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Abstract

Background: 5-methylcytosine (m5C) is a key post-transcriptional modification that plays a critical role in RNA metabolism. Owing to
the large increase in identified m5C modification sites in organisms, their epigenetic roles are becoming increasingly unknown. There-
fore, it is crucial to precisely identify m5C modification sites to gain more insight into cellular processes and other mechanisms related
to biological functions. Although researchers have proposed some traditional computational methods and machine learning algorithms,
some limitations still remain. In this study, we propose a more powerful and reliable deep-learning model, im5C-DSCGA, to identify
novel RNA m5C modification sites in humans. Methods: Our proposed im5C-DSCGA model uses three feature encoding methods
initially—one-hot, nucleotide chemical property (NCP), and nucleotide density (ND)—to extract the original features in RNA sequences
and ensure splicing; next, the original features are fed into the improved densely connected convolutional network (DenseNet) and Con-
volutional Block Attention Module (CBAM) mechanisms to extract the advanced local features; then, the bidirectional gated recurrent
unit (BGRU) method is used to capture the long-term dependencies from advanced local features and extract global features using Self-
Attention; Finally, ensemble learning is used and full connectivity is used to classify and predict the m5C site. Results: Unsurprisingly,
the deep-learning-based im5C-DSCGA model performed well in terms of sensitivity (Sn), specificity (SP), accuracy (Acc), Matthew’s
correlation coefficient (MCC), and area under the curve (AUC), generating values of 81.0%, 90.8%, 85.9%, 72.1%, and 92.6%, re-
spectively, in the independent test dataset following the use of three feature encoding methods. Conclusions: We critically evaluated
the performance of im5C-DSCGA using five-fold cross-validation and independent testing and compared it to existing methods. The
MCC metric reached 72.1% when using the independent test, which is 3.0% higher than the current state-of-the-art prediction method
Deepm5C model. The results show that the im5C-DSCGA model achieves more accurate and stable performances and is an effective
tool for predicting m5C modification sites. To the authors’ knowledge, this is the first time that the improved DenseNet, BGRU, CBAM
Attention mechanism, and Self-Attention mechanism have been combined to predict novel m5C sites in human RNA.

Keywords: RNA; 5-methylcytosine site identification; DenseNet; BGRU; improved CBAM attention; self-attention; deep learning;
ensemble learning

1. Introduction

Post-transcriptional modifications are an essential
area in bioinformatics research, with more than 170 RNA
modifications having been identified [1]. RNA un-
dergoes a variety of post-transcriptional chemical mod-
ifications, including N1-methyladenosine (m1A), N7-
methylguanosine (m7G), N4-methylcytosine (m4C), 5-
methylcytosine (m5C), 5-hydroxymethylcytosine (hm5C),
and N6-methyladenosine (m6A) [2]. Among them, 5-
methylcytosine (m5C) is one of the most common modi-
fications involved in various cellular processes. Addition-
ally, 5-methylcytosine (m5C) is a widespread mRNA mod-
ification that occurs in the untranslated region of mRNA
transcripts [3,4]. It is essential for many biological func-
tions, including tRNA recognition, RNA metabolism, and
stress response. Studies have shown that m5Cmodification
sites play an important regulatory role in many aspects of

gene expression, including ribosomal reorganization, trans-
lation, and RNA output [5]. Furthermore, m5C modifi-
cation sites have been associated with the development of
many cancers and diseases, such as lung cancer, liver can-
cer, breast cancer, autosomal recessive mental retardation,
amyotrophic lateral sclerosis, and Parkinson’s disease [6–
9]. Therefore, the accurate identification of m5C modifica-
tion sites in RNAs is significant for revealing the epigenetic
regulation of related diseases and understanding the mech-
anisms and functions of such modifications.

In recent years, RNA modifications have received in-
creasing attention and many computational methods have
been developed to predict m5C modification sites in RNA.
Some high-throughput sequencing techniques, such as ox-
idative bisulfite sequencing [10], bisulfite sequencing [11],
m5C-RIP-seq [12,13], Aza-IP-seq, and miCLIP-seq [14,
15], have been frequently used in the past to identify
m5C modification sites in RNA. However, these meth-
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Table 1. Performance of m5C modification site prediction tools.
Species Predictor ML algorithm Features NS WS Sn Sp Acc

