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Abstract

Background: Ferroptosis is an iron-dependent programmed cell death mode induced by the toxic buildup of phospholipid peroxidation.
Although it is known to affect the initiation and growth of tumors, the association between ferroptosis-related genes (FRGs) and small cell
lung cancer (SCLC) has yet to be established. Methods: We used the gene expression omnibus (GEO) and ferroptosis database (FerrDb)
to acquire information on SCLC and its associated FRGs. Marker genes were subsequently identified using Least Absolute Shrinkage
and Selection Operator (LASSO) and support vector machine recursive feature eilmination (SVM-RFE) algorithms and analyzed for
single-gene function and pathway enrichment. Using the drug-gene interaction database (DGIdb), we identified forty drugs targeting six
marker genes. The competing endogenous RNA (ceRNA) network revealed the regulation pattern for long non-coding RNA (LncRNA)-
microRNA (miRNA)-messenger RNA (mRNA) based on marker genes. Results: Six differentially expressed FRGs (ATG3, MUC1,
RRM2, IDH2, PARP1, and EZH2) were identified as marker genes with accurate diagnostic capabilities. According to single-gene
function and pathway enrichment analyses, these marker genes may be involved in immunomodulation and the cell cycle, as well as
numerous pathways connected to tumorigenesis, including the JAK-STAT and PPAR signal pathways. In addition, CIBERSORT analysis
showed thatMUC1 and PARP1 expression may affect the immune microenvironment in SCLC.Conclusions: We confirmed the accuracy
of marker genes for the diagnosis of SCLC using a logistic regression model, thus providing further opportunities to study SCLC-related
mechanisms. The accuracy of these results for the diagnosis of SCLC must now be confirmed by further research prior to clinical
application.

Keywords: bioinformatics; small cell lung cancer; ferroptosis; immune infiltration

1. Introduction
Lung cancer is the most lethal cancer type in the world

[1]. Small cell lung cancer (SCLC) is a highly malignant tu-
mor type that accounts for about 15–20% of all lung cancers
[2,3]. The 5-year survival rate for SCLC is <10% due to
its rapid growth and frequent metastasis [4]. Immunother-
apy with PD-L1 antibody in combination with platinum-
etoposide has gradually become the standard first-line treat-
ment for extensive SCLC [5,6]. Although most patients
with SCLC initially respond well, they soon develop resis-
tance [7], and hence only a few patients benefit from im-
munotherapy. Therefore, novel biomarkers that can help to
treat SCLC are urgently needed.

Ferroptosis is a newly recognized mode of pro-
grammed cell death identified several years ago. It mani-
fests mainly as the accumulation of ferritin and lipid perox-
ide on the membrane [8]. Ferroptosis differs from apoptosis
and necrosis in that it characteristically shows mitochon-
drial shrinkage and a decrease in the number of mitochon-
drial cristae [9]. Many diseases have been linked to fer-
roptosis, including neurological disorders, coronary heart
disease, ischemia/reperfusion injury, and different types of
tumors [10]. Abnormal metabolism is the most important
factor that determines sensitivity to ferroptosis [11,12]. In

particular, deficiency of the antioxidant glutathione and in-
activation of glutathione peroxidase 4 (GPX4) can increase
lipid peroxidation, thereby inducing ferroptosis [13]. Fer-
roptosis also plays a significant and complex role in cancer
cells. Some studies have reported that it can promote tumor
growth by inhibiting anti-tumor immunity [14]. However,
other authors have shown that ferroptosis could also inhibit
tumor growth and induce resistance to chemotherapy drugs
[15].

The involvement of ferroptosis in the development of
lung cancer has been confirmed. Lung cancer patients have
higher serum iron and ferritin levels than healthy patients,
as well as higher total iron binding capacity. The serum
iron concentration has been positively correlated with the
incidence of lung cancer [16]. GPX4 is highly expressed in
non-small cell lung cancer (NSCLC) cell lines A549 and
NCI-H460, and inhibition of GPX4 can induce ferropto-
sis in lung cancer cells [17]. In addition, ferroptosis has
been associated with some of the signaling pathways related
to SCLC. JAK2/STAT3 inactivation could cause GPX4-
dependent ferroptosis by promoting the expression of p53
[18]. Moreover, the PI3K/AKT/HIF-1α axis can enhance
the resistance of glioma to ferroptosis by up-regulating
SLC7A11 [19]. However, the specific relationship between
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ferroptosis and SCLC has not been extensively studied. It
is still unknown whether ferroptosis-related genes (FRGs)
could help in the diagnosis and treatment of SCLC. There-
fore, this bioinformatic study investigated whether FRGs
could be novel and effective biomarkers of SCLC. We also
evaluated their impact on the immune microenvironment of
SCLC.

