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Abstract

As a spherical protein that acts as a repository for intracellular iron, Ferritin is the most important iron storage form and is known to
influence tumor immunity. Unbound ferritin is composed of 24 subunits, made up of ferritin light chain (FTL) and ferritin heavy chain
(FTH). Ferritin can be automatically put together to form hollow nanocages that measure 12 nm around the outside and 8 nm around
the inside. Cancer causes the second-most deaths worldwide, effective elimination of tumor cells while protecting normal cells is the
foundation of modern tumor therapy. To this end, the innate tumor-targeting activity of human FTH1, first identified ten years ago, is
highly appealing. Unmodified human FTH1 binds to its receptor, transferrin receptor 1 (TfR1), which is frequently overexpressed in
cancer cells. FTH1-TfR1 binding permits improved drug efficacy by promoting ferritin-mediated targeted delivery. In addition, FTH
is also associated with the prognosis of multiple typies of cancer. The level of FTH1 is significantly and positively correlated with
the infiltration of tumor-associated macrophages. FTH1 also plays an important role in regulating the tumor immunity of solid cancer.
As such, FTH1 has been extensively applied in the targeted delivery of anticancer drugs, diagnostic molecules (e.g., radioisotopes and
fluorophones), and inorganic nanoparticles (NPs) to tumors.This article reviews the role of FTH in cancer and its potential as a therapeutic
target.
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1. Introduction
The history of ferritin begins just before the second

WorldWar, when it was isolated from horse spleen [1]. Hu-
man ferritin consists of two different subunits: light chain
(L-ferritin) and heavy chain (H-ferritin), which are 19 kDa
and 21 kDa in size, respectively, encoded by genes (ferritin
heavy chain (FTH) and ferritin light chain (FTL)) on chro-
mosomes 11q and 19Q. With approximately 55% sequence
homology, the two subunits are structurally similar, com-
prising four parallel and antiparallel helices (A-D), and a
shorter E-helix at a 60-degree angle to the others [2]. Al-
though ferritin is primarily considered a cytoplasmic pro-
tein, it also localizes to the nucleus, mitochondria, and lyso-
somes, a small fraction of ferritin is found in the serum.
As the major iron-storing protein, ferritin contains about
4500–5000 iron atoms and is found in most living cells in
animals, plants, bacteria and algae [3,4]. Ferritin is crit-
ically involved in many physiological and disease-related
processes, including the regulation of the tumor microenvi-
ronment and immune metabolism [5]. In particular, ferritin
is involved in ferroptosis [6], a mode of programmed cell
death. Ferroptosis is peculiar compared to the other classes

of cell death; for example, apoptosis, autophagy, and pyrop-
tosis [7,8], because it is brought about by iron build-up and
known for the accompanying increase in lipid peroxidation.
Ferritin’s role in ferroptosis is relevant for diseases such as
cancer and may include a fundamental role in tumor immu-
nity. Therefore, therapeutic approaches that target iron and
ferritin homeostasis may be beneficial in cancer, particu-
larly in conjunction with hapten therapy to amplify the anti-
tumor response. Ferritin also protects DNA and proteins
from iron-induced damage [9]. By shielding cells from the
toxic properties of free iron, ferritin is effectively employed
in several different cell activities, including immune regu-
lation (Fig. 1).

Ferritin production is subject to a tight translational
control made famous through undergraduate biochemistry
lectures, as it is the typical example provided for functional
elements in the 5′-untranslated region (UTR) of mRNA.
Ferritin expression is controlled by interactions between the
iron regulatory protein (IRP) and conserved iron-responsive
elements (IREs) in the 5′-UTRs of themRNAs encoding the
H and L subunits [10]. In addition to iron, ferritin synthesis
is also regulated by oxidative stress, ligand-receptor inter-
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Fig. 1. Intracellular iron homeostasis. Ferritin acts as an iron oxidase and iron is internalized and sequestered in the ferritin mineral core,
converting Fe2+ to Fe3+. Reactive substances (yellow balls) can directly damage DNA and proteins. Iron absorption in the duodenum
is controlled via the expression and transport activity of divalent metal transporter 1 (DMT1) on the luminal side of enterocytes and by
ferroportin, the sole known iron exporter on the basal side, which transfers iron into the bloodstream. Abbreviations: Hp, hepcidin; Tf,
Transferrin.

actions (e.g., hormones such as thyroid and insulin, growth
factors), changes in intracellular second messenger concen-
trations, and oxygen stress (hypoxia/ischemia and hyper-
oxia) [11]. Because ferritin can store iron in a non-toxic
form, FTH1 is critical for antioxidant defense.

