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Abstract

Objective: Preeclampsia (PE) is a significant cause of maternal and offspring mortality and morbidity. The purpose of this study is
to identify the potential diagnostic signatures of autophagy-related genes (ATGs) in pregnancies with preeclampsia. Methods: The
expression profile of mRNA was obtained from GSE75010 (placenta samples) and GSE48424 dataset (blood samples). The potential
differentially expressed ATGs of PE were screened by R software. The gene-ontology (GO) enrichment analysis, Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathway enrichment analysis, correlation analysis, and protein-protein interactions (PPI) were applied
for the differentially expressed ATGs. The diagnostic markers of PE were then screened based on least absolute shrinkage and selection
operator (LASSO) logistic regression and support vector machine-recursive feature elimination (SVM-RFE). Receiver operating char-
acteristic (ROC) analysis was used to investigate the predictive value of these diagnostic markers. Target miRNAs were predicted based
on the miRDB, DIANA-micro T, Targetscan, and miRWalk databases, and were further validated in GSE84260. Results: A total of
20 differentially expressed ATGs were identified between PE and healthy pregnancies. Functional analysis of differentially expressed
ATGs indicated several enriched terms related to autophagy, apoptosis, angiogenesis, inflammation, immune response, hypoxia-inducible
factor 1 (HIF-1), forkhead box O (FoxO) and AMP-activated protein kinase (AMPK) signaling pathway. A total of 12 ATGs were recog-
nized based on LASSO and SVM-RFE, which made an excellent distinction in both the placenta tissues (area under the curve [AUC] =
0.903) and the blood samples (AUC = 0.972). Furthermore, four feature ATGs (leptin [LEP], ERO1-like [ERO1L], phosphatidylinositol-
4,5-bisphosphate 3-kinase catalytic subunit beta [PIK3CB], and mitogen-activated protein kinase 8 [MAPK8]) were screened and also
shown an excellent diagnostic efficacy (AUC = 0.869 in placenta samples, and AUC = 0.914 in blood samples). Additionally, 81 target
miRNAs were predicted according to the 4 feature ATGs. After evaluating the miRNA expression pattern of GSE84260, 11 miRNAs
were selected. Finally, a miRNA-mRNA regulatory network was constructed, which may participate in the development of PE. Con-
clusions: We established an autophagy-related-gene based signature that may predict pregnancies with PE. And we also constructed a
miRNA-mRNA regulatory network, which may deepen our understanding of the molecular mechanism underlying the development of
PE.
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1. Instruction

Preeclampsia (PE) is diagnosed by de novo onset of
hypertension with blood pressure over 140/90 mmHg and
substantial proteinuria of ≥300 mg in 24 hours at or after
20 weeks of gestation and affects 2% to 8% of pregnan-
cies [1–3]. PE is associated with maternal and offspring
morbidity, including fetal growth restriction, preterm birth,
oligohydramnios, and maternal end-organ damage [4]. Be-
sides, it is the second leading cause of maternal mortality
just behind maternal hemorrhage. This pregnancy compli-
cation presents a major risk factor for other disorders, such
as diabetes, cardiovascular disease, and renal complications
[5–7]. Although the genuine etiology of PE still remains
to be clarified, it is widely accepted that dysregulation of
angiogenesis and trophoblast apoptosis is the major con-
tribution to PE [8,9]. After implantation, the extravillous
trophoblast (EVT) cells migrate into the decidua and then

remodel uterine arteries by replacing the vascular endothe-
lial and muscle cells. The impaired invasion of EVT cells
could affect angiogenesis and disturb the remodeling of the
maternal myometrial spiral artery, then inducing excessive
pregnancy-incompatible factors production, such as inflam-
matory cytokines and anti-angiogenic factors [10,11]. The
presence of inflammation can aggravate trophoblast apop-
tosis which can further disrupt cell migration and placental
vascularization [12,13].