H. sapiens RNAm5CPred SVM KNF, KSNPFs, and PseDNC 240 41 bp 90.83% 94.17% 92.50%

H. sapiens iRNA-PseColl SVM PseKNC 240 41 bp 75.83% 79.17% 77.50%

H. sapiens M5C-HPCR Ensemble of SVM PseDNC and HPCR 240 41 bp 90.83% 95.00% 92.92%

H. sapiens IRNAm5C_NB NB, RF, SVM, and
AdaBoost

BPB, K-mer, ENAC, EIIP, and
PseEIIP

240 41 bp 82.81% 81.11% 82.20%

H. sapiens iRNAm5C-PseDNC RF PseDNC 1900 41 bp 69.86% 99.86% 92.37%
M. musculus

A. thaliana PEA-m5C RF Binary Encoding, k-mer, and
PseDNC

158 43 bp 86.00% 90.00% 88.00%

A. thaliana m5C-PseDNC SVM PSNP, KSPSDP, CPD, and
PseDNC

12,578 41 bp 68.10% 75.50% 71.80%

H. sapiens 538 41 bp 85.50% 80.00% 82.80%
M. musculus 11,126 41 bp 75.75% 72.80% 74.30%

A. thaliana m5CPred-SVM SVM PSNP, 4NF, 5SNPF, PseDNC,
and 5SPSDP

2000 41 bp 75.40% 79.90% 77.50%

H. sapiens 2000 41 bp 79.90% 74.90% 71.40%
M. musculus 138 41 bp 75.50% 76.10% 75.80%

A. thaliana iRNA-m5C_SVM SVM KNFC, MNBE, and NV 10,578 41 bp 79.40% 80.90% 80.15%

D. melanogaster iRNA5hmC SVM K-mer 1324 41 bp 67.67% 63.29% 65.48%

D. melanogaster iRNA5hmC-PS LR Ps-Mono (G-gap) DiMer 1192 41 bbp 80.00% 79.50% 78.30%

D. melanogaster iRhm5CNN CNN One hot and NCP 1324 41 bp 82.00% 80.00% 81.00%
ML, machine learning; NS, number of samples; WS, word size; Sn, sensitivity; Sp, specificity; Acc, accuracy; SVM, Support VectorMa-
chine; NB, Naïve Bayes; RF, random forest; LR, Logistic Regression; CNN, Convolutional Neural Networks; KNF, K-mer Nucleotide
Frequency; KSNPFs, K-spaced Nucleotide Pair Frequency; PseDNC, Pseudo dinu-cleotide composition; PseKNC, pseudo K-tuple nu-
cleotide composition; HPCR, heuristic nucleotide physicochemical property reduction; BPB, Bi-profile Bayes; ENAC, Enhanced Nu-
cleic Acid Composition; EIIP, Electron-lon Interaction Pseudopotentials; PseEIIP, Pseudo Electron-lon Interaction Pseudopotentials;
PSNP, Position-specific nucleotide propensity; KSPSDP, K-spaced position-specific dinucleotide propensity; CPD, Chemical property
density; 4NF, 4-nucleotide frequency; 5SNPF, 5-spaced nucleotide pair frequency; 5SPSDP, 5-spaced position-specific dinucleotide
propensity; KNFC, K-tuple nucleotide frequency component; MNBE, mono-nucleotide binary encoding; NV, natural vector; NCP, Nu-
cleotide Chemical Property.

ods are both costly and time-consuming. Therefore, a se-
ries of excellent models based on machine learning algo-
rithms have been applied to m5C-modified sites, such as
m5Cpred-SVM [16], m5Cpred-XS [17], iRNA5hmC [18],
and Staem5 [19]. However, machine learning algorithms
are only suitable for small-scale datasets and may not per-
form as well on larger data volumes. Deep-learning algo-
rithms can automatically process large-scale datasets and
can better extract the original features of the sequence,
which improves the performance of the model. For exam-
ple, Ali et al. [20] developed the iRhm5CNNmodel, which
is an efficient and reliable computational prediction model
for identifying RNA 5hmC sites. They extracted features
from RNA sequences using one-hot encoding and achieved
a better performance by using the convolutional neural net-
work structure in deep learning. Therefore, there is a need
to identify or develop a novel and effective deep-learning
method to identify m5C modification sites in human RNA.

The traditional convolutional neural network (CNN)
[21,22] is more prone to gradient disappearance problems

when the network depth is deeper, while the ResNet [23]
can train deeper CNN models to achieve a higher accu-
racy (Acc). The ResNet has a large number of param-
eters during the learning process, while the densely con-
nected convolutional network (DenseNet) [24] enhances
feature propagation to greatly reduce the number of pa-
rameters and alleviate the gradient disappearance problem.
These advantages allow the use of DenseNet to achieve bet-
ter performance than ResNet with fewer parameters and
computational costs. For example, Wang et al. [25] de-
signed a predictor namedMDCAN-Lys in 2020, which used
DenseNet to identify lysine acetylation sites, while its use
obtained excellent experimental results on an independent
test dataset. Subsequently, Jia et al. [26] proposed a pre-
dictor for DeepDN_iGlu using the DenseNet and attention
mechanism to predict lysine glutarylation sites. Therefore,
our proposed im5C-DSCGAmodel introduces an improved
DenseNet to extract more advanced local features in RNA
sequences.
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The traditional recurrent neural network (RNN) [27]
is prone to problems of gradient disappearance or gradient
explosion during the learning process, making it difficult
to capture the dependencies between each base in a long
RNA sequence. Thus, our proposed im5C-DSCGA model
introduces a bidirectional gated recurrent unit (BGRU) [28]
to capture the long-term dependencies between m5C fea-
tures. Notably, the Attention mechanism in deep learn-
ing is also often applied to bioinformatics. Therefore, our
proposed im5C-DSCGA model introduces the improved
Convolutional Block Attention Module (CBAM) Attention
[25,29] module and the Self-Attention [30] module to cap-
ture the prominent key features and global features in RNA
sequences.

In 2021, A. EI et al. [31] published a review on m5C
modification site prediction models. The review clearly in-
troduces the m5C modification site prediction models that
are currently in common use and describes the evaluation
metrics for the different models. In conclusion, the review
provides researchers with a comprehensive understanding
of m5C modification site prediction models and provides
valuable guidance and insights for future research and ap-
plication. Table 1 shows the performance of some m5C
modification site prediction tools, in which NS refers to the
number of samples and WS represents the word size.

Traditional medical experimental methods in bioinfor-
matics are costly and time-consuming. Therefore, it is cru-
cial to develop computational techniques and derive some
excellent predictors. We propose a predictor for identify-
ing m5C modification sites in the context of deep learning.
Moreover, our predictor only needs to input an RNA se-
quence to predict whether this RNA sequence is an m5C
modification site or not, which can provide biologists with a
more convenient tool to help them better understand the role
ofm5Cmodification sites in humanRNA in relation to gene
expression. In this study, we designed a hybrid network
structure based on a combination of improved DenseNet,
BGRU, CBAM Attention, and Self-Attention, called the
im5C-DSCGA model, to predict m5C modification sites in
human RNA. Details on the im5C-DSCGA model and the
network structure of each module are provided in Section
2.