Multiple autoimmune diseases are guilty of harboring
increased ferritin levels, which are believed to be caused
by cytokine-stimulated ferritin synthesis [12,13]. Although
many patients with rheumatoid arthritis have normal serum
ferritin concentrations, ferritin levels may be elevated in
synovial fluid and synovial cells [14]. High ferritin concen-
trations have also been documented in the urine of patients
with nephritis associated with systemic lupus erythemato-
sus [15]. Another study found that ferritin levels were el-
evated in thyroiditis patients and decreased after treatment
with anti-inflammatory drugs [16]. Beyond the scope of
autoimmune disease, elevated serum ferritin has also been
observed following bacterial and viral infections, including
Epstein-Barr virus (EBV), Human immunodeficiency virus
(HIV), and tuberculosis [17].

In cancer cells, FTH1 is reminiscent of Janus, the two-
faced god, because increased FTH1 may be both beneficial
and detrimental for cancer growth under different circum-
stances. Biamonte et al. [18] found that increased FTH1
resulted in upregulation of P53 expression and decreased
proliferation in non-small-cell lung carcinoma cells. How-
ever, work by Salatino et al. [19] in ovarian cancer cells
showed that FTH1 is essential for the normal functioning of
the antioxidant system, implying that FTH1 blockage may
enhance cisplatin-induced cytotoxicity. In addition, Liu et
al. [20] showed that high concentrations of cytoplasmic
FTH1 implied good disease prognosis. However, elevated
serum ferritin (SF) is an unfortunate sign for patient prog-
nosis in the context of hematological malignancies, as high
SF is associated with poor overall and progression-free sur-
vival. SF expression rose significantly with disease pro-
gression or recurrence. SF can be used as a prognostic fac-
tor for patients with newly diagnosed or recurrent multiple
myeloma. For patients with acute myeloid leukemia, in-
creased ferritin at diagnosis may predict tumor burden [21].
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Fig. 2. The relationship between ferritin and cancer. Ferritin may be a prognostic factor for certain types of cancer, and ferritin
expression levels are closely associated with many malignancies, including breast cancer, ovarian cancer, gastric cancer, pancreatic
cancer, colorectal cancer, liver cancer, lung cancer, neuroblastoma, and head and neck squamous carcinoma. Note: The red arrow
represents the promotion of FTH tumorigenesis. The green arrow represents the inhibition of FTH tumorigenesis. The black arrow
indicates that the effect of FTH on tumor is unclear.

Moreover, FTH may be a diagnostic biomarker for prostate
cancer [22], renal FTH has been identified as a biomarker
of renal cell carcinoma (RCC), and elevated FTH is pre-
dictive of poor prognosis in RCC [23]. Inhibition of over-
expressed FTH by FTH small-interfering RNA sensitized
malignant mesothelioma cells to apoptosis, suggesting that
FTH may contribute to the pathophysiology of malignant
mesothelioma [24].

2. The Relationship between Ferritin and
Cancer

Cancer poses a substantial challenge for healthcare
systems worldwide. Cancer refers to a class of diseases
involving the neoplastic transformation of ordinary cells.
This transformation involves a series of progressive steps,
dictated by selective pressures of the local environment.
Despite major advances in cancer treatment, morbidity and
mortality are predicted to increase in the coming decades.

Ferritin may predict prognosis for some types of can-
cer as aberrant ferritin expression is strongly associated
with many malignancies (Fig. 2), including breast cancer

[25,26], ovarian cancer [27], pancreatic cancer [28], col-
orectal cancer [29], liver cancer [30], lung cancer [31], dif-
fuse large B-cell lymphoma [32], prostate cancer [33] and
oral cancer [34]. Increased ferritin levels are often observed
in cancer cells compared with healthy cells [19,35]. Can-
cer stem cells (CSC) also display elevated ferritin compared
to normal cells, together with dysregulated iron homeosta-
sis and increased iron turnover [24,26]. FTL and FTH1 are
positively and significantly associated with the infiltration
of tumor-associated macrophages and T-regulatory cells in
many tumor types, thus opening up new therapeutic pos-
sibilities focused on the tumor microenvironment. These
results suggest that FTL and FTH1 are key modulators of
immunity against solid tumors (Table 1, Ref. [19,39,40,44,
45,49–52,59,64,65,71,78,81,87,89,92,106,107,114]).

