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Abstract

Background: High-grade serous ovarian cancer (HGSOC) treatment is facing clinical challenges. The tumor immune microenviron-
ment (TME) has recently been shown to perform a critical function in the prediction of clinical outcomes as well as the effectiveness
of treatment. Leukocyte migration is enhanced in malignant tumors and promotes immunity. However, its role in how to underlie the
migration of immune cells into the TME remains to be further explained in HGSOC.Methods: We built a prognostic multigene signature
with leukocyte migration-related differentially expressed genes (LMDGs), which is associated with TME by single-sample gene set en-
richment analysis (ssGSEA), in the The Cancer Genome Atlas (TCGA) cohort. Furthermore, we systematically correlated risk signature
with immunological characteris-tics in TME, mutational profiles of HGSOC, and potential value in predicting efficacy of platinum-based
chemotherapy and immunotherapy. Screening of the most important prognostic factor among risk signatures by Friends analysis, and
immunofluorescence was employed to examine both the expression of CD2 as well as its relationship with CD8 and PD-1. Results:
LMDGs-related prognostic model showed good prediction performance. Patients who had high-risk scores exhibited significantly re-
duced progression-free survival (PFS) and overall survival (OS) than those with low-risk scores, according to the results of the survival
analysis (p < 0.001). In the TCGA cohort, the risk signature was found to have independent prognostic sig-nificance for HGSOC (HR
=1.829, 95% CI = 1.460–2.290, p< 0.001) and validated in the Gene Expression Omnibus (GEO) cohort. Samples with high-risk scores
had lower levels of CD8+ T cells infiltration. The low-risk signature shapes an inflamed TME in HGSOC. Furthermore, immune therapy
might be effective for the low-risk subtype of HGSOC patients (p < 0.001). Friends analysis revealed that CD2 was the most important
prognostic gene among risk signatures. Real-time quantitative PCR analysis showed the expression of CD2 was greater in tumor cells
as opposed to normal ovarian cells. CD8, PD-1, and CD2 were shown to be co-localized in HGSOC tissues, according to immunofluo-
rescence analyses. CD2 was significantly correlated with CD8 (r = 0.47). Conclusions: Our study identified and validated a promising
LMDGs signature associated with inflamed TME, which might offer some prospective clinical implications for the treatment of SOC.
CD2 might be a novel biomarker to predict immune efficacy.
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1. Introduction
Ovarian cancer (OC) has been shown to have the

worst prognosis when compared to other gynecologic can-
cers. High-grade serous ovarian cancer (HGSOC), the most
common kind of epithelial ovarian cancer (EOC), is usually
diagnosed in an advanced stage [1,2]. HGSOC accounts for
more than 80% of advanced-stage ovarian cancers and over
70% of all ovarian cancer deaths [3,4]. At present, the 5-
year survival rate for HGSOC is roughly 47%, with the ma-
jority of these deaths occurring as a result of recurrence and
chemoresistance [5]. In most cases, the surgery is accom-
panied by platinum-based chemotherapy as part of the stan-
dard therapy for HGSC. To overcome chemoresistance, a
strong emphasis has been placed on targeted treatments, in-
cluding anti-angiogenic and poly (ADP-ribose) polymerase
(PARP) inhibitors, which have shown promising results

when used for maintenance or recurrent disease treatment
[6–10]. Nevertheless, long-term outcomes still pose sig-
nificant challenges, with the prognosis for advanced stage
patients remaining poor.

Numerous clinical studies for HGSOC are now fo-
cusing on immunotherapy. However, emerging clinical
data have shown limited clinical efficacy of immunother-
apy in ovarian cancer, with an objective response rate of
10–15%, which may be related to the highly immunosup-
pressive tumor microenvironment [11]. Zhang et al. [10]
found that tumor-infiltrating T cells were significantly as-
sociated with median progression-free time (22.4months vs
5.8 months, p< 0.001) and overall survival (50.3 months vs
18.0 months, p < 0.001) compared with tumors lacking T
cells improved correlation, which provides strong evidence
for the importance of the local tumor immune microenvi-
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ronment in ovarian cancer. A commonly ignored factor af-
fecting the efficacy of T cell-based immunotherapy is the
capacity of effector T cells to migrate into and localized
inside tumors, and also their ability to reach tumor anti-
gens [12]. Leukocyte migration is of primary importance
for an anti-tumor immune response, which occupies a piv-
otal function in the distribution of immune cells through-
out the body [13]. Research has illustrated that leukocyte
migration is enhanced in malignant tumors and promotes
immunity [14]. As genome sequencing methods have im-
proved, an increasing number of genomic signatures have
been created to predict patient prognosis and treatment re-
sponse. However, the significance of leukocyte migration-
related genes in HGSOC and their relationship with tumor
microenvironment (TME) remains unknown.

Therefore, our study aimed to systematically assess
the association of leukocyte migration with HGSOC prog-
nosis and TME. Then, using the single-sample gene set
enrichment analysis (ssGSEA) approach in the TCGA co-
hort, we built a predictive multigene signature containing
leukocyte migration-related differentially expressed genes
(LMDGs) and verified it in the GEO cohort. Subse-
quently, we applied functional enrichment analysis to elu-
cidate the fundamental processes of immune response me-
diation. Further analysis demonstrated that CD2 could be
considered as a new biomarker in HGSOC.