Autophagy, a common phenomenon in eukaryotic
cells, is an important metabolic process for cytoplasmic
proteins and organelles degrading into fatty acids and amino
acids [14]. Previous studies have shown that autophagy
is relevant to various diseases, including respiratory dis-
eases, malignancies, and hypertension in pregnancy [15–
17]. Some studies suggested that autophagy protects the
placenta against pathogens and stress, and has physiologi-
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cal functions for maintaining a normal pregnancy [18,19].
Hyperactivated autophagy induced by oxidative stress may
affect cell invasion and placental vascularization, and then
promote the development of PE [20]. Other studies demon-
strated that under oxidative stress conditions, autophagy
could improve cell survival and reduce cell apoptosis [21].
Thus, exploring the roles of autophagy in PEmay help clini-
cians better understand the etiology of PE and seek for early
diagnostic and prognostic markers. At present, over 30
kinds of autophagy-related genes (ATGs) are demonstrated
to be closely related to autophagy. For instance, it has been
shown that trophoblast-specific conditional autophagy re-
lated (Atg)7 knockout mice exhibited a significant eleva-
tion in blood pressure, a smaller placenta and reduced ex-
pression of placental growth factor [22]. However, the role
of ATGs in PE has not been fully understood.

Using published gene expression data from the Gene
Expression Omnibus (GEO) database, differentially ex-
pressed ATGs were obtained in PE and healthy sam-
ples. The least absolute shrinkage and selection operator
(LASSO) logistic regression and support vector machine-
recursive feature elimination (SVM-FRE) algorithm were
applied to select the feature genes among ATGs. Then, a
predictive model was constructed based on feature genes,
which could efficiently distinguish PE patients from the
healthy pregnancies, and may be used for early diagnosis
of hypertension in pregnancy.

2. Methods
2.1 Microarray Data Acquisition

The key word “preeclampsia” was used to search gene
expression profiles of PE patients in the GEO database (http
s://www.ncbi.nlm.nih.gov/geo) [23]. Three GEO datasets
were selected based on the following criteria: (1) The gene
expression profiling contained cases and controls. (2) The
number of samples should not less than 10 in each group.
(3) Raw data or the processed data were provided. The gene
expression dataset GSE75010, deposited by Leavey et al.
[24], was conducted in placenta tissues from 80 PE patients
and 77 healthy pregnancies and was used to perform the
differential expression analysis and the other analyses. The
GSE48424 dataset, provided by Textoris et al. [25], was
conducted in blood samples from 18 PE patients and 18 con-
trols. The miRNA expression dataset GSE84260 included
16 PE and 16 healthy placentas. The mRNA and miRNA
expressions were presented by log2 conversions.

2.2 Identification of Autophagy-Related Messenger RNAs
in Preeclampsia

718 ATGs were acquired from the Human Autophagy
Database (HADb) (http://www.autophagy.lu/index.html)
and the Molecular Signatures Database of Gene Set Enrich-
ment Analysis (GSEA) (http://www.gsea-msigdb.org/gsea
/index.jsp). 686 ATGs mRNAs were screened out by mR-
NAs of the training cohort GSE75010 intersected with the

autophagy-related encoding gene list.

2.3 Differentially Expressed Analysis of ATGs

The “limma” package in R software (Version 3.6.3)
was applied to identify the differentially expressed genes
(DEGs) and differentially expressed miRNAs (DEmiR-
NAs). The p value < 0.05 and absolute fold-change (FC)
>1.2 were considered criteria for DEGs and DEmiRNAs.
The online software Venn (http://bioinformatics.psb.ugent
.be/webtools/Venn) was used to identify the overlapping
genes or miRNAs [26]. The heatmap and boxplot were con-
ducted using “heatmap” and “ggplot2” packages of R soft-
ware. t-distributed stochastic neighbor embedding (t-SNE)
was applied to figure out the distribution of differentially
ATGs between PE and controls by using “Rtsne” package
in R [27].

2.4 Functional Enrichment Analysis of the Differentially
Expressed ATGs

Gene ontology (GO) annotation analysis and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway en-
richment analysis were performed to characterize the func-
tions and pathways of the differentially expressed ATGs,
which were conducted by using “clusterProfiler” package
in R software [28,29]. The enriched GO terms and KEGG
pathways were selected with the criterion of p value< 0.05.

