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Abstract

Background: The SARS-CoV-2 vaccine has been implemented in response to the 2019 Coronavirus Disease (COVID-19) pandemic
worldwide. Dysregulation of gut metabolite is associated with COVID-19 patients. However, the effect of vaccination on the gut
metabolite remains unknown, and it is critical to investigate the shifts in metabolic profiles following vaccine treatment. Methods: In
the present study, we conducted a case-control study to assess the fecal metabolic profiles between individuals who received two doses
of intramuscular injection of an inactivated SARS-CoV-2 vaccine candidate (BBIBP-CorV) (n = 20), and matched unvaccinated con-
trols (n = 20) using untargeted gas chromatography and time-of-flight mass spectrometry (GC-TOF/MS). Results: Significant different
metabolic profiles were observed between subjects receiving SARS-CoV-2 virus vaccines and the unvaccinated. Among a total of 243
metabolites from 27 ontology classes identified in the study cohort, 64 metabolic markers and 15 ontology classes were dramatically
distinct between vaccinated and unvaccinated individuals. There were 52 enhanced (such as Desaminotyrosine, Phenylalanine) and 12
deficient metabolites (such as Octadecanol, 1-Hexadecanol) in vaccinated individuals. Along with altered metabolic compositions, multi-
ple functional pathways in Small MoleculePathway Database (SMPDB) and Kyoto Encyclopedia of Genes and Genomes (KEGG) varied
between groups. Our results indicated that urea cycle; alanine, aspartate, and glutamate metabolism; arginine and proline metabolism;
phenylalanine metabolism and tryptophan metabolism were abundant after vaccination. Additionally, correlation analysis showed that
intestinal microbiome was related to alteration in metabolite composition and functions. Conclusions: The present study indicated the
alterations in the gut metabolome after COVID-19 vaccination and the findings provide a valuable resource for in-depth exploration of
mechanisms between gut metabolite and SARS-CoV-2 virus vaccines.
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1. Introduction
The 2019 coronavirus disease (COVID-19) is a highly

infectious which has become a threat to global health [1].
The number of infections and deaths from COVID-19 is
rising alarmingly and on 12 September 2022, there are
more than 605,912,418 confirmed cases and 6,491,649
deaths worldwide according to World Health Organization
(WHO) COVID-19 Dashboard [2]. In face of such a se-
vere epidemic, vaccination is the best way to control the
pandemic. BBIBP-CorV, an inactivated vaccine, is from
China National Biotec Group Co. and Beijing Institute of
Biological Products, whose safety and performance have
been assessed by randomized, double-blind, controlled tri-
als among different groups [3–5].

The human intestinal microbiota consists of 1014 resi-
dent microbes, including bacteria, archae, viruses and fungi
[6]. Numerous of studies indicated that human micro-
biome is considered to be associated with several disor-
ders, such as hypertension [7], type 2 diabetes mellitus
[8], and COVID-19 [9,10]. Ren Z et al. [11] demon-
strated that compared with healthy controls, the oral and

fecal microbial diversity of COVID-19 confirmed patients.
Meanwhile, butyric acid-producing bacteria were reduced
and lipopolysaccharide-producing bacteria were increased
in confirmed patients versus healthy controls in oral cav-
ity. Metabolites in the gastrointestinal tract are the products
of microbes such as bacteria and fungi [12]. Meanwhile,
previous studies have found significant differences in fecal
metabolome profiles not only between COVID-19 patients
and healthy controls, but also mild and severe patients. Im-
portantly, these patients were discharged from the hospital
with only a small fraction of metabolites returning to nor-
mal levels [13].

Evidence from clinical and animal studies indicated
that composition and functions of intestinal flora is criti-
cal in modulating the immune response to vaccines [14,15].
Ng SC et al. [16] found that a higher abundance of B. ado-
lescentis was observed in CoronaVac (inactivated COVID-
19 vaccine) high-responders, which is related to the im-
mune protection of the enriched carbohydrate metabolic
pathways. While, to date, whether inactivated SARS-CoV-
2 virus vaccines influences the fecal metabolome profiles

https://www.imrpress.com/journal/FBL
https://doi.org/10.31083/j.fbl2804065
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


has not been determined. Therefore, in present study, adults
who have received inactivated vaccine (BBIBP-CorV) to
examine molecular alterations in the gut metabolome us-
ing untargeted metabolomics based on time-of-flight mass
spectrometry (GC-TOF/MS).