2. Materials and Methods
2.1 Samples and Data Sets

The data were acquired from the TCGA database
(https://portal.gdc.cancer.gov/) and comprised normalized
whole-genome mRNA expression data of 379 HGSOC
samples, somatic mutation data, and corresponding clinical
data. After removing 1 patient without complete survival
information, 378 HGSOC patients with simultaneously ac-
cessible OS and mRNA expression profile data were in-
cluded in the study. GSE149940 and GSE32062 were
extracted from GPL4133 and GPL6480 using the GEO
database (http://www.ncbi.nlm.nih.gov/geo). The valida-
tion cohort (GSE32062) were external cohorts. The plat-
form annotation files downloaded from the database were
adopted to convert the probe data in the matrix files into
gene symbols. To eliminate the batch effect, the “sva”
R package (https://bioconductor.org/packages/release/bioc
/html/sva.html) was utilized [15]. These data were obtained
from publicly available web sources and we conducted this
research in accordance with applicable protocols regarding
the use of databases.

2.2 Cell Lines and Cell Culture Reagents
The human ovarian carcinoma SKOV3 cell lines

and normal ovarian cell line IOSE80 were obtained from
(ATCC, Manassas, VA, USA). IOSE80 cells were cultured
in RPMI-1640 medium (BasalMedia, L210KJ, Shang-
hai, China) with 10% fetal bovine serum (Gibco, cat.

no. 10270-106, Thermo Fisher Scientific, Waltham, MA,
USA), and SKOV3 cells were cultured in McCoy’s 5a
Medium (cat. no. 30-2007, American Type Culture Collec-
tion (ATCC)) with 15% fetal bovine serum. Cells were cul-
tivated at 37 °C in a humidified atmosphere containing with
5% CO2. All cell lines were authenticated shortly before
use by the short tandem repeat (STR) profile, carried out
by Genewiz (Genewiz, Suzhou, China) and Genetic Test-
ing Biotechnology Corporation (Genetic Testing Biotech-
nology Corporation, Suzhou, China). Cells were routinely
tested for mycoplasma by PCR.

2.3 Identification of LMRGs Set

The immune cells marker gene sets were acquired
from another publication [16]. Furthermore, for each
immune-related cell, the R package “gsva” (https://bioc
onductor.org/packages/release/bioc/html/GSVA.html) was
utilized to perform ssGSEA to calculate the enrichment
score [17]. The “ConsensusClusterPlus” algorithm (50 it-
erations, resample rate of 80%) was used to cluster the HG-
SOC samples into three distinct groups (low-, medium-,
and high-immunity) according to immune cell enrichment
scores in ssGSEA [18]. To confirm that the three subgroups
had distinct immunological profiles, we employed the R
package “estimate” (https://bioinformatics.mdanderson.or
g/estimate/rpackage.html) to determine the immune, ES-
TIMATE, and stromal scores of each tumor sample [19].
Differential expression analysis of DEGs between low-
and high-immunity groups was realized using the “limma”
R package (https://bioconductor.org/packages/release/bioc
/html/limma.html) [20]. p < 0.05 and |log2 fold change
(FC)| >1.0 were adjusted as thresholds. Additionally,
The Molecular Signatures Database (MSigDB) (https://ww
w.gsea-msigdb.org/gsea/msigdb/index.jsp) was used to re-
trieve leukocyte migration sets. Then, the Venn diagrams
were plotted to detect leukocyte migration-related differ-
entially genes (LMRGs) using the R package “VennDia-
gram” (http://cran.r-project.org/web/packages/VennDiagra
m/index.html) [21].

2.4 Development and Validation of a Prognostic Model
Based on LMRGs

In order to generate a prognostic multigene signature
in the training set, univariate Cox analysis and LASSO re-
gression analysis were conducted. The “glmnet” R pack-
age (https://cran.r-project.org/web/packages/glmnet/index
.html) was used to implement the abovementioned pro-
cesses [22]. In order to calculate the risk score, the fol-
lowing equations were used: risk score =

∑
(expression

level of each gene× corresponding regression coefficient).
We categorized the patients into two groups according to
the median value of risk score as the cutoff, namely: low-
risk and high-risk groups. In addition, the Kaplan-Meier
curve and the “survival” R package (https://cran.r-project
.org/web/packages/survival/index.html) were used to ex-
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amine variations in survival rates. Time-dependent ROC
curves for 1-, 3-, and 5-year survival were plotted to ap-
praise the prediction performance of the model. Further-
more, in the TCGA cohort, we utilized univariate and
multivariate Cox regression analyses for OS to evaluate
the prognostic association between the risk signature and
other clinical parameters (such as age, stage, residual tu-
mor, and TCGA subtype). Finally, using the GEO cohort
(GSE32062) as external validation set, a similar approach
was used to test the reliability and generality of the risk sig-
nature.

2.5 Gene Set Enrichment Analysis
GSEA was utilized to determine if a previously estab-

lished gene set exhibited obvious differential expression be-
tween the low- and high-risk groups in the enrichment of
MSigDB Database (c2.cp.kegg and c5.go.bp. v7.2. sym-
bols.gmt). Then, it was assumed that the phenotypic labels
were represented by the low- and high-risk and gene set per-
mutations were undertaken 1000 times for each analysis.
Classification of the gene ontology (GO) and Kyoto En-
cyclopedia of Genes and Genomes (KEGG) pathways that
were enriched in differential phenotype was done using the
normalized enrichment score (NES) and the false discovery
rate (FDR).

2.6 Analysis of the Immunological Properties of TME
The TME in HGSOC exhibits immunological prop-

erties such as activation of the anticancer immunity cy-
cle, tumor infiltrating immune cells (TIICs) infiltration,
and expression of inhibitory immune checkpoints and im-
munomodulators. From the study conducted by Charoen-
tong et al. [23], we initially compiled data on 92
immunomodulators, such as receptors, chemokines, and
MHC. In the anticancer immune response, there are seven
steps inside this cancer immunity cycle [24]. These steps
and their influence on the ultimate fate of tumor cells were
examined by Xu et al. [25] using ssGSEA, based on the
gene expression levels of individual samples. Thereafter,
in order to reduce the possibility of computation mistakes,
we computed the infiltration levels of TIICs using seven
separate algorithms: xCell, Cibersort-ABS, TIMER, quan-
TIseq, MCP-counter, Cibersort, and EPIC [25–30]. Using
earlier research, we were able to identify the effector genes
of TIICs.