2.5 Construction of PPI Network and Correlation Analysis
of the Differentially Expressed ATGs

The protein-protein interaction (PPI) analysis of
the differentially expressed ATGs was conducted us-
ing STRING (https://string-db.org/, version 11.5) and
Cytoscape software (https://cytoscape.org, version 3.9.0,
GitHub Inc, San Francisco, USA) [30,31]. Spearman cor-
relation in the “corrplot” package was used to analyze the
correlation of the differentially expressed ATGs.

2.6 Screening and Verification of Potential Diagnostic
Markers

The least absolute shrinkage and selection operator
(LASSO) logistic regression and support vector machine-
recursive feature elimination (SVM-RFE) were applied to
search for best parameters for gene selection among the dif-
ferentially expressed ATGs [32,33]. The LASSO algorithm
was conducted in “glmnet” package and SVM-RFE was es-
tablished by “e1071” package of R software. Subsequently,
we combined the genes from either LASSO or SVM-RFE
for further analysis. The efficacy of genes in distinguish-
ing PE from healthy pregnancies was measured via the area
under the curve (AUC).

2.7 Prediction and Validation of Target miRNA

Target miRNAs were determined by using online
miRNA databases miRDB, DIANA-micro T, Targetscan,
and miRWalk [34–37]. Meanwhile, GSE84260 was used
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Fig. 1. Construction of differentially autophagy-related genes (ATGs) signature in preeclampsia (PE). (A) Venn of overlapping
ATGs between well-known ATGs and differentially expressed genes (DEGs) in GSE75010 dataset. (B) t-SNE of differentially expressed
ATGs between PE and healthy samples. (C) Heatmap of the 20 differentially expressed ATGs in PE and healthy pregnancies. (D) Twenty
differentially expressed ATGs were shown with median expression levels.

to identify the DEmiRNAs between PE patients and the
healthy pregnancies. The overlapping miRNAs, which
were acquired among above four miRNA databases and
verified in GSE84260 dataset, were considered as target
miRNAs.

3. Results
3.1 Construction and Definition of the ATGs Signature in
Preeclampsia

R software was used to extract a total of 509 DEGs
from GSE75010 dataset with the criteria of p value < 0.05
and FC >1.2 after data preprocessing (Supplementary
Table 1). Via using online tool Venn, 20 differentially
expressed ATGs were identified (Fig. 1A), including 15
up-regulated genes and 5 down-regulated genes. tSNE
was used to figure out the distribution of these differen-
tially expressed ATGs between PE and controls graphically
(Fig. 1B). Following the analysis of GSE75010 dataset, the
20 differentially expressed ATGs between PE and controls
were presented in heatmap and boxplot (Fig. 1C,D).

3.2 Functional Analysis and Correlation Analysis of the
Differentially Expressed ATGs

To explore the potential functions of these 20 differ-
entially expressed ATGs, GO and KEGG enrichment anal-
ysis was carried out by using R software (Supplementary
Table 2). As shown in Fig. 2A, the top 10 significantly

enriched terms of GO biological process included process
utilizing autophagic mechanism, leukocyte migration, reg-
ulation of leukocyte chemotaxis, apoptotic process, regula-
tion of autophagy, anatomical structure formation involved
in morphogenesis, regulation of vasculature development,
regulation of immune system process, tube morphogenesis,
and regulation of cell death. In the KEGG pathway analy-
sis, these ATGs were mostly involved in AGE-RAGE sig-
naling pathway in diabetic complications, HIF-1 signaling
pathway, Chagas disease, FoxO signaling pathway, Non-
alcoholic fatty liver disease, viral protein interaction with
cytokine and cytokine receptor, cytokine-cytokine receptor
interaction, AMPK signaling pathway, Yersinia infection,
and typer II diabetes mellitus (Fig. 2B). To determine the in-
teractions among differentially expressed ATGs, PPI anal-
ysis was performed. Except for TRIM14 (tripartite motif
containing 14), KLHL3 (kelch-like family member 3), and
TUBA4A (tubulin alpha 4a), the other 17 ATGs interacted
with each other (Fig. 2C). Furthermore, correlation anal-
ysis was performed to explore the expression correlation
patterns of these differentially expressed ATGs. Fig. 2D
revealed the relationship of the 20 ATGs in GSE75010
dataset.