2. Materials and Methods
2.1 Data Acquisition

Gene expression information for SCLC and normal
samples were gathered from the gene expression omnibus
(GEO) database. GSE149507 was selected as the train-
ing cohort, with 18 SCLC samples and 18 normal samples.
GSE108055 was selected as the test cohort, with 12 SCLC
samples and 10 normal samples. FRGs (n = 355) utilized for
this research were identified from the ferroptosis database
(FerrDb). Supplementary Table 1 shows the gene list. Po-
tential candidate-targeted drugs for marker genes were pre-
dicted through the drug-gene interaction database (DGIdb,
https://www.dgidb.org/).

2.2 Identification of Differentially Expressed
Ferroptosis-Related Genes

Expression data on 204 FRGs from SCLC and normal
samples were obtained from GSE149507. Differentially
Expressed Ferroptosis-Related Genes (DE-FRGs) between
SCLC and normal samples were assessed by Student’s t-test
in R (Supplementary Table 2). Genes with p < 0.05 were
deemed to be statistically significant, and relationships be-
tween the DE-FRGs were examined using Pearson’s corre-
lation analysis.

2.3 Function and Pathway Enrichment Analysis
The R language software package V4.2.0 (https://ww

w.r-project.org/) and https://www.reactome.org were used
to perform gene ontology (GO) and Reactome enrichment,
respectively, for analysis of the functions and pathways of
DE-FRGs.

2.4 Identification of the Best Gene Biomarkers for SCLC
Diagnosis

The best diagnostic genemarkers for SCLCwere iden-
tified using support vector machine recursive feature elimi-
nation (SVM-RFE) together with the least absolute shrink-
age and selection operator (LASSO). LASSO regression al-
gorithm improves the prediction accuracy by using regular-
ization, whichwas implemented using the “glmnet” R pack-
age. The SVM-RFE model was then set up by the SVM
package and compared with 10-fold cross-validations by
using mean misjudgment rates. The overlapping biomark-
ers revealed by these two algorithmswere determined as the
best gene biomarkers for SCLC. The diagnostic efficacy of
the best marker genes was assessed from the plot of the re-
ceiver operating characteristic (ROC) curve and the com-

putation of the area under the curve (AUC). Meanwhile, a
logistic regression model with all marker genes was estab-
lished using “glm” R package to distinguish SCLC samples
from normal samples in GSE149507. The ROC curve was
used to assess the diagnostic capability of this logistic re-
gression model.

2.5 Single-Gene Sets Enrichment Analysis
To study functional enrichment and pathway enrich-

ment, we analyzed the relationship between the 6 candidate
marker genes identified previously and the remaining genes
inGSE149507 usingR package gene sets enrichment analy-
sis (GSEA) (V.4.1.0). All genes from high to low were then
sorted according to their correlationwithmarker genes. The
sorted genes were used as gene sets in additional studies.
Supplementary Tables 3,4 summarize the GO and KEGG
enrichment data for each marker gene, respectively.

2.6 Single-Gene Sets Variation Analysis
Gene sets variation analysis (GSVA) analysis was per-

formed using the R package GSVA (V.1.38.0). The dif-
ference in GSVA scores between high-expression and low-
expression marker genes was examined using the “Limma”
R package. The filter condition was set to |t|> 2, p< 0.05.
In the group with high expression, the pathway was deemed
active when t > 0, while in the group with low expression,
it was deemed active when t < 0.

2.7 Analysis of Infiltrating Immune Cells
Immune cells in the tumor microenvironment were

evaluated in the GSE149507 dataset using CIBERSORT.
The sum of the proportions of 22 infiltrating immune cells
determined by CIBERSORT was 1. The association be-
tween immune cells andmarker genes was subsequently ex-
amined using Pearson’s correlation analysis. Specific infor-
mation on the percentage of 22 types of infiltrating immune
cells is shown in Supplementary Table 5.