Then, type I interferon (IFN) response and its marker
genes were obtained from Akul’s study [31]. From Aus-
lander’s investigation [32], we also obtained ten inhibitory
immune checkpoints with treatment significance for fur-
ther evaluation. The other gene sets, which present T cell-
inflamed gene expression profile (GEP) or immune cy-
tolytic activity (CYT), were collected from earlier studies
[33,34]. Finally, we obtained the T cell receptor (TCR) and
B cell receptor (BCR) Shannon Entropy data fromVésteinn
Thorsson et al. [35].

2.7 Somatic Mutation Analysis
In order to identify single nucleotide variants (SNVs),

single nucleotide polymorphisms (SNPs), and insertion-
deletions (INDELs), we utilized the WES somatic muta-
tions data from both the low-risk (n = 136) and high-risk
(n = 135) groups with the aid of VarScan2.39 program.
The Fisher’s exact test was utilized to assess the differ-
ential mutation genes that had a p-value < 0.05. The so-
matic mutations were visualized utilizing the “maftools” R
package (https://www.bioconductor.org/packages/release/
bioc/html/maftools.html). Furthermore, aneuploidy scores
and homologous recombination deficiency (HRD) score
was obtained from Vésteinn Thorsson et al. and Taylor et
al. [35,36]. Mutant-allele tumor heterogeneity (MATH)
and Tumor mutation burden (TMB) was obtained from
the somatic mutation data of 271 tumor samples, using
“maftools” R package [37,38].

2.8 Prediction of the Response of Comprehensive Therapy
The Genomics of Drug Sensitivity in Cancer (GDSC)

(https://www.cancerrxgene.org/) was used to estimate each
patient’s chemotherapeutic response. Ridge regression was
employed to evaluate the half-maximal inhibitory concen-
tration (IC50) and the “pRRophetic” R package (https://gith
ub.com/paulgeeleher/pRRophetic) was used to conduct 10-
fold cross-validation [39].

We used two computational approaches to anticipate
the immunotherapy response in HGSOC patients at low-
and high-risk groups in order to investigate the associa-
tion between the immunological signature and immunother-
apy effectiveness. To begin with, Tumor Immune Dys-
function and Exclusion (TIDE) (http://tide.dfci.harvard.ed
u) was utilized to anticipate each sample’s anti-CTLA4 and
anti-PD1 immunotherapy response on the basis of the tran-
scriptome patterns [40]. Second, we retrieved patient im-
munophenoscore (IPS) from The Cancer Immunome Atlas
[23].

2.9 Real Time PCR and Immunofluorescence (IF) Staining
Analysis

Real time PCR was performed as previously
described [41]. The expression levels of CD2 were
measured by normal ovarian cell (IOSE80) and
ovarian cancer cell (SKOV3) on ABI 7700 system
using the following primers: forward CD2-F: 5′-
TCAAGAGAGGGTCTCAAAACCA-3′, reverse CD2-R
5′-CCATTCATTACCTCACAGGTCAG-3′; GAPDH-
F: 5′-TGACTTCAACAGCGACACCCA-3′, reverse
GAPDH-R 5′-CACCCTGTTGCTGTAGCCAAA-3′. Total
RNA from cultured cells was isolated at 80% confluence
with TRIzol reagent (T9424, Sigma Aldrich, STL, USA).
Total RNA (1 µg) was reverse transcribed into cDNA
using a reverse transcription kit (Takara, Japan). Real-time
PCR was performed using SYBR Premix Ex Taq (Takara,
Otsu, Japan) according to the manufacturer’s instructions.
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Fig. 1. Immune microenvironment clustering of HGSOC and Construction of Prognosis Prediction Model. (A) There are 48
immune-related gene sets in ssGSEA that have been enriched in HGSOC cancer The gene sets are comprised of immune processes and
immune cells. This heatmap also displays the tumor purity, stromal scores, immune scores, and ESTIMATE scores. (B) Comparison of
leukocyte migration-related differential expression genes (DEGs) of low- and high-immune infiltration groups in this heatmap. (C) Nine
genes were found to be correlated with the prognosis according to the LASSO Cox analysis. (D) 1000-round cross-validation. was used
to determine the best values for the penalty parameter.
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PCR reaction conditions: denaturation at 95 °C for 10 s,
annealing at 60 °C for 15 s, and extension at 72 °C for 30 s.
This cycle is amplified for 45 times, and the melting curve
is analyzed after the cycle. 23 HGSOC samples (OC-1601)
were procured from Servicebio Company (Wuhan, China)
and utilized to IF with anti-human CD2 (ab4055, Abcam,
MA, USA), anti-PD-1 antibody (ab213524, Abcam, MA,
USA) and CD8-specific antibody (ab4055, Abcam, MA,
USA). We evaluated only the proportion of cells that had
a high membrane staining intensity (brown staining) for
CD2 and CD8. The corresponding secondary antibodies
included CY5-TSA (G1224, Servicebio), which was
utilized to detect PD1, FITC-TSA (G1223, Servicebio),
which was utilized to detect CD8, and CY3-TSA (G1222,
Servicebio), which was utilized to detect CD2. DAPI was
used to highlight the nuclei. Lastly, we calculated the
percentages of positive cells across the field.

2.10 Single-Cell Level Analysis
In order to categorize tumor, stromal, and im-

mune cells, we implemented hierarchical clustering based
on the ovarian Cancer (OV) single-cell sequencing data
(GSE118828) collected from the electronic website of the
Tumor Immune Single-cell Hub (TISCH) (http://tisch.co
mp-genomics.org/) [42,43]. After that, the expression of
CD2 in these cells was determined, and the findings were
shown graphically using scatter plot.