2.1 Ferritin and Colorectal Cancer

Colorectal cancer (CRC) is the second leading cause
of cancer death worldwide. The incidence of CRC has
steadily climbed over the last few decades, with nearly
2 × 106 new cases diagnosed globally in 2020, result-
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Table 1. The role of ferritin in tumors.
Primary tumor Ferritin expression Functions References

Colorectal cancer UP 1. Prognostic marker [39,40]
2. Pro-tumorigenic effect

Head and neck squa-
mous cell carcinoma

UP Helps identify high-risk metastatic patients [44,45]

Breast cancer Down 1. Inhibits tumor growth [19,49–52,59]
2. Prognostic marker

Lung cancer Down 1. Prognostic marker [64,65,71]
2. The up-regulation of FTH level in cells
will lead to a significant decrease in cell pro-
liferation rate

Liver cancer Compared with normal samples, FTH was signifi-
cantly up-regulated in primary liver cancer tissues
and the expression of FTH in advanced cancer was
significantly increased

1. Accelerates the expansion and migration
of hepatoma cells

[78]

2. Pro-tumorigenic effect

Gastric cancer FTH1 is up-regulated in 5-FU resistant cells and
xenografts

1. Mediates ferroptosis [81,87]
2. Participate in ferritin phagocytosis

Pancreatic cancer Ferritin is overexpressed in pancreatic cancer Use natural or engineered FTH as a nano car-
rier system to deliver drugs to tumor blocks

[89,92]

Neuroblastoma The basic level of FTH in N2A cells was more than
three times lower than that in neural stem cells

1. High serum FTH level in patients is a
marker of poor prognosis in high-risk neu-
roblastoma

[106,107]

2. The promotion of neuroblastoma growth
and inhibition of cell death

Ovarian cancer Compared with primary tumor, the expression of
ferritin H chain in metastatic samples is higher

Improve the sensitivity of cisplatin-resistant [114]

Abbreviations: FTH, ferritin heavy chain; FTH1, ferritin heavy chain 1; 5-FU, 5-Fluorouracil; N2A, Nmouse neuroblastoma cell
lines.

ing in more than 900,000 deaths [36]. Early detection
of CRC can greatly improve survival, the 5-year survival
rates, drop to 13% once the disease has metastasized to
distant organs [37]. Treatment options for CRC include
chemotherapy, surgery, radiotherapy, targeted therapy, and
immunotherapy. Chemotherapy improves overall survival
by about 20 months and remains the first-line treatment
of choice, with 5-fluorouracil (5-FU) being most com-
monly used for the treatment of CRC. It has been used
in combination with oxaliplatin, irinotecan (CPT-11) and
other drugs to improve prognosis. Oxaliplatin treatment
increase IL-8, and cisplatin treatment increased ferritin,
which may help aid the survival of cancer cells [38]. Com-
pared with normal tissues, ferritin heavy chain expression
in CRC biopsy increased [39]. Ferritin has multiple pro-
tumorigenic effects, including preservation against reactive
oxygen species and promotion of the primary disease M2
program of macrophages [40].

Increased ferritin expression also serves to prevent
ferroptosis. In p53-/- cells, ferritin was significantly in-
creased following cisplatin administration. Treatment with
oxaliplatin combinedwith CPT-11 and 5-FU combinedwith
both oxaliplatin and CPT-11 increased ferritin levels to a

greater degree than monotherapy, with the most signifi-
cant findings including increases in IL-8 induced by ox-
aliplatin and cisplatin-incited increases in ferritin. Identi-
fication of previously unknown drug-specific mechanisms
of effectiveness or toxicity may suggest new directions
for targeting combination therapies to tumors [38]. Green
tea epigallocatechin-3-gallate (EGCG) has also displayed,
therapeutic effect efficacy in colorectal cancer cells (CRC).
EGCG up-regulated the protein-level expression of trans-
ferrin receptor (TFR) and down-regulated FTH, demon-
strating that it has iron-chelating effects in CRC. At the
same time, molecular docking studies showed that EGCG
could bind to glutamic acid 64 and lysine 71 through strong
hydrogen bonding and strong binding affinity to ferritin (–
7.3 kcal/mol), with hydrophobic interactions between the
L-asparagine 74 and lysine 71 hydrophobic pockets. EGCG
may impede ferritin activity via their strong interaction,
consistent with the downregulation of FTH that has been
noted in vitro. In vitro data also show that the molecular
docking of TFR and EGCG cannot be regulated [41]. Thus,
EGCG has iron-chelating properties in colorectal cancer,
which shows potential for further development in CRC
treatment.
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Fig. 3. The relationship between ferritin and cancer. Ferritin expression levels are closely associated with manymalignancies. Ferritin
protects cancer cells from the production of iron-induced reactive oxygen species (ROS) to increase their resistance to chemotherapy. In
tumor-related macrophages, ferritin promotes the M2 process of primary disease of macrophages.