2. Materials and Methods
In this work, we proposed the identification of 5-

methylcytosine sites in human RNA using a deep-learning-
based approach. Hereafter, we present the work in this sec-
tion in four parts: benchmark dataset, model architecture,
feature extraction, and evaluation metrics.

2.1 Benchmark Dataset
The selection of the dataset is a critical part of model

construction, and Hasan M M et al. [32] were used for the
benchmark data in this study. They used humans as sub-
jects to study the distribution of m5C modification sites in

Table 2. The benchmark dataset specifics.
Original dataset Positive sample Negative sample

Total 58,159 58,159
Training dataset 46,529 46,529
Testing dataset 11,630 11,630

RNA and collected nucleotide sequences of 41 bp in length.
To obtain a high-quality dataset, they used CD-HIT [33]
software to remove DNA sequences with more than 90%
similarity. Notably, to assess the robustness of the model,
we used the same strategy as in the recent study, whereby
20% (11,630 m5Cs and 11,630 non-m5Cs) were randomly
selected from the original dataset and treated as indepen-
dent datasets. However, the remaining 80% (46,559 m5Cs
and 46,559 non-m5Cs) was used as the training dataset to
develop the prediction model. Details of the benchmark
dataset are shown in Table 2.

2.2 Model Architecture

For the model architecture, our discussion will be in
two parts. First, we will summarize the overall architec-
ture of the im5C-DSCGA model, and then, offer a detailed
description of the structure for each module.

2.2.1 im5C-DSCGA Model

In this study, we concluded the prediction methods for
identifying m5C modification sites on the same dataset and
the current advancements in m5C modification site predic-
tion. Although the Deepm5C model [32] has made quite
a lot of progress, there are still some deficiencies to over-
come. Therefore, we designed a novel deep-learning model
called im5C-DSCGA to identify m5C modification sites in
human RNA.

Fig. 1 summarizes the design of the prediction and
evaluation processes for the im5C-DSCGA model. This
process consisted of four parts, respectively: feature en-
coding, im5C-DSCGA model framework, ensemble learn-
ing module, and performance evaluation. In the feature en-
coding part, we used three encoding methods, namely, one-
hot encoding, nucleotide chemical property (NCP), and nu-
cleotide density (ND). In the model framework part, for
a given RNA sequence, the network framework consists
of six modules, which are the input module, improved
DenseNet module, improved CBAM Attention module,
BGRU module, Self-Attention module, and output mod-
ule. The input module is used to feed the original RNA
sequences into the subsequent DenseNet module after three
kinds of features are encoded. Then, using the improved
DenseNet module, the network can extract more advanced
features than the residual networks and ordinary convolu-
tional neural networks. The improved CBAM Attention
module is used to extract more critical and prominent fea-
tures by multiplying the Spatial Attention module and the
Channel Attention module at the corresponding positions of
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Fig. 1. The im5C-DSCGA model structure. (A) Feature encoding. RNA sequences were feature encoded using one-hot, NCP, and
nucleotide density (ND) to obtain an 8 × 41 feature matrix. (B) im5C-DSCGA model framework. The final predictor is called “im5C-
DSCGA”, where “i” stands for “identification”, “m5C” stands for “m5C modification sites”, “D” stands for using the improved Densely
Connected Convolutional Networks (DenseNet), “SC” stands for using the improved Convolutional Block Attention Module (CBAM),
“G” stands for using bidirectional gated recurrent unit (BGRU), and “A” stands for using the Self-Attention mechanism. The feature
matrix was fed into the DenseNet module after three encodings and the improved CBAMAttention module was subsequently introduced
to extract more critical features. A fully connected neural network was used to output the predicted probabilities. (C) Ensemble learning
module. Themodel was verified using five-fold cross-validation, where each fold was tested using an independent test set. Five prediction
probabilities are generated for each test RNA sequence and a soft vote was used to determine the final classification. (D) Performance
evaluation. We show the evaluation from cross-validation and independent tests. GRU, gated recurrent unit.
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Fig. 2. The residual neural network (ResNet) structure.

their respective feature matrices. The BGRU module also
used the output feature vector above as an input. TheBGRU
module is designed to obtain long-term dependencies be-
tween high-level features more efficiently than gated recur-
rent unit (GRU) and ordinary recurrent neural networks.
The Self-Attention mechanism module is used to evalu-
ate the importance of RNA sequence features. The output
module uses a fully connected neural network to receive
these high-level features as the input and calculates proba-
bility values between 0 and 1 using the softmax activation
function. In the Ensemble learning model section, we used
the homogeneous ensemble [34] method, which ultimately
uses soft voting for classification. Here, the average of the
three probability values was taken to obtain the final pre-
diction probability. If the probability value is greater than
0.5, a m5C modification site is identified; conversely, the
opposite is true. In the performance evaluation section, we
show the evaluation of the im5C-DSCGA model by cross-
validation and independent tests.

2.2.2 ResNet
The ResNet [23] is an improved convolutional neu-

ral network that solves the degradation problem, which can
occur in the CNNs, as shown in Fig. 2. It is shown that the
overall performance of the CNN is largely affected by the
number of network layers. Specifically, the more layers the
neural network has, the more complex feature extractions
the network can perform, and theoretically improved results
can be achieved. Nevertheless, the accuracy saturates or
even decreases when the depth reaches a certain level. This
is known as the degradation problem and makes it increas-
ingly difficult to train deeper neural networks. However,
the residual network uses shortcut connections to solve the
problem of model degradation in deep networks. The short-
cut connections are added between the other two layers
compared to the traditional neural networks, and the deeper
layers are brought into play by residual learning. As the
number of network layers increases, the residual convolu-
tional neural network can obtain better learning results.