2.11 Statistical Analysis
R software version 4.0.3 (https://www.r-project.org/)

was utilized to conduct all statistical analyses and plot draw-
ings. The unpaired Student’s t-test and the Whitney U-test
were utilized to compare variations between two groups
with normal distributed and non-normal distributed vari-
ables, respectively [44]. Categorical variables were com-
pared utilizing a Chi-square test [45]. With regard to non-
parametric data, the Wilcoxon rank-sum test was employed
when two groups were involved, whereas the Kruskal-
Wallis test was employed when more than two groups were
involved. Using Pearson’s chi-square test, correlations be-
tween qualitative variables were examined. A p-value less
than 0.05 was interpreted as having statistical significance
if it was not indicated above.

3. Results
3.1 Immune Microenvironment Landscape of HGSOC and
Construction of Prognosis Prediction Model

With the application of the ssGSEA method, 48 infil-
trating immune cells were integrated into HGSOC tissues in
order to measure their immunological capability (Fig. 1A).
Consensus clustering analysis was used to categorize the
overall TCGA cohort into three different groups (high-
immunity: 217 samples; median-immunity: 120 samples,
and low-immunity: 42 samples). For the purpose of validat-
ing the immunity of the three immune groups, we included

the ESTIMATE, the immune, and the stromal scores in
the heatmap (Fig. 1B). We discovered that when compared
to the group with low immunity, the group with high im-
munity exhibited stronger immune components as well as
lesser tumor purity.

To examine the function of leukocyte migration in
modulating microenvironment immunity of HGSOC, we
performed limma analysis to identify 39 differentially ex-
pressed leukocyte migration-related genes in the low- and
high-immunity group (Fig. 1B, Supplementary Table 1).
Then, Univariate Cox and LASSO regression analyses
were carried out in order to detect significant prognostic
biomarkers, and the results were used to create a risk sig-
nature (Fig. 1C,D). The formula for the risk signature was
determined using corresponding coefficients: risk score =
0.6054 × CXCR2 - 0.2539 × CCR7 - 0.2659 × SELL -
0.0251 × CD2 + 0.0127 × TREM1 - 0.8400 × TBX21-
0.1818 × CCL13 + 0.3648 × ITGAM + 0.4273 × SIRPG.

3.2 Clinical Prognostic Significance of Risk Signature in
the TCGA and GEO Databases

HGSOC samples were categorized into low- and high-
risk groups according to their median risk score. The
Kaplan-Meier curve revealed that the high-risk group sam-
ples exhibited poorer overall survival (OS) and progression-
free survival (PFS) as opposed to the low-risk group sam-
ples, demonstrating that the prognostic signature of the risk
score is efficacious for predicting survival. Notably, the
data from the GEO (GSE32062) database was used to val-
idate this finding (Fig. 2A,B). In addition, by applying re-
ceiver operating characteristic curve analysis on the TCGA
data, it was discovered that risk signature was a strong pre-
dictor for 1-year (AUC = 0.646), three-year (AUC = 0.634),
and five-year survivals (AUC = 0.685). The validity of this
discovery was greatly increased by incorporating data gath-
ered from the GEO database (AUC = 0.640, 0.595, 0.628)
(Fig. 2C). Univariate Cox analysis revealed that risk signa-
ture (HR = 1.783; 95% CI = 1.440–2.207; p < 0.001), and
tumor residual disease were both greatly associated with
a dismal OS. The results of the Multivariate Cox analy-
sis illustrated that high-risk signature in TCGA database
(HR = 1.829; 95% CI = 1.420–2.290; p < 0.001) and in
GEO database (HR = 1.287; 95% CI = 1.099–1.506; p =
0.002) exhibited an independent correlation with a worse
OS (Fig. 3A,B). Consequently, our risk signature has the
potential to serve as an independent prognostic marker for
HGSOC, as shown by this finding.

Then, we explored relationships between risk signa-
ture and stage in HGSOC. According to the data from the
TCGA and GEO databases, HGSOC patients showed sig-
nificantly higher risk scores with the high stage as opposed
to the low stage group patients (Fig. 3C). Interestingly, we
discovered that the immunoreactive group had a lower risk
score compared to patients in the other TCGA subgroups
(Fig. 3D). These findings identify that risk signature is cru-
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Fig. 2. The prognostic value of risk signature. (A) In the GEO and TCGA datasets, low-risk group patients had a favorable OS rate as
opposed to those in the high-risk group. (B) In the TCGA and GEO datasets, low-risk group patients had a longer PFS as opposed to the
high-risk group patients. (C) The ROC curve for 1-, 3-, and 5-year OS of HGSOC patients in the GEO and TCGA datasets.

cial to anti-tumor immunity.

3.3 Gene Set Enrichment Analysis

Gene set enrichment analysis was performed on the
GO and KEGG databases utilizing the MSigDB database
(FDR <0.05). NES was conducted to determine the GO

and signaling pathways that were strongly enriched. In
this research, antigen processing, as well as peptide antigen
presentation through immune response regulating signaling
pathway, MHC class I, positive modulation of T cell recep-
tor signaling pathway, response to type I interferon, pos-
itive modulation of lymphocyte chemotaxis, antigen pro-
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Fig. 3. Evaluation of the independent prognostic significance andGSEA enrichment analysis of risk signature. (A,B) Cox analyses,
both univariate and multivariate, were used to determine the independent prognostic significance of the risk signature with regard to OS in
glioma patients based on the CGGA and TCGAdatasets. (C) Relationships between risk signature and stage in HGSOC. (D) Relationships
between risk signature and TCGA subgroup in HGSOC. (E,F) GO and KEGG were evaluated utilizing the GSEA. **p < 0.01, ***p <

0.001, nsp > 0.05.
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cessing and presentation, JAK_STAT signaling pathway,
and cell adhesionmolecules (CAMs), were enriched in low-
risk phenotype (Fig. 3E,F).