2. Methods
2.1 Inclusion and Exclusion Criteria for the Study Cohort

In the current study, 40 healthy adults, aged between
18–59 years old, were enrolled in Beijing Chaoyang Hos-
pital, and 20 of them were vaccinated since 1 January 2021
to 1 April 2021. The inclusion criteria were as follows:
healthy adults who have completely received two doses of
intramuscular injection of BBIBP-CorV (as the vaccinated
group, n = 20) and 20 unvaccinated individuals (as the un-
vaccinated group, n = 20). The exclusion criteria were that,
participants with cancer, previous heart failure, renal fail-
ure, stroke, peripheral artery disease, and chronic inflam-
mation disorders; with previous SARS-CoV-2 exposure or
infection; and those who received statin, aspirin, insulin,
metformin, antibiotics, or probiotics treatment within the
last two months. This study was performed in accordance
with the Helsinki declaration, and was approved by the
Medical Ethics Committee from Beijing Chaoyang Hospi-
tal. Written informed consent was obtained from all study
participants prior to enrollment.

2.2 Stool Sample Collection and Preparation
The fresh middle section of the fecal samples was

collected from all the participants. And for participants
among the vaccinated group, the samples were harvested
within 1 month of the second dose of vaccine. All the stool
samples were transported to the laboratory and frozen at –
80 °C until use. The sample preparation procedures were
performed according to the previously published methods
[17,18]. Briefly, 5 mg of samples were weighted and placed
in a microcentrifuge tube, mixed with 25 mg of prechilled
zirconium oxide beads and 10 µL of internal standard.
Each aliquot for 50 µL of 50% prechilled methanol (Fair-
Lawn, NJ, USA) were applied for automated homogeniza-
tion. After centrifugation at 14,000 g and 4 °C for 20 min,
each aliquot of 175 µL of pre-chilled methanol/chloroform
((FairLawn, NJ, USA)) was added for the extraction. All
the samples were evaporated to remove chloroform and
lyophilized with a freeze dryer equipped with a stopping
tray dryer. The dried sample was derivatized at 30 °C for 2
hour with methoxyamine (St. Louis, MO, USA), and 50 µL
of N-methyl-N-trimethylsilyl-trifluoroacetamide (MSTFA,
FairLawn, NJ, USA) was added at 37.5 °C for 1 hour. Af-
ter derivatization, the samples were injected by a robotic
multipurpose sample MPS2 with dual heads.

2.3 Untargeted Metabolomics Based on Time-of-Flight
Mass Spectrometry (GC-TOF/MS)

The untargeted metabolomics profiling was per-
formed on XploreMET platform, a GC-TOF/MS system
(7890B, Pegasus HT, Leco Corp., St. Joseph, MO, USA)
with an Agilent 7890B gas chromatography and a Gers-
tel multipurpose sample MPS2 (Gerstel, Muehlheim, Ger-
many). A Rxi-5 ms capillary column (30 m × 250 µm
i.d., 0.25-µm film thickness; Restek corporation, Belle-
fonte, PA, USA) was used for separation. Helium (Parker
Balston, Lancaster, NY, USA) was used as the carrier gas at
a constant flow rate of 1.0 mL/min. The temperature of in-
jection and transfer interface were both 270 °C. The source
temperature was 220 °C. The measurements were made us-
ing electron impact ionization (70 eV) in the full scan mode
(m/z 50–500).

2.4 Data Preprocessing and Metabolite Annotation

The raw data generated from GC-TOF/MS were pro-
cessed with ChromaTOF software for automated base-
line denosing, smoothing, peak picking, deconvolution and
peak alignment. The identification for compound was car-
ried out by comparing both mass spectrometry (MS) simi-
larity and fatty acid methyl esters (FAMEs) retention index
distance with the referenced standards in JiaLib database.
Briefly, metabolite was annotated by blasting the retention
indices and mass spectral data with the previously gener-
ated and known structures (as reference standards) in JiaLib
metabolite database, which comprises over 1200 mam-
malian metabolites and has become one of the most com-
prehensive metabolite libraries. The platform Imap(1.0,
Metabo-Profile, Shanghai, China) was used for subsequent
statistical analyses.

2.5 Principal Components Analysis (PCA) and Partial
Least Square Discriminant Analysis (PLS-DA)

PCA was known as an unsupervised method for mod-
eling, frequently applied to determine data outliers, clus-
tering, and classification trends prior to knowledge of the
sample group. The principal components (PCs) such as
principal component 1 (PC1) and principal component 2
(PC2) derived from the data set, were orthogonal to one an-
other and could reflect the reducing levels for the variation
in the data set. PLS-DA is a generalized multiple regres-
sion modeling method dealing with multiple collinear mass
spectral data and classes variables. PLS-DA as amulti-class
classifier, is utilized to visualize the distinctions in global
metabolic profiles between groups. PLS-DA provided
more valuable information beyond PCA. The Orthogonal
PLSDA (OPLS-DA) is a modification of PLS method, its
algorithm decomposed the raw data set into systemic varia-
tions, orthogonal/unrelated information, and residual. Sta-
tistical algorithms of PCA, PLS-DA and OPLS-DA were
adapted from the statistical analysis software packages in R
studio (http://cran.r-project.org/, Version 3.3.3, Auckland,
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New Zealand).