The residual neural network is composed of a series of
basic blocks called residual blocks and learns the required
mappings and uses a special short-circuiting mechanism to
connect them. The residual is the difference between the
observed value and the estimated value. Suppose within a
certain layer that the solved mapping (optimal function) is
noted as H(x), i.e., the observed value, while the feature
mapping of the output of the previous residual block is x,
i.e., the estimated value, then, the residual mapping func-
tion F (x) (the fitted objective function) of the network is
defined as:

F (x) = H(x)− x (1)

where the function F (x) is called the residual function.
The existence of the optimal function avoids the problem
of negative optimization, while the residual function can
better learn the features of the deep network. The shortcut
connections of the ResNet are shown in Fig. 3.

Fig. 3. The ResNet shortcut connection.
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Residual Block. A ResNet is composed of a series of ba-
sic blocks called residual blocks. For the residual block, we
used a three-layer bottleneck structure, which can be seen
in Fig. 4. It reduces the size of the feature map by 1 ×
1 convolutional kernels, meaning that the number of 3 × 3
convolutional kernels is not affected by the input of the pre-
vious layer, and its output does not affect the next layer. The
middle 3× 3 convolutional layer is first down-dimensioned
under a 1× 1 convolutional layer and then up-dimensioned
under another 1 × 1 convolutional layer. This maintains
themodel accuracy and reduces the network parameters and
computation, thus, saving computation time.

Fig. 4. The residual block structure.

2.2.3 Improved DenseNet

Traditional CNNs may suffer from inadequate fea-
ture extraction, which can lead to network degradation.
DenseNet are an improved convolutional neural network
that is based on the ResNet. A convolutional layer, the
dense block layer, and the transition layer form its network
architecture. The RNA sequences are encoded by three fea-
ture encoding methods and the feature matrix is first passed
through a convolutional layer, then, the dense block layer,
and finally the transition layer. In this study, we improved
the original network structure of DenseNet. In detail, we
removed one layer of the convolutional layer and the fea-
ture matrix that RNA sequences were encoded by and three
feature encoding methods were directly input into the dense
block layer, and a batch normalization layer was added be-
tween the dense block layer and the transition layer to, fi-
nally, obtain the high-level features of the RNA sequences.

The improved DenseNet extracts the original feature
information for RNA sequences at a deeper level and en-
hances the robustness of the im5C-DSCGA model, result-
ing in better generalization ability. Fig. 5 shows the net-
work structure of the improved DenseNet.

2.2.3.1 Dense block. The DenseNet uses a dense block
structure, which is a dense connection mechanism. It is
used specifically to concatenate the outputs of all the pre-
vious convolutional layers together as the input of the next
convolutional layer, to achieve feature reuse. The dense
block structure improves the efficiency of the model and
also enhances its expressiveness.

Fig. 6 presents the network structure of the dense
block, which consists of the L-layer network structure with
a nonlinear transformation function. The nonlinear trans-
formation function consists of a 3 × 3 convolution ker-
nel and a batch normalization (BN). The Lth layer of the
DenseNet receives all the feature map outputs from the pre-
vious L-1 layers. The computational formula for its output
is expressed as:

xL = HL ([x0, x1, . . . , xL−1]) (2)

where L denotes the number of layers, xL denotes the out-
put of Llayers, and HL denotes a nonlinear transforma-
tion. [x0, x1,…, xL−1] denotes the feature map that con-
nects layer 0th to layer L-1th.

2.2.3.2 Transition. The main role of the transition layer is
to connect the two adjacent dense blocks and reduce the size
of the output feature map. The transition layer consists of
a 1 × 1 convolutional kernel and a 2 × 2 average pooling.
Since the channel for the final output feature map of the
dense block may become large, it leads to parameter explo-
sion and the slowing down of training. In this study, we use
a 1 × 1 convolution kernel to reduce the number of chan-
nels in the final feature map, and a 2 × 2 average pooling
to compress the size of the receptive field. This allows the
complexity and computational effort of the im5C-DSCGA
model to be reduced and improves the generalization ability
of the network.

We add a BN layer before the 1× 1 convolution kernel
in the transition layer. BN can normalize each batch of data
to reduce problems, such as gradient disappearance and gra-
dient explosion. Furthermore, it can reduce the number of
parameters, speed up the model training, and improve the
model generalization ability. BN is expressed as:

x̃l =
xi − µ√
σ2 − ϵ

(3)
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Fig. 5. The improved DenseNet structure.

Fig. 6. The dense block structure.

yi = γx̃l + β (4)

where γ and β are trainable parameters, σ2 is the variance
of the dataset, and µ is the mean of the dataset.

2.2.4 Improved CBAM
Since considering the various importance of the dif-

ferent features, we introduced an improved CBAM Atten-
tion [25] module after the DenseNet module to weight the
feature mapping, thereby allowing the further improvement
of the prediction ability by the im5C-DSCGA model. The
CBAMAttention is a simple and effective attention mecha-
nism in feedforward convolutional neural networks, which
includes two modules, a Channel Attention module, and a
Spatial Attention module, as shown in Fig. 7.

The original CBAMAttention first evaluates the orig-
inal features using the Channel Attention module, after
which it feeds the feature map produced by the Channel At-
tention module back to the Spatial Attention module, which

then outputs the feature map. However, this serial connec-
tion has the drawback of calculating in a particular way,
which might result in improper weight calculation in the
Spatial Attention module and loss of channel weight infor-
mation in the finished feature map. Therefore, we improved
the CBAM Attention with the idea that the output features
from the DenseNet module are fed into the Channel Atten-
tion and Spatial Attention modules, multiplying the feature
maps of these two outputs by each other at the correspond-
ing positions. By using this approach, we can increase the
expressiveness of the features and maximize their retention
for each attention module after evaluation.