3.4 The Low-Risk Signature Shapes an Inflamed TME in
HGSOC

Depending on the proportion of cytotoxic immune
cells infiltrating TME, the tumor can be described as ei-
ther immunologically active ‘inflamed’ or immunologically
passive ‘non-inflamed’ [46]. Risk signature was observed
to exhibit a negative correlation with a vast proportion of
immunomodulators (Fig. 4A). Most of the MHCmolecules
were downmodulated in the high-risk group, indicating that
the ability to present and process antigens had been reduced.
Three key chemokines (CXCR3, CXCL10, and CXCL9),
which are required to recruit CD8+ T cells into the TME
in HGSOC, were shown to be upmodulated in the low-
risk group. Further investigation revealed that paired re-
ceptors and other chemokines such as CXCL13, CXCL11,
CCL5, XCL2, and CCL4, exhibited a negative association
with risk signature. These receptors and chemokines stim-
ulate the mobilization of effector TIICs, including antigen-
presenting cells and CD8+ T cells.

The cancer immunity cycle is a representation of our
body’s immunological response to cancer. The functions of
the cancer-immunity cycle meticulously represent the ulti-
mate impact of the intricate immunomodulatory interplay in
the TME [24,25]. Most of the cycle steps were shown to be
increased in the low-risk group, such as the production of
cancer cell antigens (Step 1), priming and activation (Step
3), as well as immune cells transportation to tumors (Step 4)
(recruitment of DC, NK cells, Macrophages, Th1 cells, and
CD8 T cell) (Fig. 4B). Consequently, the decreased activ-
ity of these steps might result in a decrease in the infiltration
levels of effector TIICs in the TME. Notably, the low-risk
group had a decreased T cell activity in recognizing cancer
cells (Step 6). The reason for this phenomenon might lie in
the fact that the low-risk group had an elevated level of PD-
L1 expression. Step 7 activity (cancerous cell death) was
discovered to be upmodulated in the low-risk group.

Following that, we estimated the infiltration levels of
TIICs utilizing seven separate algorithms provided by the
TIMER website. In our result, risk signature was inversely
associated with DC cells, B cells, and CD8+ T cells in the
TCGA datasets (Fig. 4C). These results were confirmed in
the Geo cohort (Supplementary Fig. 1). Similarly, risk
signature was inversely associated with the CD8+ T cells
effector genes, which was elevated in the low-risk group
(Fig. 4D,E). Moreover, the marker genes of type I IFN re-
sponse were a high expression in the low-risk group. The
risk model was inversely associated with type I IFN re-
sponse (Fig. 5A,B). Consistently, risk signature was ob-
served to be inversely associated with most of the immune
checkpoint inhibitors such as TIGIT, IDO1, TIM-3, LAG-
3, PD-1, CTLA-4, and PD-L1 (Fig. 5C,D). Collectively, the

low-risk signature shapes an inflamed TME.
Meanwhile, we discovered the risk signature strongly

correlated with CYT and GEP in HGSOC, which both
decreased in the low-risk group (Fig. 5E). Furtherly, we
evaluated TCR and BCR repertoires from the TCGA HG-
SOC cohort. Mean TCR and BCR diversity values, which
were measured by Shannon entropy, differed by the risk
signature, with the highest diversity in the low-risk score
groups (Fig. 5F). A powerful anti-tumor response may be
associated with antigen-specific BCR and TCR repertoires
that are essential for the identification of malignant cells
and pathogens. Our finding indicated risk signature was
strongly associated with the inflamed TME and anti-tumor
response.

3.5 Mapping of Mutations Found in HGSOC

To find the relevant genetic alterations, we dissected
the somatic mutations between the low and high-risk co-
horts. The top 30 most commonly mutated genes in the
corresponding cohorts are depicted in Fig. 6A. Then we ex-
plored the association between risk signature and measures
of DNA damage, including aneuploidy score, homologous
recombination deficiency (HRD). The low-risk group cor-
related negatively with aneuploidy score, positively with
HRD (Fig. 6B,C). Due to lower leukocyte infiltration in
high aneuploidy samples, aneuploidy was negatively asso-
ciated with immunological signaling gene expression [36].
These results suggest that the risk signature of the affected
immune infiltrations may be associated with aneuploidy. It
has been hypothesized that the genetic instability exhibited
in HRD tumors alters immunogenicity, making thesemalig-
nancies highly sensitive to immunotherapy. We next calcu-
lated the TMB and MATH by the maftools R package. De-
spite the fact that the TMBwas greater in the low-risk group
as opposed to that of the high-risk group, this difference was
not significant. No differences in MATH were found be-
tween the low- and high-risk groups (Fig. 6D). This result
demonstrated that risk signature may serve as an immune
marker independent of TMB and MATH.