2.8 Establishment of ceRNA Regulatory Network of
lncRNA-miRNA-mRNA

The microRNAs (miRNAs) of targeted marker genes
were predicted by the miRanda, miRDB, and Targetscan
databases. miRNAs selected by all three databases were
selected for the subsequent study. Long non-coding RNA
(lncRNA) binding to selected miRNAswere screened using
SpongeScan Version1 (http://spongescan.rc.ufl.edu/). Cy-
toscape V3.9.1 (https://cytoscape.org/) was subsequently
implemented to map the competing endogenous RNA
(ceRNA) regulatory network.

2.9 Statistical Analysis
The gene expression level of all samples was com-

pared by Student’s t-test in R V4.2.0 (https://www.r-proje
ct.org/). All statistical analyses and the production of Venn
diagrams were performed using R packages. Statistical sig-
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Fig. 1. Clustering heatmap for the expression of 204 DE-FRGs.

nificance was considered to be p < 0.05 (*p < 0.05; ** p
< 0.01; *** p < 0.001).

3. Results
3.1 Identification of DE-FRGs in SCLC Samples

A total of 204 DE-FRGs were found between SCLC
and normal samples in the GSE149507 dataset, compris-
ing 85 up-regulated genes and 119 down-regulated genes
(Supplementary Table 1). A clustering heatmap shows
how the expression of DE-FRGs varied across all samples
(Fig. 1), while a correlation heatmap shows how these DE-
FRGs were related (Supplementary Fig. 1).

3.2 Analysis of the Biological Functions of DE-FRGs

GO function enrichment and Reactome enrichment
analyses were performed to investigate DE-FRG-related
functions and pathways. GO analysis results showed that
BP (Biological Process) was enriched for the functions
of: ‘response to oxidative stress’, ‘cellular response to
chemical stress’, and ‘response to nutrient levels’. En-
richment of CC (Cell Component) included ‘transcription
regulator complex’. Enrichment of MF (Molecular Func-
tion) contained ‘DNA-binding transcription factor binding’
and ‘RNA polymerase II-specific DNA-binding transcrip-
tion factor binding’ (Fig. 2A,B). Reactome results showed
that DE-FRGs were significantly enriched for ‘signaling by

Interleukins’, ‘Interleukin-4 and Interleukin-13 signaling’,
and ‘fatty acid metabolism’ (Fig. 2C). The ‘autophagy’
pathway and ‘cellular response to chemical stress’ pathway
were also enriched. These results suggest that the effect of
DE-FRGs on the progression of SCLC may be related to
immune regulation, oxidative stress, transcription factors,
and autophagy.

3.3 Six DE-FRGs May Serve as Potential Markers for
SCLC Diagnosis

The aim of this work was to determine whether DE-
FRGs could be used for the diagnosis of SCLC. LASSO
regression and the SVM-RFE algorithm were performed to
find the optimal DE-FRGs for distinguishing SCLC from
normal tissue in the GSE149507 dataset. For LASSO
regression analysis, the penalty parameters were tuned
through ten-fold cross-validation, with eight SCLC char-
acteristic genes identified (Fig. 3A,B). DE-FRGs were then
filtered using the SVM-RFE algorithm, and 64 were con-
sidered to be characteristic genes (maximal accuracy =
0.942, minimal RootMean Square Error (RMSE) = 0.0583)
(Fig. 3C,D). In the ensuing analysis, six marker genes were
identified as common genes by LASSO regression in con-
junction with the SVM-RFE algorithm. These were the
ATG3, MUC1, RRM2, IDH2, PARP1, and EZH2 genes
(Fig. 3E).

Using the “glm” R package, the six marker genes
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were subsequently used to develop a logistic regression
model. Results from ROC curve analysis showed that
ATG3,MUC1, RRM2, IDH2, PARP1, and EZH2 have good
diagnostic efficacy in the GSE149507 cohort, with AUC

values of 0.796, 0.951, 0.997, 0.994, 0.997 and 0.994,
respectively (Fig. 3F). When the six genes were com-
bined into one regression model, the AUC value was 1.000
(Fig. 3G), indicating this model could more accurately
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Fig. 4. Validation of marker genes in the test cohort. (A) Expression of marker genes in the GSE108055 cohort. (B,C) ROC curves
for marker genes in the GSE108055 cohort.

distinguish SCLC from normal tissue than single marker
genes.