2.2.4.1 Channel Attention. Considering that the channels
in the feature map are different, it has varying degrees of
importance. Therefore, we used Channel Attention to com-
pute various weights for each channel, and the structure is
shown in Fig. 8. Channel Attention compresses the feature
map in the spatial dimension to obtain a one-dimensional
vector before manipulating it.

7
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Fig. 7. The improved CBAM Attention module structure.

Fig. 8. The Channel Attention structure.

Fig. 9. The Spatial Attention structure.

When compressing in the spatial dimension, the Spa-
tial Attention considers both the global average pooling and
the global max pooling. For Channel Attention, global max

pooling is used to extract the maximum value of the fea-
ture map for each channel, while global average pooling is
used to extract the average value of the feature map for each

8
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channel. Channel Attention is first aggregated by two paral-
lel average pooling andmax pooling to aggregate the spatial
information of the featuremapping and sent to a shared fully
connected neural network (MLP). Secondly, the weights of
the Channel Attention module are obtained using the sig-
moid activation function after the two results output by the
MLP are added element by element. Finally, to obtain the
featuremap of the Channel Attentionmodule weights, these
weights are multiplied by the input feature map. It is possi-
ble to express the Channel Attention as:

Mc(F ) = σ(MLP (AvgPool(F ))+MLP (MaxPool(F ))) (5)

Y = Fscale (F,Mc(F )) = Mc(F ) · F (6)

where pooling is global max pooling and global average
pooling, σ represents the sigmoid activation function. Y

represents the final output feature matrix, Mc (F ) repre-
sents the weight vector, and F represents the input channel
matrix.

Fig. 10. The bidirectional gated recurrent unit (BGRU) struc-
ture.

2.2.4.2 Spatial Attention. Considering that the receptive
domains are different, the degree of their influence on the
feature map is also different. Therefore, to calculate the
weights between the receptive domains, we employed Spa-
tial Attention. The structure for Spatial Attention is illus-
trated in Fig. 9. Spatial Attention is compressed for chan-
nels, and global max pooling and global average pooling
are performed in the channel dimension, respectively. For
Spatial Attention, the operation of global max pooling is to
extract the maximum value at each position on the channel,
while the operation of global average pooling is to extract
the average value at each position on the channel. Spatial
Attention is firstly processed by two parallel global max
pooling and global average pooling operations for feature
mapping, and the two obtained feature maps are performed

in CONCAT based on the channels. Secondly, after a con-
volution operation, it can be down-dimensioned to 1 chan-
nel before the Spatial Attention feature map is generated
by the sigmoid function. The final generated features are
obtained by multiplying this feature map by the Spatial At-
tention input feature map. The Spatial Attention can be ex-
pressed as:

Ms(F ) = σ
(
f7×7([AvgPool(F );MaxPool(F )])

)
(7)

Y = Fscale (F,Ms(F )) = Ms(F ) · F (8)

where pooling is global max pooling and global average
pooling and σ represents the sigmoid activation function.
The size of the convolution kernel used in the convolution
operation is 7× 7. Y represents the final output feature ma-
trix,Mc (F ) represents the weight vector, and F represents
the input channel matrix.

2.2.5 Bidirectional Gate Recurrent Unit

The bidirectional gated recurrent unit (BGRU) [28] is
a recurrent neural network (RNN), which is a variant of
the traditional RNN. It is capable of learning long-term de-
pendencies between sequences in RNA sequence prediction
tasks and mitigating gradient disappearance or explosion
phenomena. Fig. 10 illustrates the BGRU network struc-
ture. The BGRU consists of a forward GRU and a reverse
GRU. The network of the GRU is simpler compared to the
long short-term memory network (LSTM) [35], which syn-
thesizes the forgetting gate and the input gate into a new
gate called the update gate. The update gate controls the
amount of data that previous memory information contin-
ues to be retained until the current moment. Although there
is one less gate, there are fewer parameters and GRU can
save a lot of time in case of a large training dataset. For a
GRU, it can be expressed as:

rt = σ (Wtx+ Utht−1)

zt = σ (Wzxt + Uzht−1)

h̃t = tanh (Wxt + U (rt ⊙ ht−1))

ht = (1− Zt)⊙ ht−1 + Zt ⊙ h̃t

(9)

where zt denotes the update gate, rt denotes the reset gate,
ht denotes the hidden state at the current moment, and ht−1

denotes the hidden state at the previous moment. ⊙ denotes
the element multiplication, σ is the sigmoid activation func-
tion, and W and U are the weight matrices.
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Fig. 11. The Self-Attention structure.

Table 3. Description of the hyperparameters in the
im5C-DSCGA model.

Parameters Number

Dense block 5
Convolution layer number of a dense block 4
Convolution kernel size 96
BGRU layer neurons 500
Self-Attention layer neurons 500
Dropout ratio 0.5
First dense layer neurons 240
Second dense layer neurons 40
Last dense layer neurons 2
BGRU, bidirectional gated recurrent unit.

2.2.6 Self-Attention

The Self-Attention [30] mechanism is a widely used
mechanism in deep learning, and the specific structure
is shown in Fig. 11. It is actually a weighting method,
whereby a certain part of the input sequence is given a
higher weight than other parts. It can be understood since it
wants the machine to notice the correlation between the dif-
ferent parts in the whole input features so that it can better
capture the information in the input features.