2.6 Statistical Analysis
Continuous variables were presented as median with

interquartile range, while categorical variables were indi-
cated as numbers and percentages. Wilcoxon rank test
and chi-squared tests were applied to determine continu-
ous and categorical variables, respectively. Student’s t-
test or Mann-Whitney Wilcoxon test was applied to exam-
ine the significant difference between groups. Z score in
heatmaps was calculated by subtracting the mean and di-
viding the standard deviation. Z-score would be negative
when the raw value was below the average level and posi-
tive when it was higher than the mean. Volcano plot was
used to describe the significantly disparate variables be-
tween groups. The analyses were performed with SPSS,
Version 22.0 (IBM Corp., Armonk, NY, USA). The p val-
ues were two-tailed, and a p value < 0.05 was regarded
as statistically significant. False discovery rate (FDR) was
corrected p valuewith the Benjamini andHochbergmethod.

3. Results
3.1 General Characteristics of the Vaccinated Individuals
and Controls

The current study consisted of 20 healthy controls
with no history of SARS-CoV-2 virus vaccines vaccination,
and 20 individuals who have completed the two doses in-
tramuscular injection of BBIBP-CorV. The clinical infor-
mation including primary demographics, physiology, and
biochemistry characteristics of the participants have been
described in Supplementary Table 1. Compared with
unvaccinated controls, there was no significant difference
detected in the vaccinated subjects, either in clinical pa-
rameters of sex, body mass index, systolic and diastolic
blood pressure levels, fasting blood glucose, total choles-
terol, triglyceride, High-Density Lipoprotein Cholesterol
(HDLC), Low-Density Lipoprotein Cholesterol (LDLC),
uric acid or White Blood Cell (WBC).

3.2 Distinguished Fecal Metabolic Patterns between
Vaccinated and Unvaccinated Participants

According to the untargeted metabolomics data based
on GC-TOF/MS, we obtained the fecal metabolic charac-
teristics of BBIBP-CorV vaccinated subjects. Clustering
analysis of PCA, PLS-DA and OPLS-DA was performed
respectively to identify the separation and classification
trends. In the PCA plots, vaccinated individuals were ob-
served to be roughly distinguished from the untreated con-
trols (Fig. 1A). There was dramatic difference in both PC1
and PC2 of the PCA plots, with vaccinated subjects display-
ing much higher score. The PC1 accounted for 20.5% of
the whole variance, and PC2 is responsible for 10% of the
variance between groups. Similarly, in the PLS-DA scat-
terplots, we detected clearer clusters of vaccinated and un-
vaccinated group, respectively (Fig. 1B). An obvious sep-

aration between groups was obtained by PLS-DA, and sig-
nificant distinctions in component 1 and component 2 were
confirmed. For component 1, it could explain 18.6% of the
difference between groups, and component 2 accounted for
9.04%. Additionally, prominent disparity between individ-
uals who received BBIBP-CorV and the untreated controls
was further validated in OPLS-DA analysis (Fig. 1C).

Considering the distinguished metabolic features in
vaccinated participants based on multivariate statistical
analyses, we further carried out the metabolite annota-
tion. The detailed metabolic composition was obtained,
and the top 15 most abundant classes identified were de-
picted in Fig. 1D. Here we detected 42 amino acids (ac-
counted for 17.28% of total identified metabolites), 37 car-
bohydrates (15.23%), 31 fatty acids (12.76%), 27 organic
acids (11.11%), 16 lipids (6.58%), 15 nucleotides (6.17%),
10 amines (4.12%), 9 alcohols (3.7%), 8 phenols (3.29%), 7
phenylpropanoids (2.88%), 5 bile acids (2.06%), 5 indoles
(2.06%), 5 pyridines (2.06%) and 5 vitamins (2.06%).

In addition, there were a total of 27 metabolic classes
identified in the study cohort, and the relative abundance
and proportion of fecal metabolite classes in each group
and individual samples were shown in Fig. 1E,F. The 25
metabolic classes included amino acids, fatty acids, car-
bohydrates, amines, organic acids, inorganic oxide, lipids,
nucleotides, alcohols, pyridines, phenylpropanoic acids,
phenols, piperidine, bile acids, piperidinones, phenyl-
propanoids, benzenoids, vitamins, pyrrolidones, indoles,
benzoic acids, short-chain Fatty Acids (SCFAs), imida-
zolines, amides, imidazoles. It was interesting that the
abundance of amino acids, carbohydrates, organic acids,
nucleotides, pyrrolidones, benzoic acids and imidazolines
were dramatically distinct between vaccinated and unvac-
cinated subjects, and most of these classes were augmented
in vaccinated group.