3.4 Expression Levels of Marker Genes and Confirmation
in the Test Cohort

Next, GSE108055 was used as the test cohort to con-
firm the expression level of the six candidate marker genes.
The gene expression patterns for EZH2, IDH2, MUC1,
PARP1, and RRM2 observed in the test cohort were con-
sistent with those observed in the training cohort. EZH2 (p

= 3.1 × 10−6), IDH2 (p = 2.2 × 10−5), PARP1 (p = 3.1 ×
10−6) and RRM2 (p = 3.1 × 10−6) had higher expression
levels in SCLC samples than in normal samples, whereas
MUC1 (p = 0.025) had lower expression in SCLC samples
than in normal samples (Fig. 4A).

We then used the test cohort GSE108055 to confirm
the accuracy of our logistic regression model. The ROC
curve is shown in Fig. 4B,C. According to this result, the
AUCs of EZH2, IDH2, MUC1, PARP1, and RRM2 were
all >0.7, while the AUC for the sum of these genes was 1.
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This confirms the logistic regression model developed ear-
lier can specifically distinguish between SCLC and normal
samples.

3.5 Marker Genes were Shown by GSEA and GSVA
Analyses to be Tightly Connected to Several
SCLC-Associated Pathways

We performed single-gene GSEA-KEGG pathway
analysis and GSEA-GO function analysis to further eval-
uate the potential for the six marker genes to differenti-
ate SCLC samples from normal samples. The top six re-
sults with the most significant enrichment are shown in the
figures. From the GSEA-KEGG analysis, the six marker
genes had strong associations with the cell cycle, cytokine-
cytokine receptor interactions, lysosome, hematopoietic
cell lineage, complement and coagulation cascades, as well
as some disease pathways (asthma, autoimmune thyroid
disease, viral myocarditis, leishmaniasis infection). More-
over, the results showed that EZH2 and IDH2 were asso-
ciated with the JAK-STAT signaling pathway, while ATG3
and PARP1were associated with the intestinal immune net-
work for IgA production (Supplementary Fig. 2A–F).

GSEA-GO function analysis revealed that with the
exception of MUC1, the other five marker genes were
all related to immune response (adaptive immune re-
sponse, lymphocyte-mediated immunity, T-cell-mediated
immunity, immune receptor activity, humoral immune re-
sponse, and immune response regulation signal pathway)
(Supplementary Fig. 3A–F).

Depending on the expression level of each marker
gene, the pathways for different activation levels be-
tween SCLC and normal samples were analyzed by
GSVA.GSVA-KEGGpathway analysis revealed thatEZH2
overexpression was associated with ‘ARACHIDONIC
ACID METABOLISM’, ‘JAK STAT SIGNALING PATH-
WAY’, ‘PPAR SIGNALING PATHWAY’, and ‘TYRO-
SINEMETABOLISM’. IDH2 up-regulationwas associated
with ‘PPAR SIGNALING PATHWAY’ and ‘TYROSINE
METABOLISM’, while PARP up-regulation was linked
to the ‘JAK STAT SIGNALING PATHWAY’ and ‘PPAR
SIGNALING PATHWAY’. Furthermore, down-regulation
of RRM2 was associated with the ‘PPAR SIGNALING
PATHWAY’, ‘JAK STAT SIGNALING PATHWAY’, and
‘ARACHIDONIC ACID METABOLISM’. These path-
ways were found to have a strong connection to the occur-
rence and development of lung cancer. Moreover, IDH2
and PARP overexpression could activate the ‘NOD-LIKE
RECEPTOR SIGNALING PATHWAY’ and the ‘TOLL-
LIKE RECEPTOR SIGNALING PATHWAY’, both of
which are related to the immune reaction. Down-regulation
of RRM2 could also activate these two pathways. All of the
above results are shown in Supplementary Fig. 4A–E.