2.2 Ferritin and Head and Neck Squamous Cell
Carcinoma

Ranked sixth among the most widespread cancers
around the world [42], head and neck squamous cell carci-
noma (HNSCC) accounts for ~600,000 new cases reported
annually, of which China accounts for a significant pro-
portion. The ferroptosis inhibitor FTH1, which is also a
prognostic factor, was associated with the infiltration of M2
macrophages in HNSCC, suggesting that induction of fer-
roptosis directly affects the infiltration of M2macrophages.
Therefore, targeting iron immunomodulation may enhance
immunotherapeutic activity [43]. Chemiluminescence im-
munoassy showed the iron content and expression of the
heavy chain (FTH) and light chain (FTL) of ferritin in tu-
mor tissues were higher than those of normal tissues [44].
The study also showed that the expression level of FTH in
HNSCCwith transfer was higher than that in HNSCCwith-
out transfer. The Geo database further validated these re-
sults and reported a correlation between the FTH expres-
sion level and the prognosis of HNSCC patients. While
the evidence suggests that ferritin is not an appropriate
biomarker for the early diagnosis of HNSCC, ferritin ex-
pression levels are associated with cervical metastasis of

HNSCC [45]. Hence, the correlation between ferritin and
HNSCC is likely to be valuable for identifying patients at
high risk of metastasis. Overall, ferritin is a strong candi-
date biomarker for identifying cervical metastasis of HN-
SCC.

2.3 Ferritin and Breast Cancer

Breast Cancer (BCA) is one of the most prevalent
cancers worldwide, and the most common malignant tu-
mor in women. In 2015, there were an estimated 272,400
newly diagnosed cases of breast cancer and nearly 70,700
breast cancer deaths in China. Treatment options include
the usual suspects (surgery, radiotherapy, chemotherapy)
as well as hormonal treatments. In the process of formu-
lating the ideal treatment plan, several clinical and patho-
logical features need to be evaluated in addition to histo-
logical subtypes. This is no mean feat, and BCA remains a
clinical puzzle in terms of prognostic assessment and treat-
ment selection. The targeted inhibition of iron metabolism
is a double-edged sword that cuts both ways in the regu-
lation of carcinogenesis. Research suggests that increased
FTH1 expression is associated with enhanced resistance to
chemotherapeutic molecules [46–48], but other studies in-
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dicate that FTH1 can act as an important tumor suppres-
sor in BCA. Moreover, BCA cells have been found to
have decreased FTH1 [49–51] while higher FTH1 expres-
sion is considered to denote favorable prognosis in triple-
negative breast cancer [19,52]. Furthermore, BCA tissues
that are abundant in FTH1 are commonly highly enriched
for interferons that are produced by CD8+ T cells, but not
CD4+ T cells, implying FTH1 has a regulatory role on the
activity of the adaptive immune system within the tumor
microenvironment [19]. Enhanced expression of ferritin
heavy chain 1 (FTH1) inhibited the c-MYC expression in
breast cancer (BCA) cells, correlated with the import of
iron as well as its storage and output, along with decreased
BCA cell growth [53]. Meanwhile, knockdown of FTH1
enhanced cell growth and mammary gland sphere forma-
tion, while promoting greater c-MYC expression and ele-
vated chemotherapy resistance. A central role of c-MYC is
suggested by the correlation between the increased c-MYC
expression induced by FTH1 silencing and the enhanced
growth and migration of BCA cells [54]. Conversely, over-
expression of FTH1 inhibited BCA cell growth and migra-
tion, associated with decreased c-MYC expression. More-
over, decreasing c-MYC increases the sensitivity of BCA
cells to chemotherapy drugs [55]. The effects of FTH1 are
most likely c-MYC-dependent, as silencing c-MYC reca-
pitulated the effect of FTH1 overexpression. These findings
indicate that FTH1 has significant tumor suppression activ-
ity in BCA cells and inhibits tumor growth by preventing
the expression of key oncogenes such as c-MYC [56].

Early studies have shown that the role of iron in tu-
morigenesis is that iron accumulates in matrix in iron-
induced tumors, rather than malignant cells [57]. The in-
volvement of matrix indicates that iron-dependent tumori-
genesis may be mediated by non-malignant tumors, such
as macrophages, which have high iron storage capacity.
Extracellular ferritin secreted by macrophages can stim-
ulate the occurrence of tumors at various levels. More
and more evidences show that ferritin plays a multifunc-
tional role in human biology, such as angiogenesis [58], in-
creasing the proliferation of cancer cells [59], transporting
iron [60,61], and inhibiting lymphocyte reaction [62,63].
Thus, the secretion of ferritin may play an important role
in promoting and maintaining tumor. In addition, ferritin
may play a role in preventing macrophages from initiating
an effective pro-inflammatory (M1) phenotype to maintain
wound healing (M2) phenotype by isolating intracellular
iron [40]. Macrophages rich in ferritin increase the infil-
tration of breast tumors, which may directly affect the oc-
currence of tumors through the production and secretion of
ferritin (Fig. 3). Increased expression of FTH1 may indi-
cate good prognosis and anti-cancer drug effect [59]. Thus,
understanding the role of ferritin in BCA development may
provide an opportunity to explore a novel area of therapeu-
tic development.