3.6 Risk Signature Predicts the Response of Conventional
Therapy

The commonly used treatment options for ovarian
cancer include chemotherapy, targeted therapy, and im-
munotherapy. Platinum-based chemotherapy is the corner-
stone of treating HGSOC. To determine the effect of Risk
signature on Platinum-Based Chemoresistance in HGSOC,
according to platinum-based response (whether to platinum
resistance) and risk score, we categorized the samples in
TCGAandGEOdatabases into four groups, including high-
risk score groups with or without platinum resistance and
low-risk score groups with or without platinum resistance.
We found that no matter whether the risk score in HG-
SOC patients was high or low, patients who were sensi-
tive about platinum had a longer survival time as opposed
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Fig. 4. The low-risk signature shapes an inflamed TME in HGSOC. (A) In HGSOC, there are differences in the expression of
122 immunomodulators (MHC, receptors, and chemokines). (B) Difference between low- and high-risk groups at distinct stages of the
cancer immunity cycle. (C) Relationship between the risk score and infiltration levels of severe TIICs, as determined by seven separate
algorithms. (D) Differences in the effector genes of CD8+ cells between low- and high-risk groups. (E) Relationship between risk score
and CD8+ cell effector genes. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, nsp > 0.05.
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Fig. 5. The immune profile of risk signature in HGSOC. (A) Relationship between risk score and type I IFN response. (B) Differences
in the effector genes of type I IFN signature between low- and high-risk groups. (C) Relationship between risk score and 10 inhibitory
immune checkpoints. (D) Differences in PD1, PDL-1, CTLA4, LAG3 between low- and high-risk groups. (E) Differences in GEP and
CYT between low- and high-risk groups. (F) Differences in TCR and BCR diversity values between low- and high-risk groups. **p <

0.01, ***p < 0.001.

to those with platinum resistance. But the low-risk score
group was found to have a survival advantage as opposed to
the high group inHGSOCpatients whowere sensitive about
platinum, but not those with platinum resistance (Fig. 7A).
Moreover, patients with platinum resistance had a higher
risk score (Fig. 7B). Furthermore, we estimated the IC50

for each subtype using the prediction model for the three
agents developed by Xiaofan Lu [47]. The findings indi-
cated that the low-risk group responded more favorably to
chemotherapy as opposed to the high-risk group (cisplatin,
p < 0.01; paclitaxel, p < 0.001; etoposide, p < 0.001)
(Fig. 7C). Olaparib and Niraparib, the poly(ADP-ribose)
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Fig. 6. Mapping of mutations found in HGSOC. (A) The top 30 commonly mutated genes between low- and high-METTL7B groups.
(B) Differences in AS, including AS_amp and AS_del between low- and high-risk groups. (C) Differences in HDR between low- and
high-risk groups. (D) Differences in TMB and MATH between low- and high-risk groups. *p < 0.05, **p < 0.01.

polymerase (PARP) inhibitors, were authorized for main-
tenance treatment of advanced HGSOC after first-line plat-
inum chemotherapy [48]. We then analyzed the effect of
risk signature on PARP inhibitors using the GEO database
(GSE149960) (Fig. 7D). Results demonstrated that PARP
inhibitor-resistance group tended to have higher risk scores
than PARP inhibitor-sensitive group (p = 0.03). The find-
ings above revealed that the risk signature can be used to

identify potential groups of patients who gain benefit from
PARP inhibitors and platinum-based chemotherapy.

Despite recent advances in the maintenance treatment
of HGSOC, patients with locally progressive or metastatic
HGSOC have been less successful in achieving satisfac-
tory clinical results. We utilized the TIDE algorithm to
estimate immune checkpoint blockade (ICB) treatment re-
sponse in order to determine possible groups of patients
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Fig. 7. Risk signature predicts the response of conventional therapy. (A) Kaplan-Meier curves of OS for the high-risk score with or
without platinum resistance and low-risk score with or without platinum resistance in the TCGA and GEO cohort. (B) Differences in risk
score between platinum resistance and platinum-sensitive groups. (C) Differences in risk score between PARP inhibitors resistance and
PARP inhibitors sensitive groups. (D) The boxplots depict the estimated IC50 values for doxorubicin, paclitaxel, and cisplatin for three
subtypes, as determined by the GDSC database. (E) The anticipated immunotherapy (TRUE/FALSE) response rate to anti-PD-L1 in
low- and high-risk groups in the TCGA cohort. (F) Differences in IPS between low- and high-risk groups. *p < 0.05, **p < 0.01, ***p
< 0.001.
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who may gain benefit from immunotherapy. Results il-
lustrated that the low-risk group displayed a significantly
improved response to immunotherapy as opposed to the
high-risk group (Fig. 7E). The Cancer Immunome Atlas
(https://tcia.at/) showed similar results. The low-risk group
exhibited a greater response rate to CTLA4 and PD-1 in-
hibitors, implying that patients who have low-risk scores
may gain benefit from immunotherapy (Fig. 7F).

3.7 CD2 Expression, Survival, and Immune Infiltration
Analyses

We further performed a Friends analysis of 9 risk
genes by using GOSemSim R package to screen a hub
gene, CD2 (Fig. 8A) [49]. Notably, the expression of CD2
was greatly decreased in normal tissues compared to HG-
SOC tissues using Gene Expression Profiling Interactive
Analysis (GEPIA) (Fig. 8B,C) [50]. Based on the cellu-
lar level, the expression of CD2 was shown to be greater
in tumor cell as opposed to normal ovarian cell by PCR
(Fig. 8D). In the TCGA database, patients with HGSOC
who exhibited low expression of CD2 had obviously poorer
OS compared with those who exhibited high CD2 expres-
sion (Fig. 8E). Following that, the survival analysis was
tested utilizing the GEO database (Fig. 8F).

TIICs of HGSOC samples were utilized to further
explore the interaction between CD2 expression and the
TME. Seven separate algorithms from the TIMER online
platform were employed to analyze these TIICs. Results
showed CD8+ T cells, dendritic cells, M1 macrophages
strongly correlated with CD2, which offers convincing ev-
idence for the critical function played by CD2 in the TME
of HGSOC samples (Supplementary Fig. 2). Interest-
ingly, the radar plot demonstrated that CD2 strongly cor-
related with immune checkpoint inhibitors (PD1, PDL1,
CALT4, IDO1), TCR scores, BCR scores, GEP, and CYT,
negatively correlated with TIDE score (Fig. 9A). More-
over, the group displaying elevated CD2 expression was
found to have a considerably improved response to im-
munotherapy as opposed to the low group using the TIDE
algorithm (Fig. 9B). Furthermore, multicolor immunofluo-
rescence analysis demonstrated that CD2, PD-1, and CD8
were co-localized in HGSOC tissues, suggesting that CD2
andCD8+ cells spatially interact in the TME and optimizing
the CD2 intensity in HGSOC tissue could enhance the ef-
fectiveness of immunotherapy by enhancing the anti-tumor
immune responses (Fig. 9C,D). In addition, we found that
the expression level of CD2 was higher in T cells compared
with malignant cells and stromal cells in the OV patients
(GSE118828) by using TISCH database (Fig. 9E).