3.3 Screening and Verification of Predictive ATGs in PE

We used LASSO to identify 13 genes from differ-
entially expressed ATGs as diagnostic markers for PE
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Fig. 2. Functional analysis of 20 differentially expressed ATGs in PE. (A) Circos plot of top 10 enriched GO biological process
terms. (B) Circos plot of top 10 enriched KEGG terms. (C) The protein-protein interactions among 20 differentially expressed ATGs.
(D) Spearman correlation analysis of the 20 differentially expressed ATGs.

Fig. 3. Screening and verification of predictive markers. (A,B) Optimized lambda determined in LASSO regression model. 13
indexes were selected. (C) SVM-RFE was used to screeen diagnostic markers. (D) Venn shows the intersection of predictive markers
obtained by the two algorithms. (E,F) The ROC curve of the dignostic efficacy verification after combining 12 predictive markers to one
variable in GSE75010 dataset and GSE48424 dataset.
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Fig. 4. Screening and verification of feature ATGs. (A) Twenty ATGs were shown with median expression levels in GSE48424
dataset, of which 4 ATGs were differentially expressed. (B,C) The ROC curve of the diagnostic efficacy of these 4 diagnostic markers
in GSE75010 dataset and GSE48424 dataset.

(Fig. 3A,B). While 18 genes were determined as diagnos-
tic markers using the SVM-RFE algorithm (Fig. 3C). The
overlapping gene markers between the two algorithm were
obtained using Venn, and 12 diagnostic related genes were
finally selected for further analysis (Fig. 3D). When com-
bining these 12 genes into one variable, a higher level of
diagnostic efficiency was reached in dataset GSE75010
(AUC = 0.903) (Fig. 3E). Since placenta tissues are ob-
tained invasively, we wonder whether the expression of
ATGs in maternal peripheral blood can be used to predict
preeclampsia. Thus, we evaluated the diagnostic efficiency
of these 12 genes in dataset GSE48424, which contained
blood samples from PE and healthy pregnancies. Results
showed a high diagnostic value of ATGs in blood sam-
ples (AUC = 0.972) (Fig. 3F). We next tested the expres-
sion patterns of these 12 genes in maternal blood. Results
showed that the expression of four genes differed signif-
icantly between PE and controls, including LEP (leptin),
ERO1L (ERO1-like), PIK3CB (phosphatidylinositol-4,5-
bisphosphate 3-kinase catalytic subunit beta), and MAPK8
(mitogen-activated protein kinase 8) (Fig. 4A). In accor-
dance with GSE75010, LEP andMAPK8 showed same ex-
pression patterns both in GSE75010 and GSE48424. While
the expression patterns of ERO1L and PIK3CB were quite
contrary. This phenomena may be caused by different clin-
ical samples. Despite the different expression patterns of

these four genes, the logistic regression model based on
LEP, ERO1L, PIK3CB, and MAPK8 could also efficiently
distinguish patients with PE from the healthy subjects either
in placenta samples or in blood samples, with the AUC of
0.869 and 0.914, respectively (Fig. 4B,C). Moreover, this
model demonstrated reliable diagnostic values not only in
the unattainable placenta samples but also in the accessible
blood samples.