2.4 Ferritin and Lung Cancer
Lung cancer is responsible for the most cancer-related

deaths worldwide, according to data published by theWorld
Health Organization and global cancer statistics. Despite
some progress in the comprehensive treatment of advanced
lung cancer, current therapies are limited by problems such
as serious adverse reactions related to dose-limiting toxic-
ity and off-target effects, as well as the development of drug
resistance. The most common lung cancer is non-small cell
lung carcinoma (NSCLC). Accounting for 80–85% of all
lung cancer cases, NSCLC is responsible for high morbid-
ity and mortality worldwide. With a 5-year survival rate of
only around 10%, early diagnosis is critical for maximiz-
ing treatment options and improving prognosis of lung can-
cer. The analysis of Expressed sequence tag (EST) database
showed that the expression of FTH gene in lung tumors
was lower than that in normal tissues [64]. NSCLC has
elevated ferritin levels in serum and bronchoalveolar fluid
[65,66]. Research suggests that high levels of serum ferritin
are associated with poor prognosis [65]. Recent research
into potential strategies for early diagnosis has identified
potential tumor markers. A study showed that curcumenol
induced cell death and inhibited the proliferation of lung
cancer cells. Long-chain non-coding RNA H19 (lncRNA
H19) was found to be significantly decreased in lung cancer
cells treated with curcumin versus controls. Consistent with
this, lncRNA H19 overexpression abrogated the anticancer
effects of curcumin, whereas knockdown of lncRNA H19
promoted curcumin treatment-induced ferroptosis. Mech-
anistically, lncRNA H19 was found to exhibit competi-
tive binding to miR-19b-3p, thereby enhancing the tran-
scriptional activity of its endogenous target, FTH1. The
data suggest that curcumin exerts its anti-tumor efficacy on
lung cancer by inducing ferroptosis, and that the lncRNA
H19/Mir -19 B-3p/FTH1 axis plays an important role in
curcumin-induced ferroptosis [67]. The study confirmed
the close relationship between p53 activity and FTH ex-
pression [68,69]. P53 increases the expression of FTH at
the translation level by regulating IRP1-IRE translation reg-
ulation system, while overexpression of tumor suppressor
factors negatively regulates FTH transcription [70]. In con-
trast, FTH physically binds p53 and stabilizes protein levels
under oxidative stress. Recent studies have demonstrated
that FTH can enhance p53 expression by downregulating
miR-125b homeostasis in A549, H460, SW1573 and LXF-
289 non-small cell lung cancer cell lines. Regardless of
their redox related activities [18], the up-regulation of FTH
level in cells will lead to an increase in p53 protein expres-
sion in non-small cell lung cancer (NSCLC) and a signifi-
cant decrease in cell proliferation rate [71]. Therefore, FTH
have the potential to improve the early diagnosis of lung
cancer, in order to enhancing the accuracy of lung cancer
treatment.
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2.5 Ferritin and Liver Cancer