3.3 The Discriminatory Metabolites between Vaccinated
and Control Groups

The composition and percentage of varied fecal
metabolite class in vaccinated participants indicated that,
the majority of the altered metabolites was mainly con-
sisted of amino acids (58.46%) and carbohydrates (30.41%)
(Fig. 2A). As compared with the untreated controls, there
were 26 metabolites within the amino acids class and 20
from the carbohydrates class that are discrepant in vacci-
nated groups (Fig. 2B). Notably, for the total of 243 iden-
tified fecal metabolites in the subjects, we observed 99
features significantly different between groups based on
univariate analysis (p < 0.05), with 83 strikingly upreg-
ulated and 16 suppressed metabolic features in the vac-
cinated group, including decreased 2-amino-2-methyl-1,3-
propandiol, threonine, N-formylglycine, asparagine and
arabinose etc., as well as increased 1-hexadecanol, octade-
canol, sphingosine and heptadecanoic acid etc. (Fig. 2C).

Next, we further focused on the 64 altered metabolic
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Fig. 1. The discrimination of metabolic profiles between vaccinated and control group. (A) All the samples in vaccinated and control
group were distinguished within the PCA plots according to metabolite annotation data. There was bits of overlap between groups, and
significant difference was observed in PC1 and PC2, respectively. pc1 = 2.9 × 10−5 and ppc2 = 0.033 between vaccinated and control
groups. (B) PLS-DA scatter plots was generated based on the metabolic profiles in stool samples of vaccinated and unvaccinated groups.
p values at 1.36× 10−4 and 2.12× 10−7 were detected at components 1 and 2, respectively. (C) The scatter plots showed visualization
of OPLS-DA for the metabolic profiles in fecal samples from vaccinated and control group. (D) Pie plot showing the proportion of
the top15 most abundant metabolic classes identified in the study cohort. (E) All the detected fecal metabolites were classified into 25
classes. The metabolic composition and the relative abundance of each class in vaccinated and unvaccinated groups were indicated in
bar plot. Compared with the control group, vaccinated individuals exhibited significantly enriched amino acids, carbohydrates, pyrroli-
dones, benzoic acids, nucleotides, organic acids, phenylpropanoids and imidazolines. (F) The metabolic composition and the relative
abundance of metabolite class in each individuals in vaccinated and control groups. PCA, principal components analysis; PLS-DA,
partial least-squares discriminant analysis; OPLS-DA, orthogonal partial least-square discriminant analysis; PC1, principal component
1; PC2, principal component 2.
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Fig. 2. Shifts of gut metabolic classes in vaccinated subjects. (A) Proportion of the altered metabolite classes in vaccinated group was
shown in pie plot. (B) Enrichment of the varied metabolite class in stool samples of vaccinated group. The size of the bubble represented
the number of metabolites within the class. The dashed line indicated p value at 0.05. (C) Volcano plot depicting the fold change (FC)
and p value of each identified metabolite. The threshold value for significantly distinct metabolites selection was p< 0.05 and |log2FC|
≥0. In the volcano plot, compared with control subjects, metabolites pointed with red in the right were increased in vaccinated group,
and scatters pointed with blue in the left indicated decreased metabolites in vaccinated group.

markers in the stool of vaccinated samples compared with
the controls, which showed variable importance in projec-
tion (VIP)>1 and significant correlation coefficients (Corr.
Coeffs) to component 1 in OPLS-DA. The 64 metabolites
were suggested to be with potentials to distinguish vacci-
nated and control groups. Detailed information such as
the class metabolite derived from, HMDB ID, KEGG ID,
p value, FDR value, fold changes (FC), log2FC, and VIP
were described in Supplementary Table 2. There were 52
enhanced and 12 deficient metabolites in vaccinated indi-
viduals with p < 0.05, and Fig. 3A showed their level of
p value and fold changes. For further investigation, those
with significance in the comparison at FDR (corrected p)
< 0.05 was indicated in Fig. 3B, including octadecanol, 1-

hexadecanol, heptadecanoic acid, sphingosine, desamino-
tyrosine, phenylalanine, 2-hydroxy-3-methylbutyric acid
and isoleucine etc.

Relative abundance of the varied fecal metabolites
in each vaccinated and unvaccinated individuals were
shown in detail with clustering heatmap (Fig. 4A,B).
The 9 metabolic markers reduced in vaccinated pop-
ulations included glycero-3-phosphate, levulinic acid,
heptadecanoic acid, 1-hexadecanol, octadecanol, 5beta-
coprostanol, phytosphingosine, sphingosine, nonadecanoic
acid, which were from lipids, phenylpropanoic acids, or-
ganic acids, fatty acids, alcohols, amines and SM, respec-
tively (Fig. 4A). It was interesting that, those enhanced
metabolites in stool samples of vaccines-treated partici-
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Fig. 3. The alteration of fecal metabolites between vaccinated and un vaccinated group. (A) 64 significantly altered metabolic
markers in the stool of vaccinated individuals as compared with the controls, with VIP >1 in multi-dimensional statistics, significant
Corr. Coeffs to component 1 in OPLS-DA, p < 0.05 and |log2FC| ≥0 in univariate statistics. Log2FC and bar plot for p values were
shown in bar plots. Significance in the comparison was indicated by different colors. Red indicated p < 0.001, pink represented p <

0.01 and green meant p < 0.05. (B) Log2FC and FDR bar plot for the 64 significantly different metabolic markers between vaccinated
and unvaccinated individuals. FDR was the false discovery rate, which was obtained through the correction of p value. Red meant FDR
<0.001, pink indicated FDR <0.01, green was FDR <0.05, and gray represented FDR ≥0.05.

pants were primarily from amino acids, carbohydrates and
organic acids etc., especially essential amino acid. Among
them, we found 3-phenyllactic acid, which could be pro-
duced by Bifidobacterium species via aromatic lactate de-
hydrogenase, has been previously suggested as contributor
to the antiobesity function of green tea polyphenols [19,20].