GSVA-GO functional analysis showed that
overexpression of EZH2, IDH2, PARP1, and
RRM2, and down-regulation of MUC1 were all

partially related to the immune reaction, includ-
ing the ‘IGA_IMMUNOGLOBULIN_COMPLEX’,
‘INTERLEUKIN-21_PRODUCTION’ and the ‘IPAF_IN
FLAMMASOME_COMPLEX’ (Supplementary Fig.
5A–E).

3.6 Analysis of Infiltrating Immune Cells

GSEA and GSVA analysis showed a close connection
between the candidate marker genes and immune response.
The CIBERSORT algorithm was therefore used to investi-
gate differences in infiltrating immune cells between SCLC
and normal samples. As shown in Fig. 5A, SCLC sam-
ples had lower proportions of memory-resting CD4 T cells,
naive B cells, monocytes, activated dendritic cells, resting
mast cells, and neutrophils compared with normal samples.
However, the proportion of gamma delta T cells, T follicu-
lar helper cells, and M1 macrophages were higher in SCLC
than in normal samples.

Associations between immune cells and the sixmarker
genes were subsequently investigated using Pearson’s cor-
relation analysis. MUC1 showed a negative correlation
with activated mast cells and a positive correlation with
resting mast cells. EZH2 was negatively correlated with
neutrophils (Fig. 5B). These findings imply thatMUC1 and
EZH2 may be involved in determining the immune mi-
croenvironment of SCLC.

3.7 Construction of a Drug Regulatory Network for the
Marker Genes

Targeted drugs for the marker genes were predicted
by the DGIdb database, and two-parameter interaction
relationships were set to defaults (Supplementary Table
6). Cytoscape software was used to visualize the results
(Fig. 6). This analysis found 40 drugs that target the
marker genes. Amongst these, four were for MUC1,
twelve for RRM2, six for IDH2, twelve for PARP1, and
seven for EZH2. Unfortunately, none were found that
targeted ATG3. Inhibitors of EZH2 included CPI-1205 and
TAZEMETOSTAT, while for IDH2, they included ENASI-
DENIB. Inhibitors for PARP1 included NIRAPARIB,
OLAPARIB, VELIPARIB, INIPARIB, TALAZOPARIB,
RUCAPARIB CAMSYLATE, TALAZOPARIB TO-
SYLATE, with the antagonist including RUCAPARIB
and the binder including NIACINAMIDE. Inhibitors of
RRM2 included HYDROXYUREA, FLUDARABINE
PHOSPHATE, GALLIUM NITRATE, CLOFARABINE,
GEMCITABINE HYDROCHLORIDE, GEMCITABINE,
TEZACITABINE, and CLADRIBINE.

3.8 Construction of Marker Gene ceRNA Network

In order to construct a ceRNA network, we first
used miRanda, miRDB, and Targetscan databases to pre-
dict miRNAs that bind to the six marker genes. We
then predicted lncRNAs that bind to the miRNAs using
the spongeScan database. Finally, a lncRNA-miRNA-
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Fig. 5. Immune correlation analysis. (A) Differences in the immune microenvironment between SCLC and normal samples were
analyzed with the CIBERSORT algorithm. (B) Pearson’s correlation analysis showed thatMUC1was negatively correlated with activated
mast cells and positively correlated with resting mast cells. EZH2 was negatively correlated with neutrophils (*p < 0.05, **p < 0.01,
***p < 0.001). SCLC, Small cell lung cancer.

messenger RNA (mRNA) ceRNA regulatory network
containing 217 nodes and 245 edges was constructed
(Supplementary Fig. 6).

A total of nineteen lncRNAs were found that compet-
itively bind with five miRNAs to regulate ATG3. Amongst
these, 12 lncRNAs bound to hsa-miR-338-3p. For the regu-
lation ofEZH2, eighteen lncRNAswere found to bind seven
miRNAs, with hsa-miR-1207-3p shared by nine lncRNAs,

and hsa-miR-20a-3p shared by four lncRNAs. A total of
sixteen lncRNAs regulated the expression of IDH2 by bind-
ing to four miRNAs, including five lncRNAs that bound
to hsa-miR-767-5p and nine that bound to hsa-miR-423-
5p. A total of twenty-eight lncRNAs could regulate PARP1
expression by binding to seven miRNAs, of which hsa-
miR-539-5p was bound by seven lncRNAs, hsa-miR-7-5p
by nine lncRNAs, and hsa-miR-221-5p and hsa-miR-20a-
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Fig. 6. Targeted drugs for the marker genes as predicted by the DGIdb database.