Hepatocellular carcinoma (HCC) is the most common
type of primary liver cancer, accounting for 75–90% of to-
tal cases. As the third leading cause of cancer-related death
worldwide, HCC is both common and deadly, with primary
liver cancer deaths projected to reach 1 million by 2030.
Prognosis is typically poor, with a 5-year overall survival
rate of less than 20% [72,73]. HCC is associated with dis-
eases involving liver inflammation, as this process leads to
dysplasia of hepatocytes, making them prone to liver can-
cer [74]. Therefore, the recent increase in HCC incidence
is not unexpected, given the rise in nonalcoholic fatty liver
disease, alcoholic cirrhosis, and chronic hepatitis. The high
mortality and morbidity associated with HCC is largely due
to the late stage of disease, and early accurate diagnosis of
HCC is a key challenge. Recently, it has been found that the
degradation of FTH by autophagic degradation of ferritin
can cause ferroptosis [75,76]. FTH expression is strongly
correlated with tumor grade, tumor stage and prognosis
of HCC. Importantly, protein interaction studies elucidate
that FTH participates in the maintenance of iron homeosta-
sis and lysosome-dependent degradation [77]. The study
found that compared with normal samples, FTH was sig-
nificantly up-regulated in primary liver cancer tissues and
the expression of FTH in advanced cancer was significantly
increased [78]. Overexpression of FTH accelerates the ex-
pansion and migration of hepatoma cells and makes them
resistant to iron poisoning but does not prevent cell death as
a result of cytotoxic molecules such as oxaliplatin, irinote-
can and doxorubicin. In FTH-recombinant cells, the build-
up of peroxide and mitochondrial reactive oxygen species
(ROS) was decreased, damage to mitochondrial respiratory
function was lessened, and mitochondrial homeostasis was
restored [78]. Notably, with greater PCNA staining and
decreased lipid peroxide production, FTH expression also
enhanced tumorigenic potential in vivo. FTH is involved
in the occurrence and development of hepatocellular car-
cinoma as it regulates iron metabolism and sustains mi-
tochondrial homeostasis. Concordantly, FTH overexpres-
sion is thought to exacerbate the malignancy of HCC cells;
therefore, FTHmay be a new prognostic tool and promising
therapeutic target.

2.6 Ferritin and Gastric Cancer

In terms of prevalence, gastric cancer (GC) ranks sec-
ond in China and fourth in the world compared to other
malignant tumors. Although postoperative radiotherapy,
chemotherapy, and targeted therapy improve survival, the
5-year survival rate for GC is only 36%. In 90% of cases,
gastric cancer has the usual appearance of adenocarcinoma
[79]. The main treatment of gastric cancer is chemother-
apy, but the drug resistance of 5-FU limits its clinical ap-
plication [80]. Studies have shown that inhibiting STAT3
induced ferroptosis may provide a new strategy for the gas-
tric cancer therapy and drug resistance improvement. FTH1

and STAT3 were up-regulated in 5-FU resistant cells and
xenografts. Further studies have demonstrated that STAT3
mediates ferroptosis in gastric cancer by binding to and reg-
ulating the expression of common DNA response elements
in SLC7A11, GPX4 and FTH1 gene promoters [81]. Sim-
ilar to many diseases, ferroptosis also plays a key role in
gastric cancer [82–84] and represents a potential therapeu-
tic target. Ferroptosis is closely linked to ROS, which also
feature in other important cell events such as apoptosis and
autophagy; however, their mechanism of formation is dif-
ferent in each case. Mitochondria are the main source of
ROS production due to electron escape from the electron
transport chain [85]. ROS is also produced by the protea-
somal and lysosomal degradation of ferritin [86]. Ferritin
degradation by ferritinophagy has been shown to be medi-
ated by nuclear receptor coactivator 4 (NCOA4), a part of
the autophagosome that can interact with arginine residues
on the surface of ferritin heavy chain 1 (FTH1) [87]. This
causes iron to be released into an unstable iron pool, trig-
gering the Fenton reaction and ROS production. Some iron
chelators can induce phagocytosis, glutathione production,
and ROS level [88]. Therefore, it is crucial to elucidate
the molecular mechanisms underline ferroptosis and iden-
tify related therapeutic targets in the fight against gastric
cancer.