3.4 Prediction and Validation of Targeted miRNA

Four online miRNA databases were used to predict
the target miRNAs of four hub genes, including miRDB,
DIANA-micro T, Targetscan, and miRWalk. A total of
81 overlapping miRNAs were identified after intersec-
tion of these four databases (Fig. 5A, Supplementary Ta-
ble 3). The miRNA-mRNA regulatory network was then
constructed using CytoHubba (Fig. 5B). DEmiRNAs in
patients with preeclampsia were obtained by analyzing
GSE84260 dataset. After intersection with the above 81
miRNAs, 11 miRNAs were identified (Fig. 5C). Finally,
a co-expressed network on PE was established on the pre-
dicted miRNA-RNA pairs (Fig. 5D). Results showed that
ERO1L was not a target gene of these 11 common miR-
NAs and three autophagy-related genes were all regulated
by hsa-miR-557 and hsa-miR-936.
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Fig. 5. Prediction and validation of target miRNAs. (A) Venn diagram presenting the intersection of predicted miRNAs based on
the miRDB, DIANA-micro T, Targetscan, and miRWalk databases. (B) The miRNA-mRNA regulatory network showing relationship
between 4 feature ATGs and 81 miRNAs. (C) Venn diagram showing the intersection between miRNAs and DEmiRNAs in PE pregnan-
cies from the GSE84260 dataset. (D) The relationship between 4 feature ATGs and 11 validated miRNAs (miRNA-mRNA regulatory
network).

4. Discussion

Preeclampsia is characteristic of placental shallow im-
plantation and insufficient spiral artery recasting, which is
considered to be of placental origin [38]. It remains a sig-
nificant contributor of short- and long-term maternal and
fetal morbidity. It is generally accepted that impaired an-
giogenesis and trophoblast apoptosis play important roles
in the occurrence of PE. In recent decades, an association
between autophagy and pregnancy has been demonstrated.
Autophagy is themost fundamental phenomenon in eukary-
otes, through which senescent or damaged structures are
degraded to maintain microenvironment stability. Studies
showed that autophagy can influence the trophoblast cell
homeostasis via maintaining the reactive oxygen species
(ROS) balance so to preserve the angiogenic capacity [39].
It is also reported that autophagy could preserve the func-
tion of trophoblast cells by regulating vascular endothelial
growth factor A (VEGFA) and fms-related tyrosine kinase
1 (FLT1) expression and protecting against cell apoptosis at

the maternal-fetal interface [17]. However excessive or im-
paired autophagy can result in pregnancy related disorders.
Li et al. [17] found that excessive autophagic activity in tro-
phoblasts or endothelial cells could affects trophoblast inva-
sion and the placenta vasculature, thus participating in the
development of preeclampsia. This suggests that to some
extent the development of preeclampsia is regulated by the
autophagic mechanism. To better understand the role of
autophagy in PE, we used published gene expression data
from GEO database to construct bioinformatics analysis of
ATGs in PE.

In this study, 20 differentially expressed ATGs were
obtained in placentas fromwomen diagnosedwith PE.Most
of these autophagy genes were highly-expressed, indicating
that hyperactivated autophagy may be dominant in the de-
velopment of PE. Functional analysis indicated these genes
were related to behaviors like autophagy, apoptosis, angio-
genesis, inflammation, and immune response. The inflam-
matory response is a well-recognized contributor of PE and
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imbalance in immune response may cause abnormalities in
angiogenesis and placental structure [40]. Studies demon-
strated that inflammation can further activate and promote
trophoblast apoptosis and the activation of apoptosis can
backfire on trophoblast through disrupting cell migration
and placenta vasculature, indicating that autophagy damage
may play a pivotal role in the progress of PE via inducing
inflammation status and affecting angiogenesis and apop-
tosis. KEGG analysis showed that these genes may be in-
volved in hypoxia-inducible factor 1 (HIF-1), forkhead box
O (FoxO) and AMP-activated protein kinase (AMPK) sig-
naling pathway. Severe or persistent hypoxia in PE placenta
induces the overexpression of hypoxia-inducible factor 1-
alpha (HIF-1ɑ), which further causes an increase in solu-
ble fms-like tyrosine kinase 1 (sFlt-1) and ultimately lead
to placental dysfunction [41]. Studies also illustrated that
hypoxia induces autophagy in a HIF-dependent induction
of BCL2/adenovirus e1B 19 kDa protein interacting pro-
tein 3 (BNIP3) and BCL2/adenovirus e1B 19 kDa protein
interacting protein 3-like (BNIP3L) [42]. AMPK, a cru-
cial kinase regulating energy homeostasis, plays a pivotal
role in promoting autophagy via regulating phosphorylated
autophagy-related proteins in mTORC1, ULK1 or indirect
proteins to stimulate the expression of autophagy transcrip-
tion factors such as FoxOs [43,44]. Overall, these findings
indicate that autophagy and ATGs may play a significant
role in the develpoment of PE.