3p by four lncRNAs each. Finally, a total of 39 lncR-
NAs regulated the expression of RRM2 by binding 12 miR-
NAs. Amongst these, hsa-let-7a-3p, hsa-miR-150-5p, and
hsa-miR-197-3p were bound by four miRNAs each, hsa-
miR-342-3p by six miRNAs, and hsa-miR-539-5p by seven
miRNAs. Of note, AC091153.4 could simultaneously reg-
ulate EZH2 and IDH2 by combining with hsa-miR-101-
3p. Moreover, four lncRNAs could simultaneously regu-
late EZH2 and PARP1 expression by binding to hsa-miR-
20a-3p. In addition, RP11-94C24.13 could regulate IDH2
and RRM2 simultaneously by combining with hsa-let-7a-
5p. Detailed information regarding this ceRNA network is
shown in Supplementary Table 7.

4. Discussion

Compared with NSCLC, SCLC shows rapid tumor
cell multiplication, high malignancy, early widespread
metastasis, and a tendency for association with an abnormal
endocrine syndrome [20]. Although SCLC is initially sen-
sitive to chemotherapeutic drugs, it quickly develops drug
resistance because of intratumoral heterogeneity, thereby
leading to poor prognosis and recurrence [7]. Although
the tumor mutational burden (TMB) of SCLC is very high,
lymphocyte infiltration into the tumor microenvironment is
less than that observed for other solid tumors. Moreover,
the expression level of PDL1 is also low, meaning that pa-
tients with SCLC have limited sensitivity to immunother-
apy [21]. Some studies have shown that different neuroen-
docrine (NE) cell subtypes are crucial for the resistance of
SCLC to ferroptosis. Non-NE-SCLC is more sensitive to
ferroptosis than NE-SCLC [22]. This may be because non-
NE-SCLC has a mesenchymal phenotype and expresses

EMT-related genes. The mesenchymal expression profile
is a signature of the ferroptosis response by inducing lipid
peroxidation [23].

Previous researchers built a ferroptosis-related prog-
nostic risk scoring model for SCLC using RNA sequencing
and clinical data from the cBioPortal database, and that in-
cludes thioredoxin interacting protein (TXNIP) [24]. How-
ever, there are still few studies on the impact of ferroptosis
on SCLC. The aim of the present study was, therefore, to
identify FRGs associated with SCLC through bioinformat-
ics analysis. To increase the reliability of our results, we
screened gene chips containing multiple sample data and
then used another set of gene chips to verify the results.
We identified six DE-FRGs through the use of two algo-
rithms, namely ATG3, MUC1, RRM2, IDH2, PARP1, and
EZH2. ROC analysis revealed their AUC was >0.7, in-
dicating they could accurately and specifically distinguish
SCLC samples from normal samples. Indeed, it is worth
noting the AUC values forRRM2, IDH2, PARP1, andEZH2
were all >0.99. RRM2 is known to regulate nucleotide
metabolism, protein expression, and DNA repair [25,26]
and is crucial in the development of various tumor types. In
liver cancer, RRM2was shown to inhibit ferroptosis by pro-
moting the expression of glutathione synthetase [27]. IDH2
is thought to induce the production of NADPH, a cofactor in
the GSH-related mitochondrial antioxidant defense system
[28]. Erastin is a small molecule compound that stimulates
mitochondrial voltage-dependent anion channel (VDAC)
to activate ferroptosis, thereby causing cysteine deficiency
and depletion of GSH. Down-regulation of IDH2 can pro-
mote ferroptosis induced by erastin [29]. PARP1 is a mem-
ber of the PARP (poly ADP-ribose polymerase) DNA re-
pair enzyme family. It is overexpressed in a variety of tu-
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mors, including SCLC, and participates in DNA damage re-
pair [30]. SCLC is sensitive to PARP1 inhibitors. The effi-
cacy of PARP1 inhibitors when combined with chemother-
apy drugs is significantly higher than that of chemotherapy
drugs used alone, which may be related to defects in ho-
mologous recombination repair [31]. PARP1 inhibitors can
also cause inhibition of GPX4 and increased expression of
lipid peroxide, thus resulting in ferroptosis [32]. EZH2 is a
catalytic component of polycomb-group protein 2 (PRC2),
which is thought to be closely associated with the develop-
ment and growth of various tumor types. EZH2 can also
facilitate immune escape by preventing intratumoral anti-
gen presentation, impeding immune cell migration, and in-
creasing the inhibitory activity of CD4+ T regulatory cells
(Tregs) [33]. Several studies have shown that EZH2 over-
expression in SCLC can inhibit cell apoptosis, promote the
cell cycle, and lead to resistance of SCLC to chemotherapy
and PDL-1 antibody [34,35]. Moreover, EZH2 can inhibit
ferroptosis by increasing the expression of SLC7A11 [36].