4. Discussion
In the present research, we utilized RNA-seq data

retrieved from TCGA together with 39 differentially ex-
pressed leukocyte migration-related genes to construct a
prognosis-related 9-LMGs signature that can be used to es-

tablish risk classification and anticipate clinical outcomes
in cancer patients. We discovered that there is a strong cor-
relation between the risk signature and clinical-pathological
factors. The efficiency of the risk signature as an indepen-
dent prognostic indicator was validated using Cox regres-
sion. Immune-related pathways were shown to be signifi-
cantly enriched in the low-risk group, as demonstrated by
the functional enrichment analysis. We discovered that the
risk signature was associated with the processes of the can-
cer immunity cycle. Furthermore, the high-risk group was
inversely associated with a large number of immunomod-
ulators and exhibited a suppressive immune microenviron-
ment. Moreover, we examined the prognostic significance
of risk score for HGSOC responses to different treatments.
We discovered that patients in the low-risk group had a
higher likelihood of benefiting from chemotherapy treat-
ment as opposed to those in the high-risk group. ICB ther-
apy might be efficacious for HGSOC patients with low-risk
scores. Subsequent analysis demonstrated that CD2 was a
hub gene related to TME, played a significant prognostic
role in HGSOC patients. Tumors with elevated levels of
CD2+ cell infiltration were shown to have a higher abun-
dance of intratumoral PD1+ cells and CD8+ T cells infil-
tration, according to immunofluorescence analyses.

Leukocytes are immune cells that comprise both adap-
tive immune cells (T and B lymphocytes) and innate im-
mune cells (NK cells, dendritic cells, macrophages, mono-
cytes, granulocytes, etc.) [51]. The migration of leuko-
cytes is critical for immune system development as well as
in the response to tumor rejection, inflammation, and infec-
tion [52]. Several research reports have demonstrated that
defects in the migration of NK cells to tumor locations
resulted in the development of immune-suppressive TME
[53]. Trafficking of T cells into the TME is key to the suc-
cess of cancer immunotherapy, such as the adoptive cell
transfer therapy [54]. Nevertheless, most studies mainly
focused on chemokines, the proteins that modulate the
migration of leukocytes, inducing the recruitment of pro-
tumorigenic immune cells while inhibiting the buildup of
anti-tumorigenic immune cells. CXCR2 inhibition reduced
the count of MDSC cells in tumors while increasing the
number of T cells and natural killer cells [55]. In a previous
study, CXCR3was identified as a prognostic marker as well
as a possible therapeutic target for individuals with solid
malignancies [56]. Our findings revealed that risk classifi-
cation based on integrated LMRG sets had a crucial func-
tion in the TME and prognosis of HGSOC patients

TME may be classified into two groups: those with
T-cell inflammation (with positive CD8+ T-cell infiltration
and also type I interferon features) and those without T-
cell inflammation (lacking both). The TME with T cell–
inflammation is often correlated with improved prognosis
and enhanced susceptibility to ICB [57–59]. Here, we noted
that the infiltration levels of CD8+ T cells were obviously
elevated in the low-risk group, which enriched in the re-
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Fig. 8. CD2 Expression and Survival Analyses. (A) The boxplots of the estimated factor value for 9 LMDGs based on Friends analysis.
(B) Pan-cancer analysis of CD2 expression across the cancerous tissue and the corresponding adjacent normal tissue from TCGA. (C)
Differential expression of CD2 in HGSOC. (D) Real-time quantitative PCR analysis of CD2 expression in normal ovarian cells and skov3
ovarian cancer cells. (E,F) Kaplan-Meier curves of OS for CD2 in the GEO and TCGA cohorts. *p < 0.05, ***p < 0.001.
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Fig. 9. Correlations between CD2, the immune infiltration, and the response of immunotherapy in HGSOC. (A) Radar graph of the
correlation between CD2 and immune checkpoint inhibitors (PD1, PDL1, CALT4, IDO1), TCR scores, BCR scores, GEP, CYT, and TIDE
score. (B) The anticipated immunotherapy (TRUE/FALSE) response rate to anti-PD-L1 in low- and high-risk CD2 in the TCGA cohort.
(C) Expression of CD2, CD8, and PD-L1 in our cohort was detected using immunofluorescence in two immune phenotypes based on the
expression of CD8+ T cells. (D) Correlation between the CD2 positive rate and CD8 positive rate detected using immunofluorescence.
(E) Single cell level analysis evaluating the expression of CD2. ***p < 0.001.

sponse to type I interferon. The recruitment of CD8+T cells
to tumors is modulated by a variety of chemokines. Mul-
tiple chemokines are associated with the infiltration levels
of CD8+ T cells in melanoma, such as the CCR5 ligands,
CCL4 and CCL5, as well as the CXCR3 ligands, CXCL9
and CXCL10, which are interferon-responsive genes that
have been shown to be activated in DC following the

activation of type I interferon [60]. The stimulation of
the Janus kinase-signal transducer and activator of tran-
scription (JAK-STAT) pathway is necessary for the media-
tion of cellular responses to interferons. STAT proteins are
known to be the primary signaling proteins for inflamma-
tory cytokines, and they perform a critical role in the func-
tion and differentiation of immune cells [61]. Our study
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demonstrated that the low-risk group was passively associ-
ated with several key chemokines and strongly enriched in
the modulation of the immunity pathways, including JAK-
STAT pathway and antigen processing and presentation, by
using KEGG analysis. Moreover, the present study also in-
dicated that higher CYT and GEP, both of which are strong
anti-tumor immune effector signature and inflammation in-
dicators, were observed in the low-risk group. Taken to-
gether, these findings illustrated that the low-risk group
would shape the T cell–inflamed TME in HGSOC.