3.4 Alterations of Metabolic Functional Pathways in
Recipients of Vaccines

Next step, we examined the potentials of metabolic
and functional pathways in the gut of vaccinated subjects

via Small MoleculePathway Database (SMPDB) and Ky-
oto Encyclopedia of Genes and Genomes (KEGG). The
varied fecal metabolite mainly functioned in the process
of urea cycle, ammonia recycling, metabolism of aspar-
tate, glycine, serine, arginine, proline, glutathione, galac-
tose, glycerolipid, phenylacetate, phenylalanine and tyro-
sine, degradation of valine, leucine, isoleucine and homo-
cysteine, biosynthesis of spermidine, spermine and plas-
malogen, as indicated by SMPDB (Fig. 5A). The poten-
tial metabolic capacities were further confirmed through
KEGG pathway analysis, and functions in valine, leucine,
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Fig. 4. The distribution of fecal metabolites with significant difference between vaccinated and control group. (A) Heatmap for the
significantly shifted metabolites in feces samples of individuals receiving vaccines. The abundance of each metabolite was normalized
into Z score. The class of each metabolite was shown in the right of the heatmap. (B) Z-Score plot of varied metabolic biomarkers
between groups. The z-score value of 9 metabolites (phytosphingosine, sphingosine, octadecanol, 1-hexadecanol, heptadecanoic acid,
glycero-3-phosphate, nonadecanoic acid, 5 beta-coprostanol, levulinic acid) was abundant in the control group, and the z-score of 42
metabolites was enriched in the vaccinated group.

7

https://www.imrpress.com


Fig. 5. Potential functional metabolic pathways of the altered metabolites between vaccinated and control group. (A) Pathway
enrichment analysis and bar plot based on all the altered metabolites was performed using pathway-associated metabolite sets SMPDB.
(B) The KEGG pathway terms identified according to the varied metabolites in the vaccinated group were described in the bar plot.
KEGG, Kyoto Encyclopedia of Genes and Genomes; SMPDB, Small Molecule Pathway Database.

isoleucine and lysine degradation, alanine, aspartate, glu-
tamate, arginine, proline and tyrosine metabolism, pentose
phosphate pathway were validated (Fig. 5B). These obser-
vations demonstrated striking alteration of metabolism in
subjects with vaccination.

3.5 Dramatic Correlations of Fecal Metabolome,
Intestinal Microbiota and Clinical Characteristics

The significant correlations between different
metabolic compositions were determined, and Fig. 6A
described the positive or negative relationship of each
metabolites. Extremely apparent relevance was detected in
the majority metabolites with each other, suggesting the
shifts by vaccines treatment might be collaborative. The
co-occurrence network of all the varied fecal metabolites
with Spearman’s correlation coefficients higher than 0.8
was further identified, and all the association were positive
(Fig. 6B). For instance, 2-hydroxy-3-methylbutyric acid
was positively linked to isoleucine, leucine, phenylalanine,
alanine, succinimide and so on; and 4-hydroxycinnamic
acid was positively associated with phenylalanine, leucine
and isoleucine.

As many fecal metabolites have been indicated to pro-
vide functional readout of intestinal microbiome, we thus

performed Spearman’s correlation analysis between the al-
tered metabolites identified in the present work, and the
varied gut microbiota. Here, it was found that, most of
the metabolites were negatively related with the microbial
taxonomic compositions, except for octadecanol and non-
adecanoic acid, TM7 and TM7-3 (Fig. 7A). Again, the co-
occurrence profiles of fecal metabolome and gut micro-
biome, with correlation coefficients higher than 0.6, were
further indicated in Fig. 7B. Odoribacteraceae was identi-
fied to be negatively associated with desaminotyrosine, and
Lactococcus was negatively linked to asparagine. More-
over, almost all the altered fecal metabolites were neg-
atively related to host levels of triglyceride (TG), white
blood cell (WBC) and systolic blood pressure (SBP), but
positively to low-density lipoprotein cholesterol (LDL)
(Fig. 8A). Also here, obvious correlations was identi-
fied, including positive association between desaminoty-
rosine and uric acid (UC), negative relationship between
WBC and 2-Amino-2-methyl-1,3-propandiol, Isoleucine,
Leucine, Methionine and Ribose, respectively. Ribose was
observed to be negatively related with TG levels (Fig. 8B,
correlation coefficients >0.5).
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Fig. 6. Spearman’s correlation of the top 50 most dominant fecal metabolites shifted in vaccinated individuals and the network
relationship. (A) Heatmap showing Spearman’s correlation analysis for the co-occurrence profiles of the top 50 most correlated fecal
metabolites altered between groups. The correlation coefficient was expressed in different colors. Red, positive correlation; Blue,
negative correlation. *, p < 0.05; **, p < 0.01; ***, p < 0.001. (B) Correlation network for the top 50 most enriched fecal metabolites,
which varied significantly between groups and showed coefficient>0.8 to each other. Positive correlation between nodes was indicated
by red connecting lines. Spearman’s correlation, p < 0.05 and absolute coefficient >0.8. Degree indicated the number of other nodes
that each node was connected to.

