-prediction
of sequence amyloidogenicity based on four individual
predictors: Pafig, SALSA, Waltz and FoldAmyloid [123].
AmylPred2 (http://thalis.biol.uoa.gr/AMYLPRED2/) is an
improved version of the earlier amyloid propensity predic-
tion method (http://biophysics.biol.uoa.gr/AMYLPRED/).
It produces a consensus prediction based on 11 algorithms
[124]. The method is useful for understanding the mis-
folding of disease proteins, and it also enables protein
aggregation/solubility control in biotechnology.

Interestingly, in the 3D structures of most disease-
related amyloid fibrils, the structures have been shown to
contain a β-strand loop β-strand motif termed a β-arch.
Accordingly, assuming that protein sequences capable of
forming β-arches are amyloidogenic, a novel bioinformat-
ics approach ArchCandy (https://bioinfo.crbm.cnrs.fr/ind
ex.php?route=tools&tool=7) was developed. Benchmark
analysis demonstrated the high performance of the Arch-
Candy method [125].

4.4 Predicting Prions and Prion-Like Proteins

The first definition of prions was formulated by S.B.
Prusiner as “small proteinaceous infectious particles that
are resistant to inactivation by most procedures that mod-
ify nucleic acids” [126]. He posited two possible mod-
els for infectious replication of prions: either by a nucleic
acid, which would be hidden and enwrapped by the pro-

tein part of the prion, or by a protein void of nucleic acid.
This protein-only hypothesis was already proposed by Grif-
fith, J. [127] and later substantiated by experimental evi-
dence [128]. A broader definition of prions encompasses
the fact that the mechanism of propagation is template-
directed conformational change [129]. Prions were sub-
sequently detected in other organisms, e.g., Sup35NM in
yeast [130], and more intriguingly, several of the patholog-
ical amyloidogenic proteins, such as amyloid-β involved in
Alzheimer’s disease and Tau in Parkinson’s disease, may
spread in a prion-like fashion [131].

Since prions are a particular class of amyloids that can
propagate their misfolded conformation and have unique
compositional features, several bioinformatic tools capable
of identifying novel pathological and functional polypep-
tides with prion-like properties have also been developed.
Below, we discuss the features of several databases and
algorithms that have been developed to study prions and
prion-like proteins. ZipperDB (https://services.mbi.ucla.
edu/zipperdb/) is a database that contains predictions of
fibril-forming segments within proteins identified by the 3D
profiling method [132]. This method is a unique approach
that uses structural information to assess the likelihood of
fibril formation of a given sequence [95]. Another interest-
ing new database for predicting prion domains in complete
proteomes is PrionScan (http://webapps.bifi.es/prionscan)
[133], which has been used to understand the functions
of prion/prionogenic protein and how their interaction net-
works substantially affect gene regulation, to identify re-
gions driving LLPS [92] or proposed as a predictor of prion-
like proteins capable of LLPS [134].

First-generation tools for predicting prion-like do-
mains (PrLD) include pWaltz (http://bioinf.uab.es/pWAL
TZ/) [135], PrionW (http://bioinf.uab.cat/prionw/) [136]
and PLAAC (Prion-Like Amino Acid Composition, http:
//plaac.wi.mit.edu/) [94]. pWaltz was originally inspired
by the Waltz amyloid prediction strategy but used a lower
detection threshold to identify milder amyloids and used
a larger sliding window for the minimum transmissible β-
fold size [135]. In addition, it is an advanced tool with the
implementation of the pWaltz algorithm, enabling it to work
with complete protein sequences and identify the composi-
tional context and structural features needed for prion con-
version [94,136]. SGnn and AMYCO are new and state-
of-the-art predictors. SGnn (http://sgnn.ppmclab.com/) en-
ables the recruitment of PrLDs to heat-induced SGs (stress
granules) of the complete proteomes [137]. AMYCO (http:
//bioinf.uab.es/amycov04) provides a rapid, automated, and
graphical evaluation of the impact of mutations on the ag-
gregation properties of prion-like proteins [138]. Its perfor-
mance is better than that of the first-generation predictors.
The AMYCO implementation has also been used to gain
insights into prion evolution [137,138].

The formation of amyloid pores by prefibrillar
oligomers shares several similarities with protein toxins and
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antimicrobial peptides and can also be predicted; however,
this was not included in this review as it has been collected
previously [139]. For space and scope reasons, we also
omitted the prediction of intrinsically disordered regions of
proteins, as the new meta-predictors already include these
predictions in their workflows.
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