Since PE remains a serious threat to the health and life
of the mother and the fetus, it is of vital importance for early
diagnosis in order to expand the window of treatment and
reduce complications. The predictive effect of well-known
sreening indicators is not satisfactory, such as placental
growth factor (PIGF) and soluble fms-like tyrosine kinase
1 (sFlt-1) [45]. Therefore, there is an urgent need for novel
biomarkers with high specificity and sensitivity. To eluci-
date the sensitivity and specificity of the autophagy genes in
predicting PE, 12 feature genes were screened out and pre-
sented a remarkable predictive efficiency of PE and normal
pregnancies. Considering the difficulties in accessing pla-
centa samples during pregnancy, we assessed the discrim-
ination power of these selected feature genes in maternal
blood samples. Results shown that feature ATGs also suc-
ceeded in separating patients with PE from the healthy sub-
jects. Ultimately, four ATGs, LEP, ERO1L, MAPK8, and
PIK3CB, were selected as hub diagnostic genes of ATG-
based signature, which were both differentially expressed
in placenta and blood. Upregulation of leptin (LEP) was de-
tected in placenta samples from PE patients when compared
with those from normal pregnancy and depletion of LEP
could repress apoptosis and promote proliferation, migra-
tion, and invasive capacity [46]. The protein product leptin
of LEP was also increased in the serum of PE patients in
comparison to those with normotensive pregnancies [47].
MAPK8 is reported to dissociate the complex of BCL2L1
(BCL-like 1) and BECN1 (beclin 1) to trigger autophagy

and TNFSF10 (tumor necrosis factor superfamily member
10)-inducedMAPK8 activation and autophagy can be effec-
tively suppressed by knockdown of TRAF2 or RIPK1 [48].
Several studies shown an association of decreasedMAPK8
activity with pulmonary hypertension [49,50]. Yang et al.
[51] comfirmed a decreased expression level of MAPK8
in PE placentas. The role of MAPK8 in pre-capillary pul-
monary hypertension gives us a hint that it might also exert
function on placenta vasculature. The hypermethylation of
ERO1L has been reported to be triggered by increased bind-
ing of DNA (cytosine-5)-methyltransferase 1 (DNMT1) to
the ERO1L promoter which contributes to trophablast cell
apoptosis in the placenta of PE rats [52]. However, the role
of PIK3CB in PE has not been well studied. In this study,
the expression patterns of ERO1L and PIK3CB in PE pla-
cental samples and blood samples were quite contrary. We
assumed that this phenomena may be caused by different
microenvironments. Gene expression is quite a complex
process, which is related not only to the gene itself, but also
to the upstream and downstrem regulators.

There are also some shortcomings in our study.
Firstly, this study was based on bioinformatics analysis and
the expression patterns of ATGs differed between blood
and placental samples. Therefore, further validation from
both in vivo and in vitro experiments is needed. Secondly,
though the ATGs-based signature model presented a power-
ful predictive value in PE, the efficiency remains to be fur-
ther validated in multicenter, large-scale prospective stud-
ies.

5. Conclusions
In this study, we identified 20 potential autophagy-

related genes of preeclampsia via bioinformatics analy-
sis. Moreover, four feature genes LEP, ERO1L, PIK3CB,
and MAPK8 may be used as potential biomarkers for
preeclampsia prediction. Identification of these ATGs
might help to understand the molecular mechanism under-
lying the development of preeclampsia and might provide
a new perspective on the management and treatment of
preeclampsia.
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