Fig. 7. Vaccines-associated fecal metabolites correlated with the gut microbiota differentiated in vaccinated individuals. (A)
Heatmap describing Spearman’s correlation for the association between the top 30 altered metabolites and the top 30 most correlated gut
microflora shifted in vaccinated subjects. The correlation coefficient was expressed in colors. Red, positive correlation; Blue, negative
correlation. *, p < 0.05; **, p < 0.01; ***, p < 0.001. (B) Correlation network of the most striking shifted metabolites and disordered
gut microflora between groups, with coefficient >0.6 to each other. Purple circles indicated metabolites, and green diamond indicated
gut microflora. Spearman’s correlation, p< 0.05 and absolute coefficient>0.6. Positive correlation between nodes was indicated by red
connecting lines, and negative correlation was by blue lines. Degree indicated the number of other nodes that each node was connected
to.
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Fig. 8. Correlation analysis between the altered fecal metabolites and clinical characteristics of the study cohort. (A) Spearman’s
correlation analysis of the association between the varied metabolites (most correlated 22 metabolites) and the clinical characteristics of
each participants. The correlation coefficient was expressed in colors. Red, positive correlation; Blue, negative correlation. *, p< 0.05;
**, p< 0.01; ***, p< 0.001. (B) Co-abundance network for the correlation between the fecal metabolites and the clinical characteristics.
Purple circles denoted metabolites, and green diamond indicated clinical characteristics. Spearman’s correlation, p < 0.05 and absolute
coefficient >0.5 between metabolite and clinical characteristics. Positive correlation between nodes was indicated by red connecting
lines, and negative correlation by blue. Degree indicated the number of other nodes that each node was connected to. HDL, high-density
lipoprotein cholesterol; TC, total cholesterol; BMI, body mass index; UC, uric acid; LDL, low-density lipoprotein cholesterol; WBC,
white blood cell; TG, triglyceride; DBP, diastolic blood pressure; SBP, systolic blood pressure; FBG, fasting blood glucose.

4. Discussion
In the present study, we observed that the fecal

metabolome profiles were disparate significantly between
subjects receiving SARS-CoV-2 virus vaccines and those
unvaccinated. Among a total of 243 metabolites from
27 ontology classes identified in the study, 64 metabolic
markers and 15 ontology classes were dramatically distinct
between vaccinated and unvaccinated individuals. There
were 52 enhanced such as Desaminotyrosine, Phenylala-
nine, and 12 deficient metabolites such as Octadecanol, 1-
Hexadecanol in the vaccinated individuals. Furthermore,
correlation analysis indicated that intestinal microbiome
was related to alterations in metabolite composition and
functions.

Currently, BBIBP-CorV has received emergency use
from the WHO, meanwhile it is approved for use in more
than 45 countries worldwide [21]. In China, BBIBP-CorV,
as one of the major inactivated COVID-19 vaccines, has
been shown to be generally safe and elicit effective antibody
responses [22,23]. As of now, accumulating evidence show
that the gut microbiome plays an essential role in the pro-
gression of COVID-19 [10,24]. Yeoh YK et al. [9] found
that the gut microbiome of COVID-19 patients was strongly
disturbed compared with healthy controls, with depletion of
beneficial commensal bacteria including Faecalibacterium
prausnitzii, Eubacterium rectale and enrichment of condi-
tional pathogenic bacteria such as Clostridium hathewayi,
Bacteroides nordii in the gastrointestinal tract. Most re-

cently, investigators indicated that gut microbiome ecology
was stratified well with COVID-19 severity. With avail-
ability of COVID-19 vaccines, researchers have identified
the alterations in oral and intestinal microbiomes of vacci-
nated individuals [16,25]. However, the effect of BBIBP-
CorV vaccination on metabolites thought to be downstream
of gut microbiota has not been determined. Here we for the
first time explored the shifts of gut metabolites after vacci-
nation.