Numerous studies have shown that the presence of
CD8+ T cells is correlated with the up-modulation of im-
munological inhibitory pathways, which are responsible for
immune suppression. In the T-cell-inflamed TME, there
are four primary immune evasion mechanisms: (i) PD-L1
up-modulation and subsequent T cells suppression via PD-
L1 interaction with PD-1; (ii) IDO up-modulation; (iii) re-
cruitment of regulatory T cells (Tregs) via CCL22 (pro-
duced from effector T cells); (iv) selection of tumor cells
that have decreased antigenic immunogenicity [57]. As op-
posed to the T-cell inflammation TME, the TME with non-
T-cell-inflammation has neither any T cells nor upmodu-
lated immune suppressive mechanisms [58]. As a result, it
should come as no surprise that checkpoint blocking is in-
effective in this group of patients [62]. Our findings also
imply that the low-risk group had an elevated level of im-
mune checkpoint inhibitors and CCL22 as opposed to the
high-risk group. The patients with low-risk scores tend to
respond to ICB immunotherapy.

Aneuploidy has been shown to be correlated with di-
minished immune infiltration in a variety of tumor forms,
according to the research literature [63]. The expressions
of specific genes associated with cytotoxic actions facili-
tated by NK cells and CD8+ T cells were greatly decreased
in tumors with high aneuploidy. Furthermore, genes in-
volved in pathways that are associated with the existence
of a continuous immune response and a cytokine-rich mi-
croenvironment were shown to be downregulated in high
aneuploidy tumors [36]. These reports are consistent with
what we have observed in the low-risk group. In our re-
search, we discovered a strong positive correlation between
risk signature and aneuploidy. Collectively, our findings
indicate a decrease in immune-mediated pro-inflammatory
and cytotoxic activity in the microenvironment of high-risk
score tumors. When compared to non-HRD tumors, the
response of HRD tumors to anti-neoplastic drugs such as
platinum chemotherapy [64–66] or poly(ADP-ribose) poly-
merase (PARP) inhibitors [67,68] has been shown to be var-
ied. We found the high-risk group tends to have lower HRD
scores and acquire resistance to platinum-based chemother-
apy in HGSOC. Moreover, defects in the HR pathway have
been correlated with the activation of the stimulator of in-
terferon genes (STING) pathway, which has been demon-
strated to enhance the responses of antigen-specific T cell
and transcription of type I interferon (IFN) genes in den-

dritic cells [69] and tumor cells [70]. This finding further
corroborated our conclusion that the low-risk groupmay de-
fine a T cell-inflamed TME and exhibit a better response to
ICB therapy.

CD2 is a well-recognized transmembrane glycopro-
tein belonging to the immunoglobulin superfamily, who ex-
pressed on the surface of dendritic cells, thymocytes, NK
cells, and T cells [71,72]. Despite the fact that CD2 has been
recognized for many years to be involved in a costimulatory
pathway of T cell activation, studies of other costimulatory
pathways with greater impact on mice have received con-
siderable attention from immunologists up to now. Mul-
tiple studies showed that elevated expression of CD2 was
correlated with the improved OS and distant metastasis-
free survival in BRCA samples [73]. Our data indicated
that elevated expression of CD2 resulted in an obviously
longer FPS and OS. According to a recent research report,
the downmodulation of CD2 could decrease the responses
of anti-tumor T cells in colorectal and endometrial can-
cers, and even offset the efficacy of PD-1 immunotherapy in
these cancers [74]. These reports are consistent with what
we have observed in HGSOC by immunofluorescence. Ac-
cording to our findings, the infiltration levels of numer-
ous effector TIICs, for example, CD8+ T cells and M1
macrophages, were considerably higher in the high-CD2
group, indicating that the expression of CD2 has an influ-
ence on the TME in HGSOC patients.

In spite of the fact that we have developed a prognos-
tic signature and that our research gives new directions for
improving HGSOC management, there exist a few draw-
backs to this research. Firstly, the size of our sample and
cell lines might be insufficient. Our external validation co-
hort only consisted of OS, which cannot further validate our
signature effectively. The findings need to be validated by
more independent cohorts to prove the clinical utility of risk
model. Moreover, despite our efforts to elucidate the cor-
relation between 9 LMRGs and immune infiltration, addi-
tional functional experiments are required to investigate the
possible mechanisms in HGSOC. Lastly, there is currently
no relevant dataset on HGSOC immunotherapy to validate
the efficacy of our model and to screen HGSOC patients
who may benefit from immunotherapy. Prospective clin-
ical trials are recommended in order to further verify the
clinical efficiency of the risk model in the context of ICB
decisions.

5. Conclusions
We validated our results using two independent co-

horts, which strengthened the robustness of our conclusion
in terms of prognostic value of our 9 LMRGs prognostic
signature. Our study identified the risk model of leukocyte
migration associated with inflammatory TME in HGSOC
and the role of the hub gene CD2 in TME, which may pro-
vide some potential clinical implications for comprehensive
treatment of HGSOC. Meanwhile, CD2 may become a new
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biomarker for predicting immune efficacy, and relevant ex-
periments are needed to further confirm the key mechanism
of CD2 regulation of TME.
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