The Self-Attention mechanism converts the input data
into three vectors qi, ki, and vi, with query Q as the giver,
key K as the receiver creating the relationship, and value
V extracting the information and summarizing all relation-
ships in order. Then, each input base is compared to all
other bases in the input sequence to determine a score. The
score is calculated by multiplying the query vector qi by
the key vector ki, and dividing it by the square root of the
key vector dimension. To obtain a probability value from
0 to 1, the score is passed through a softmax operation and

multiplied by each value vector. Finally, the value vector
vi, at the current input, is weighted and summed to calcu-
late the output vector. Fig. 12 illustrates the process of the
Self-Attention mechanism calculation. The weighted value
V output vector Os is represented as:

Os = φ

(
QKT

√
dk

)
V (10)

where φ is the softmax function and dk is the dimension of
K.

It is obtained by querying the correlation of the vec-
tor with the corresponding vector to calculate the weight of
each value vector. The calculation method is shown as:

qi = Wqbi

ki = Wkbi

vi = Wvbi

wti =
exp (similarity (hi, hj))∑t
i=1 exp (similarity (hi, hj))

(11)

whereWq , Wk, andWv are the parameter matrices; qi, ki,
and vi stand for the query, key, and value vectors, respec-
tively; wti is the weight assignment to the input vectors.

2.2.7 Ensemble Learning Module
In machine learning, the independent test datasets are

taken and fed into several identical or different models, to
compute several predictions before averaging them. This
ensemble learning strategy is named model averaging, the
benefit of which is that various models typically do not
result in the same mistakes on independent test datasets,
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Fig. 12. Self-Attention mechanism calculation using vectors.

Fig. 13. One-hot, NCP, and ND encoding.

thereby providing a highly effective method of lowering
generalization errors. In this study, the ensemble learn-
ing [34] module refers to the use of the same feature en-
coding and model framework methods for the same train-

ing dataset. It precisely utilizes the idea of model averag-
ing that was introduced above. In this study, we employed
five-fold cross-validation, whereby we divided the training
dataset into five parts, four of which were used for training
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and one for validation. The final prediction results are ob-
tained by a soft voting method. For the training dataset, we
used three identical network frameworks, which had been
trained three times in each fold, to obtain three models. We
put the validation dataset into three models in each fold to
get three probability values. The validation results for each
fold are obtained by adding and averaging these three prob-
ability values. If the probability value is greater than 0.5,
the m5C modification site is identified; otherwise, the op-
posite is true. For the independent test dataset, we used the
same method as the training dataset. The specific structure
of the ensemble learning module is shown in Fig. 1.

2.3 Feature Encoding
Feature encoding is an essential step in building a pre-

dictive model. It converts the letters in a biological se-
quence into numerical information that can be recognized
by a computer. To investigate the impact of multiple fea-
tures on experiments, we used three feature encoding meth-
ods in this work. We used one-hot encoding, nucleotide
chemical property encoding (NCP), and nucleotide density
encoding (ND) to identify m5Cmodification sites in human
RNA, which will be described in detail in the following sec-
tions.

2.3.1 One-Hot Encoding
One-hot encoding [36] is a simple and effective fea-

ture encoding method that has been widely used in bioinfor-
matics. It represents the four bases of adenine (A), cytosine
(C), guanine (G), and uracil (U) in the nucleotide chain of an
RNA molecule as a binary vector of zeros and ones. Each
base in the m5C sequence in human RNA is converted into
a four-dimensional feature vector with the four bases A, C,
G, and U represented by the codes (1, 0, 0, 0), (0, 1, 0, 0),
(0, 0, 1, 0), and (0, 0, 0, 1), respectively. For example, a
human RNA m5C sequence of UCUAU...GCGGG can be
represented as shown in Fig. 2. The length of the human
RNA m5C sequence in this work is 41 bp, meaning that
each sequence is transformed into a 4 × 41 feature matrix
after encoding by this method.

2.3.2 Nucleotide Chemical Property (NCP) Encoding
Recently, the nucleotide chemical property (NCP)

[37] encoding method has been applied to many studies in
bioinformatics. This encoding method is based on three
chemical properties and is a relatively simple encoding
scheme. Each nucleotide has a different chemical property.
Therefore, we can encode RNA sequences depending on
the structure of the loop, chemical structure, and hydrogen
bond interactions.

Analyzed from the perspective of the functional
groups contained in nucleotides, both A and C contain
amino groups, and both G and U contain ketone groups;
from the perspective of ring structures, A and G contain
two ring structures, and G and C have only one ring struc-

ture; analyzed from the perspective of base complementary
pairing, A and U when paired are linked by two hydro-
gen bonds, whereas G and C are linked by three hydrogen
bonds. Each base in the human RNA m5C sequence was
converted into a three-dimensional feature vector, with the
four bases A, C, G, and U encoded by (1, 1, 1), (0, 1, 0), (1,
0, 0), and (0, 0, 1), respectively. In this study, the length of
the human RNA m5C sequence was 41 bp, meaning each
sequence was transformed into a 3× 41 feature matrix after
encoding using this method.