Overall, the metabolite profiles of gut microbiota in
vaccinated individuals were significantly different from
those within unvaccinated subjects. Specifically, we found
that the expression levels of several metabolites, such as
desaminotyrosine, glutamine, isoleucine, were prominently
abundant in vaccine recipients. Previous study showed
that desaminotyrosine could elicit protection against the
influenza virus [26]. Desaminotyrosine was further con-
firmed by Steed et al. [27] to suppress influenza and re-
duce lung immunopathology. In addition, glutamine is an
L-α gluconeogenic and proteogenic amino acid contain-
ing five carbons and two amino groups [28]. Glutamine
exerts an antiinflammatory activity and prevents the ex-
pression of pro-inflammatory cytokines by the inhibition
of both nuclear factor k light chain-enhancer of activated
B cells and signal transducer and activator of transcrip-
tion proteins [29]. Currently, glutamine is thought to be
the fuel for the immune system, generating the concept
of immunometabolism [30]. Meanwhile, plasma levels of
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glutamine were markedly deficient among inflammatory
bowel disease patients, especially during the acute exac-
erbation of Crohn’s disease [31,32]. Moreover, compared
to that before the onset of COVID-19, a 19% reduction in
glutamine blood level was observed in patients following
infection [33]. While in our study, it was found that the
abundance of desaminotyrosine and glutamine were both
enhanced compared with unvaccinated subjects, which in-
dicated that vaccine might play a potential role in resisting
from SARS-CoV-2 virus after injection.

In addition, in the present work, we have identified
that several metabolites were depressed in the gut of vac-
cinated individuals in comparison with unvaccinated sub-
jects, especially for Heptadecanoic acid etc. Heptadecanoic
acid as a kind of odd chain saturated fatty acids, has been
known to play an essential role in various important bi-
ological and nutritional process [34]. The EPIC-Norfolk
prospective study showed that Heptadecanoic acid abun-
dance was negatively associated with coronary heart dis-
ease risk [35]. Furthermore, recent observation based on
the EPIC and INTERACT studies indicated that Heptade-
canoic acid also exhibited a strong inverse correlation with
type II diabetes [36]. Based on our findings of suppressed
Heptadecanoic acid after SARS-CoV-2 vaccination, it was
speculated that the reduction of protective Heptadecanoic
acid in response to vaccines might be related to some typi-
cal side effects of BBIBP-CorV vaccines.

Previously, study has compared the serum metabolic
profiles of pre-vaccination samples with post-vaccination
samples from the same individual upon Sinovac COVID-
19 vaccines but not BBIBP-CorV vaccines [37]. He M
and colleagues [37] examined sera samples from 30 in-
dividuals before SARS-CoV-2 vaccination (Sinovac) and
29 thereinto after two-dose vaccination. Under untargeted
liquid chromatography-mass spectrometry/mass spectrom-
etry analysis, several metabolites such as L-glutamic
acid, gamma-aminobutyric acid, succinic acid, and tau-
rine showed increasing shifts from post-vaccination to
pre-vaccination. Moreover, metabolites associated with
two-dose vaccination mainly participated in butanoate
metabolism and glutamate metabolism. Whereas there re-
mains limited knowledge of alterations in fecal metabolome
before and after BBIBP-CorV vaccination, and further at-
tempts to clarify this should be a priority in future studies.

Along with altered metabolic compositions, multiple
functional pathways in SMPDB and KEGG were detected
to be varied dramatically between groups. Our results in-
dicated that urea cycle; alanine, aspartate, and glutamate
metabolism; arginine and proline metabolism; phenylala-
nine metabolism and tryptophan metabolism were more en-
riched after vaccination. The urea cycle (ornithine cycle)
is a critical amino acid metabolism pathway for waste ni-
trogen dispose in mammals [38]. Previous studies showed
that urea cycle dysregulation plays a crucial role in reg-
ulating various metabolic processes, leading to hyperor-

nithinemia, hyperammonemia and gyrate atrophy in hu-
mans [39]. Besides, urea cycle dysfunction serves as a
biofluids biomarker in cancer patients and is implicated in-
enhanced response to immune checkpoint therapy [40]. It
was quite interesting that, Li T et al. [41] found that among
severe COVID-19 patients, the urea cycle is also signifi-
cantly aberrant. Even in the early stages of severe COVD-
19, patients also exhibited abnormal profiles in three amino
acid pathways including alanine, aspartate, and glutamate
metabolism; arginine and proline metabolism; phenylala-
nine metabolism. However, when compared with unvacci-
nated controls, vaccinated subjects showed enrichment in
these amino acid pathways mentioned above. The possible
reason for this phenomenon might be that the inactivated
vaccines enable the adaptive immune system to form a last-
ing memory of viral component [42], which in turn enabled
vaccinated subjects less susceptible to SARS-CoV-2 inva-
sion and more resistant to COVID-19.