2.7 Ferritin and Pancreatic Cancer

Pancreatic cancer (PC) is the eighth most frequent
source of cancer death. The only cure for PC is surgery,
but few patients are diagnosed early enough for this to
be a curative option. Therefore, PC has an incredibly
low survival rate. The ability to detect biomarkers in pa-
tients with PC at an early stage is key to successful treat-
ment. Surgery (resection) is first considered, followed by
chemotherapy or radiotherapy. Unfortunately, there are in-
herent disadvantages with traditional treatment methods,
such as a high frequency of adverse effects, the develop-
ment of drug resistance, likelihood of recurrence, and the
unavoidable risk of postoperative complications associated
with invasive surgery. Therefore, alternative therapies with
improved efficacy and reduced toxicity are needed to con-
quer these limitations. Ferritin is overexpressed in pan-
creatic cancer and can be used as a target for radiation
transmission at tumor site [89]. Human heavy chain fer-
ritin (FTH) can embed different types of drugs in the lu-
men and bind to the receptor CD71 in several solid tumors,
thus highlighting the potential use of ferritin in tumor tar-
geted therapy [90]. CD71 is identified as the receptor of
human ferritin H chain (FTH) [91]. FTH binds to differ-
ent receptor regions of its homologous ligand, while main-
taining its receptor mediated endocytosis. Therefore, a new
research route has emerged recently, which uses natural or
engineered FTH as a nano carrier system to deliver drugs
to tumor blocks [92]. Transfer it to human pancreatic tu-
mor xenotransplantation in vivo, with good therapeutic ef-
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fect [93,94]. In recent years, light therapy, which com-
prises both photothermal therapy (PTT) and photodynamic
therapy (PDT), has entered the scene as a potent cancer
treatment technique as it is non-invasive and has low long-
term mortality and complication rates, and greater selectiv-
ity [95,96]. Combining PTT and PDT allows us to take ad-
vantage of a synergistic effect with fewer side effects than
other treatments. Meanwhile, in situ oxygen production is
most commonly undertaken to enhance ROS and improve
the efficacy of PDT and PTT in cancer [97,98]. The effects
of phototherapy can be optimized by increasing ROS and
suppressing the anti-oxidative stress defense system. How-
ever, although oxygen production enhances ROS, excess
ROS has tumor-activating properties [99]. Nuclear fac-
tor erythroid 2-related factor (Nrf2) is a transcription fac-
tor that is activated following oxidative stress and modu-
lates the expression of genes involved in redox homeosta-
sis. Brusatol, a Nrf2 inhibitor, was added to a silicon diox-
ide nanonetwork to produce a self-synergistic tumor nano-
platform. By inhibiting NRF2 and the genes upon which
it acts, including heme oxygenase-1 (HO-1), glutathione
peroxidase 4 (GPX4), and FTH [100,101], Brusatol im-
pairs the antioxidant and hyperthermic capabilities of tu-
mors, thereby exerting good anti-tumor effects. More im-
portantly, Brusatol inactivates GPX4 and FTH, thus pro-
moting ferroptosis and greatly enhancing synergistic pho-
totherapeutic effects. Therefore, phototherapy is a favor-
able new approach for the treatment of pancreatic cancer.

2.8 Ferritin and Neuroblastoma

An elevated CSF-to-serum ferritin ratio is considered
a marker of active tumorigenesis in patients with glioblas-
toma multiforme, while serum ferritin levels have been
demonstrated to be useful for determining disease activity
and treatment guidance of this devastating illness. Neurob-
lastoma is particularly common amongst children, mani-
festing as an extracranial solid tumor and responsible for
around 15% of childhood cancer deaths. Although the 5-
year survival rate is at a relatively optimistic 75%, the re-
currence rate is 50–60%. Tumors in infants are generally
less problematic and typically progress to spontaneous mat-
uration or regression, but tumors in patients older than 18
months frequently progress rapidly and cause significant
morbidity and mortality. Neuroblastoma is not limited in
anatomical location, occuring in the neck, chest, abdomen,
or even bone marrow. Chemotherapy is a common treat-
ment option, with drugs such as cyclophosphamide, vin-
cristine, doxorubicin, cisplatin, etoposide and temozolo-
mide available for neuroblastoma treatment [102]. Unfor-
tunately, as is often the case with chemotherapy, drug resis-
tance and toxic side effects can be debilitating; for example,
bone marrow failure is unfortunately common [103,104]
and can lead to death. At the time of diagnosis, a care-
ful assessment of the patient and the specific tumor should

be conducted to obtain considered risk stratification in or-
der to optimally select treatment. The ferritin heavy chain,
which effectively neutralizes iron by storing it in a solu-
ble and non-toxic state, attenuates iron-mediated ROS [105]
and may be implicated in the sensitivity of N2A cells to
iron poisoning treatment. In N2A cells, basal FTH levels
are more than three times lower than in neural stem cells,
which may lead to high levels of toxic free iron, cause var-
ious modifications in DNA, and enhance lipid peroxida-
tion [106]. However, the overexpression of FTH signifi-
cantly decreased ROS levels and cell death in N2A cells.
In addition, low levels of FTH result in the sensitivity of
neuroblastoma to upper iron inducers. High serum FTH in
patients with neuroblastoma is a marker of poor prognosis
[107], whichmay be due to the promotion of neuroblastoma
growth and inhibition of cell death by FTH. However, some
FTH is nonetheless necessary for life, as embryonic loss of
FTH is debilitating [108], possibly because FTH has more
conserved and important functions, such as its ferro-oxidase
activity, which protects cells from oxidative stress. FTH
inhibits the activity of iron oxidase and, combined with an
iron inducer, may be a beacon of hope for patients with neu-
roblastoma who have poor prognosis.