2.3.3 Nucleotide Density (ND) Encoding
The nucleotide density (ND) [38] encoding method is

also one of the RNA sequences encoding methods and is
often used in combination with the NCP encoding method.
Its main principle is to take one or several bases in an
RNA sequence sample as an element and calculate the fre-
quency of this element occurring in the sample where it is
located. Suppose the RNA sequence samples are composed
of lnucleotides, whereRi is one of the four bases. Then, the
RNA sequence samples can be expressed as:

Y = R1R2R3R4 . . . Ri . . . Rl (12)

take the calculation of single nucleotide density as an ex-
ample, where Pm is the density of the occurrence of nu-
cleotide,Ri at position, and i in the RNA sequence sample,
the calculation method is represented as:

Pm =

∑m
i=1 f (Ri)

m
(13)

where f(Ri) is calculated as shown in Eqn. 14, and Rm

represents the mth nucleotide.

f (Ri) =

{
1, Ri = Rm

0, other
(14)

here, we take a 41 bp long m5C sequence
“UCUAU...GCGGGG” in RNA as the example, “A”
is at positions 4, 12, …, 31, and 33, with densities ¼1/4,
2/12, ..., 3/31, and 4/33, respectively. “C” is at positions
2, 6, ..., 36, and 38, with densities of 1/2, 2/6, ..., 11/36,
and 12/38, respectively. “G” is in positions 8, 18, ..., 40,
and 41, with densities of 1/8, 2/18, ..., 12/40, and 13/41,
respectively. “U” is in positions 1, 3, ..., 27, and 28, with
densities of 1/1, 2/3, ..., 11/27, and 12/28, respectively.
Each base in the human RNA m5C sequence is converted
into a one-dimensional feature vector. In this study, the
length of the human RNA m5C sequence is 41 bp, thereby
meaning that using this method, each sequence is trans-
formed into a 1 × 41 feature matrix after encoding. We
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Fig. 14. Brief illustration of four variant models. (A) The RSCm5C model. (B) The RGAm5C model. (C) The DSCm5C model. (D)
The DGAm5C model.

combined one-hot encoding, nucleotide chemical property
(NCP) encoding, and nucleotide density (ND) encoding,
to represent the human RNA m5C sequence as an 8 × 41
feature matrix, as shown in Fig. 13.

Fig. 15. Performance of im5C-DSCGA and four model vari-
ants on five-fold cross-validation.

2.4 Performance Evaluation

In this study, we chose four evaluation metrics to as-
sess the im5C-DSCGA model, namely, sensitivity (Sn),
specificity (SP), accuracy (Acc), and Matthew’s correlation
coefficient (MCC), defined as in Eqn. 15.

Fig. 16. Performance of im5C-DSCGA and four model vari-
ants on independent test datasets.

Sn =
TP

TP + FN

Sp =
TN

TN + FP

Acc =
TP + TN

TP + TN + FP + FN

MCC =
TP × TN − FP × FN√

(TP + FN) × (TN + FN) × (TP + FP ) × (TN + FP )
(15)

where TP, TN, FP, and FN denote true positives, true neg-
atives, false positives, and false negatives, respectively. Sn
and SP denote the proportion of positive and negative sam-
ples, respectively, which are correctly predicted. Acc rep-
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Fig. 17. Performance and four model variants on five-fold
cross-validation.

Fig. 18. Performance of four model variants on independent
test datasets.

resents the proportion of the whole sample predicted cor-
rectly, and MCC can accurately assess the performance of
the model. Notably, in this study, we used the MCC metric
to evaluate the global model performance.

Furthermore, we also added the receiver operating
characteristic curve (ROC) [39] and calculated the area un-
der the ROC curve (AUC) to evaluate the overall perfor-
mance. The value of AUC ranges from (0,1), and its value is
positively correlated with the prediction performance, and
the closer the AUC value is to 1 the more effective the
model is.

2.5 Instructions for Setting Hyperparameters

To facilitate comparisons with existing models, we
used datasets from existing models to train the im5C-
DSCGA model. In the experiments, an NVIDIA GeForce

RTX 3080 Ti GPU was used to train the neural network
for the im5C-DSCGA model. In the model training, the
optimizer used Adam to prevent the loss function from
falling into local optimal points. Meanwhile, we used a
cross-entropy loss function to propagate the gradients and
used regularization, dropout, and early stop strategies to
avoid overfitting. In addition, the optimal hyperparame-
ters were determined by comparison experiments. All pa-
rameter settings and model training were based on Python
3.8 (Elemental Security, Dallas, TX, USA, https://www.py
thon.org/) and Keras 2.8.0 (Google, Mountain View, CA,
USA, https://keras.io/) for implementation into the im5C-
DSCGA model. Table 3 shows all hyperparameters in the
im5C-DSCGA model.

3. Results and Discussion
In order to specifically evaluate the performance of the

im5C-DSCGAmodel and demonstrate the improvements in
the model, we will discuss three aspects of the model, the
variants, feature analysis, and structural analysis.

3.1 Model Variants
For the model variants, we designed four models,

the RSCm5C model, RGAm5C model, DSCm5C model,
and DGAm5C model. The first model variant was the
RSCm5C model, which we designed without the BGRU
module and Self-Attention module, while we also changed
the DenseNet module to the ResNet module to compare it
to the original im5C-DSCGA model, which can effectively
respond to the effect of global features and more advanced
local features in the prediction effect of the model.

The second model variant called the RGAm5Cmodel,
was designed as a CBAM module without improvements,
while we again changed the DenseNet module to use the
ResNet module to compare it to the original im5C-DSCGA
model, which can effectively respond to the effect of im-
portant features and more advanced local features in the
prediction effect of the model. The third model variant,
named the DSCm5C model, eliminates the BGRU module
and the Self-Attention module based on the original model
structure, which can effectively respond to the influence of
global features in the prediction effect of the model. The
last model variant, called the DGAm5C model, eliminates
the improved CBAM Attention module based on the orig-
inal model structure, which can effectively respond to the
effect of important features on the prediction effect of the
model. All four model variants are classified by fully con-
nected neural networks.