As previously reported, carbohydrate and amino acid
metabolism are essential for immune cells to survive, pro-
liferate and function [42]. Our results indicated that fruc-
tose and arabinose of the carbohydrates was positively cor-
related with serine and succinimide within the amino acids.
Fructose is indicated to be an important cause of obesity
and obesity-related cardiometabolic complications [43,44].
Evidence suggested that fructose-induced obesity showed
higher level of chronic inflammation, and accumulation of
macrophages in adipose tissues, which are responsible for
the production of TNF-α, IL-6, NO, and IL-1β [45,46]. In
addition, important epigenetic role for serine has been un-
covered in a number of immune cells [47]. In T cells, serine
was crucial to proliferation by supporting purine biosyn-
thesis [48]. Moreover, immune cells can acquire serine
through de novo synthesis or extracellular uptake [49]. Col-
lectively, to a certain extent, the positive correlation be-
tween carbohydrate (fructose etc.) and amino acids (ser-
ine etc.) might be closely related to immune responses of
SARS-CoV-2 vaccines.

In the present study, it was found that the majority al-
tered fecal metabolites were negatively related to intesti-
nal microbiota. Enterococcus is an important opportunistic
pathogen causing a wide variety of infections [50], which
is extremely enriched in various diseases such as coronary
artery disease [51] and infective endocarditis [52]. Previ-
ous study has detected negative correlation between Ente-
rococcus and isoleucine, and total amino acids in animal
models [53]. We also found that Enterococcus was neg-
atively linked with several essential amino acid metabo-
lites that were elevated in the vaccinated group, such as
Isoleucine, Leucine and Methionine. It was speculated that
upon COVID-19 vaccines, shifts of intestinal flora might
directly or indirectly affect the profiles of metabolites and
thus play a role in immune regulation.

Branched-chain amino acids including Leucine,
Isoleucine and Valine, exert a vital role in modulating
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body weight and muscle protein synthesis [54]. Ma Q
et al. [55] suggested that Leucine, Isoleucine or their
combination in drinking water significantly decreased
relative white adipose tissue weight, serum TG and free
fatty acid compared with mice fed with high fat diet. These
observations are in line with our findings of the negative
relationship between TG and Leucine, Isoleucine, Valine,
respectively. Furthermore, previous study indicated that
desaminotyrosine exhibited obvious toxicities to the kidney
at a higher dose [56]. Oral administration of high-dose
desaminotyrosine significantly affected the renal function
indexes by elevating blood urea nitrogen and creatinine in
animals. Moreover, histopathological analysis uncovered
severe granules and vacuolar degeneration of renal tubular
epithelial cells and interstitial edema in response to de-
saminotyrosine [56]. It is well known that enhanced level
of UC is important risk factor for kidney disease [57,58].
Here we demonstrate a positive correlation between UC
and desaminotyrosine, the causality of which requires
further confirmation.

In current study, we found that COVID-19 vaccines
elicited alterations in multiple metabolites, which exerted
potential roles in differential functional pathways, and
might further correlated with blood antibody and cytokine
response. The varied fecal metabolites were revealed to
mainly function in the processes of amino acid metabolism.
For example, succinic acid semialdehyde, L-glutamic acid,
Gamma-Aminobutyric acid, succinic acid and oxoglutaric
acid were inalanine, aspartate and glutamate metabolism,
and L-glutamic acid, oxoglutaric acid were in D-Glutamine
and D-glutamate metabolism. It has been documented that
inactivated SARS-CoV-2 vaccines could produce rapid and
strong antibody responses, such as IgG, making them crit-
ical during the pandemic of COVID-19 [5]. Previous evi-
dence suggested that metabolites L-glutamic acid, succinic
acid semialdehyde and succinic acid involved in the ala-
nine, aspartate and glutamate metabolism, as well as D-
Glutamine and D-glutamate metabolism pathways identi-
fied in our study were positively correlated with the levels
of IgM, IgG or IgA [37]. This information facilitates us
to speculate that the highlighted metabolites and metabolic
pathways might be closely related to body’s immune re-
sponses after immunization.

Understanding how SARS-CoV-2 vaccines affect the
composition of metabolites downstream of gut microbiota
may provide important information regarding alterations
within the gut environment following immune responses
to SARS-CoV-2 infection. Nevertheless, there are several
limitations in the current study. Firstly, the data interpre-
tation might be limited due to relatively small sample size,
and the conclusions need to be validated by larger studies.
Additionally, in the present study, samples from a single
time point after vaccination were analyzed, and the compo-
sition of intestinal metabolites might have varied at differ-
ent time points after vaccination. Thus, further studies in-

cluding sampling at different time points after vaccination
could provide more reliable information on temporal func-
tion due to COVID-19, reveal the effect of COVID-19 vac-
cination on the metabolic composition of gut mcirobiota,
and elucidate the underlying mechanisms.

5. Conclusions
The present study depicted the alterations in the gut

metabolome after COVID-19 vaccination based on GC-
TOF/MS methods. Our observations support an associa-
tion between the gut microbiome, metabolite perturbation,
and COVID-19 vaccination, and provide valuable resource
for in-depth exploration of metababolic profiles in vacci-
nated individuals, understanding the complex mechanisms
between gut metabolite and SARS-CoV-2 virus vaccines.
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