2.9 Ferritin and Ovarian Cancer

Ovarian cancer causes many deaths in women world-
wide, and the most fatal of gynecological cancers. Because
early clinical signs are not obvious, more than two-thirds of
ovarian cancer cases are not diagnosed until the tumor has
metastasized to the abdominal cavity or other organs [109],
and the five-year survival rate for patients in advanced-
stage ovarian cancer is poor. Despite significant progress
towards curing the disease, huge challenges remain. Ra-
diotherapy, chemotherapy, surgery and other adjuvant ther-
apies are the mainstays of ovarian cancer treatment [110–
112], but the treatment effect is suboptimal and the recur-
rence rate is high. About 90% of ovarian cancer deaths can
be traced to chemoresistance [113]; therefore, there is an
urgent need to address the issue of chemoresistance. Re-
search suggests that showed higher expression of ferritin
H-chain in metastatic samples compared to primary tumor
[114]. Cisplatin is a widely used chemotherapeutic agent
for ovarian cancer. However, cisplatin resistance occurs
frequently when ovarian cancer cells enhance the activity
of their antioxidant system [115]. Therefore, the final re-
active oxygen species (ROS) concentration induced by cis-
platin exposure is critical for the effectiveness of this pro-
oxidative cancer therapy. Ferritin is an invaluable compo-
nent of the antioxidant system because it is able to store
iron in a non-toxic form. In the antioxidant enzyme fam-
ily, the role of FTH is to sequester iron with bioavailability
and catalytic passivation, thus preventing its build-up in the
intracellular unstable pool (LIP) and its involvement in the
Fenton reaction, which generates ROS. FTHmay be the key
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protein associated with cisplatin-based chemotherapy resis-
tance, and inhibition of FTH may be a potential strategy to
improve the sensitivity of cisplatin-resistant ovarian cancer
cells.

2.10 Applications of Ferritin in Cancer Therapy
Since ferritin plays an important role in the develop-

ment of cancer, it’s necessary to make applications of fer-
ritin during anti-cancer therapies.

As mentioned above, ferritin is an important prog-
nostic indicator in treatments of multiple types of can-
cer, other than predicting the effect of surgery [116] and
chemo-therapy [117], increased serum ferritin level could
be served as an independent risk factor after standard
intensity-modulated nasopharyngeal carcinoma radiother-
apy [118], Greenbaum et al. [119] found CAR-T related
toxicities is correlated to high ferritin level, indicating a
novel strategy to prevent therapy toxicity. Among most
type of cancers, ferritin level upregulation indicated a poor
prognostic, but overexpression of ferritin reduced the tumor
cell growth in BCA and NSCLC, these conflictive results
may be due to different experiment system and need to be
verified in future.

Besides, it is interesting that ferritin could be synthe-
sized into nanocarrier in tumor targeted therapies. Anti-
tumor drugs can be transported via ferritin nanocage. It
has been suggested that after being combined to super-
paramagnetic iron oxide, ferritin is suitable to improve the
sensitivity of liver cancer MRI diagnosis [120]. Ferritin
based carriers deliver drugs to CD71 highly expressed tu-
mor, which significantly improved the chemo-therapy ef-
ficiency [121]. Moreover, photosensitizer materials conju-
gated ferritin showed a promising application prospect in
photo-dymamic cancer therapy [122].

However, as we showed in last part, ferritin is typically
upregulated after cancer chemotherapy or radiotherapy, and
protected cancer cells through ferroptosis inhibition, thus
ferritin targeted treating may be helpful for reducing the
ferritin mediated resistance to chemotherapy or radiother-
apy. Ferritin siRNA was administered to chemotherapeu-
tic drug doxorubicin treated breast cancer MCF-7 cell, then
the chemoresistance was reduced through ROS production
and p21 expression [35]. Radiation sensitivity was also im-
proved by ferritin siRNA in astrocytoma cell line [123].
Hayashima’s study showed cystine deprivation induced cell
death via FTH1 degradation [124]. Although these stud-
ies indicated ferritin targeted treatment is a promising way
to improve the effects of cancer therapy, these strategies
need to be further demonstrated in animal models and clinic
trails.

3. Conclusions
Serum ferritin is critical for iron homeostasis in the hu-

man body due to its central role in the storage and release
of iron. To fully understand the role of ferritin in the reg-

ulation of iron balance and disease, future research should
explore the links between the mechanism of action, local-
ization, structure and composition of ferritin, its interaction
with other molecules, as well as its effects on unstable iron
levels.

Ferritin is also associated with anti-oxidative stress,
immune regulation and angiogenesis functions. More and
more studies have found that ferritin expression is closely
related to colorectal cancer, HNSCC, breast cancer, lung
cancer, prostate cancer, liver cancer, and other malignant
tumors. In addition, ferritin is useful as a carrier for the
delivery of anti-tumor drugs because of its unique structural
advantages. At present, more clinical data are needed to
draw firm conclusions on the role of ferritin in anti-cancer
therapy.
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