We performed GSEA and GSVA enrichment analysis
of single genes. KEGG pathway analysis showed that four
marker genes were related to the JAK-STAT signaling path-
way. This pathway is important in many solid tumor types,
including lung cancer. JAK-STAT signaling can also reg-
ulate tumor immunity. Moreover, up-regulation of IDH2
and PARP and down-regulation of RRM can activate Toll-
like receptor and NOD-like receptor signaling pathways.
Toll-like receptors (TLRs) and NOD-like receptors (NLRs)
are crucial for the response to infection and non-specific
immunity, for the coordination of various tumor cell pro-
cesses, and for tumor immune surveillance [37]. GO func-
tion enrichment also revealed the marker genes were en-
riched in multiple immune-related functions. Therefore, we
performed an analysis of immune cell infiltration in all sam-
ples and investigated the correlation between immune cells
and marker gene expression. Fewer neutrophils and rest-
ing mast cells were observed in SCLC compared to normal
tissue. MUC1 expression was positively correlated with
resting mast cells and showed low expression in SCLC.
EZH2 was negatively correlated with neutrophils and over-
expressed in SCLC. These results suggest that EZH2 and
MUC1may be novel targets for improving the immune mi-
croenvironment of SCLC.

Finally, to identify new biomarkers and potential ther-
apeutic targets for SCLC, we developed a drug regulatory
network and ceRNA network for the marker genes. Some
of these drugs have already proven to be useful for the
treatment of SCLC, including the PARP1 inhibitor nira-
parib used in the maintenance treatment of extensive-stage
SCLC (ES-SCLC) and platinum-sensitive SCLC [38]. Ta-
lazoparib can prevent cancer cells from self-repairing af-
ter damage. For the treatment of recurrent SCLC follow-
ing first-line treatment, talazoparib can be combined with
temozolomide (TMZ) to increase the anti-tumor response
and thus improve outcome. Moreover, the combined treat-

ment of TMZ with veliparib can also improve the objec-
tive response rate (ORR) in SCLC [39]. It has also been
demonstrated that aberration of the RNA regulatory net-
work is an important factor in the development of malignant
tumors and that non-coding RNAs are intricately linked to
the development and progression of SCLC. Several of the
microRNAs found in our ceRNA network, including miR-
7-5p, miR-93-5p, and miR-92b-3p, have previously been
reported to affect disease progression and therapy of SCLC
[40–42]. However, due to the high degree of heterogene-
ity of SCLC, the prognostic value of the ceRNA network
identified here requires further verification in large sample
cohorts.

While this research has identified several possible
biomarkers in the pathogenesis and treatment of SCLC,
there are several limitations to the study. Firstly, the SCLC
sample size in the GEO database is limited, which may
lead to some errors. Future research studies should in-
clude larger sample sizes to improve the accuracy of results.
Secondly, this comprehensive bioinformatic analysis was
based on database and gene chips. To make the research re-
sults more meaningful, in vitro and in vivo validation tests
should also be performed.

5. Conclusions
ATG3,MUC1, RRM2, IDH2, PARP1, and EZH2 were

identified as possible marker genes of ferroptosis in SCLC.
MUC1 and PARP1 may also have significant effects on the
immune microenvironment of SCLC.
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