The structural design of these four model variants
is compared to the original im5C-DSCGA model, thus,
demonstrating the superiority of our model structure.
Fig. 14 shows a detailed description of the four variant
model structures. All model variants are trained on the
benchmark dataset, and all use the same hyperparameter
settings of our proposed im5C-DSCGA model.
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Table 4. Five-fold cross-validation performance by im5C-DSCGA and three machine-learning algorithms.
Predictor Sn SP Acc MCC AUC

RF 0.531 (0.18) 0.490 (0.19) 0.509 (0.02) 0.018 (0.03) 0.511 (0.02)
LR 0.507 (0.02) 0.522 (0.03) 0.514 (0.01) 0.028 (0.03) 0.521 (0.02)
AdaBoost 0.504 (0.02) 0.517 (0.03) 0.510 (0.02) 0.021 (0.03) 0.516 (0.02)
im5C-DSCGA 0.814 (0.02) 0.885 (0.02) 0.850 (0.00) 0.701 (0.00) 0.923 (0.00)
MCC, Matthew’s correlation coefficient; AUC, area under the curve; LR, logistic regression.
For comparison purposes, bold represents best results, and decimals in parentheses represent
errors.

Fig. 19. Comparison of the number of dense blocks and dense block convolution layers.

Table 5. Independent test dataset performance by
im5C-DSCGA and three machine-learning algorithms.
Predictor Sn SP Acc MCC AUC

RF 0.479 0.509 0.494 –0.01 0.491
LR 0.533 0.449 0.491 –0.02 0.484
AdaBoost 0.520 0.445 0.482 –0.03 0.475
im5C-DSCGA 0.810 0.908 0.859 0.721 0.926
For comparison purposes, bold represents best results.

3.2 Analysis of Structure

3.2.1 Comparison with Model Variants

To further evaluate the performance of the im5C-
DSCGA model, we compared it to four variants of
the model based on deep learning, including RSCm5C,
RGAm5C, DSCm5C, and DGAm5C. Through the exper-
imental comparisons, we discovered that DenseNet can ex-
tract more advanced local features better than ResNet in the

Fig. 20. Performance of im5C-DSCGA model on five-fold
cross-validation.

deep-learning framework. Moreover, the attention mecha-
nism is effective in capturing some key features and more
prominent important features. Fig. 15 demonstrates the per-
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Table 6. Five-fold cross-validation performance by im5C-DSCGA and existing predictor.
Predictor Sn SP Acc MCC AUC

Deepm5C 0.835 (0.06) 0.875 (0.01) 0.855 (0.07) 0.697 (0.10) 0.941 (0.05)
im5C-DSCGA 0.814 (0.02) 0.885 (0.02) 0.850 (0.00) 0.701 (0.00) 0.923 (0.00)

Fig. 21. Performance of im5C-DSCGA model.

Fig. 22. Ablation experiment of feature encoding method.

Table 7. Independent test dataset performance by
im5C-DSCGA and existing predictor.

Predictor Sn SP Acc MCC AUC

Deepm5C 0.846 0.857 0.852 0.691 0.938
im5C-DSCGA 0.810 0.908 0.859 0.721 0.926
For comparison purposes, bold represents best results, and dec-
imals in parentheses represent errors.

formance of im5C-DSCGA and the four model variants on
the training dataset with five-fold cross-validation. Fig. 16
presents the performance of im5C-DSCGA and the four
model variants on the independent test dataset.

As can be visualized in Fig. 15, the four metrics SP,
Acc, MCC, and AUC for the im5C-DSCGA model signifi-

cantly outperformed the four model variants in the five-fold
cross-validation on the training dataset. The SP was higher
by 12.13%, 15.16%, 2.46%, and 3.22%, respectively. The
Acc was higher by 7.82%, 10.03%, 0.25%, and 0.85%,
respectively. The MCC was higher by 15.54%, 18.70%,
0.68%, and 1.74%, respectively. The AUC was higher
by 7.45%, 9.50%, 0.32%, and 0.70%, respectively. Sim-
ilarly, in Fig. 16, it is clear that the Acc, MCC, and AUC
of the im5C-DSCGA model outperformed all four model
variants in the independent tests. The Acc was higher by
8.87%, 10.02%, 0.66%, and 1.49%, respectively. TheMCC
was higher by 16.71%, 19.22%, 1.61%, and 2.46%, respec-
tively. The AUC was higher by 7.79%, 8.45%, 0.53%,
and 0.74%, respectively. Therefore, we chose the im5C-
DSCGA model as the model for this research. In addition,
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Figs. 17,18 also show the ROC plots of the im5C-DSCGA
model and the four model variants on the training dataset
and the independent test dataset, respectively.

3.2.2 Comparison of the Number of Dense Blocks and
Dense Block Convolution Layers

Since the number of dense blocks and the number of
convolutional layers in each dense block in the DenseNet
are important factors affecting the performance of our
model, this study evaluated the performance using different
numbers of dense blocks and a different number of convolu-
tional layers in the dense blocks. Fig. 19 presents the perfor-
mance of different numbers of dense blocks and the number
of convolutional layers in the different dense blocks. It can
be clearly seen that when four convolutional layers are used
to build one dense block and five dense blocks are stacked
together, the SP, Acc, and MCC metrics of the model are
greater than the performance using other combinations of
cases. Therefore, in this study, we chose to build one dense
block using four convolutional layers and constructed the
DenseNet with five dense blocks.

3.2.3 Comparison with Some Machine-Learning
Algorithms

To demonstrate the superiority of the deep-learning
algorithms, we compared the three most representative al-
gorithms on the five-fold cross-validation and independent
test dataset using random forest (RF), logistic regression
(LR), and AdaBoost. Here, we input the feature coding
into each of the three machine-learning algorithms and pre-
sented the experimental results in Tables 4,5. The Sn, SP,
ACC, and AUC of the three machine learning algorithms
were all around 0.5, although the MCC was very low. This
indicates that the deep-learning models we constructed per-
formed better than the machine-learning models.

3.2.4 Comparison to Existing Predictor

To further evaluate the performance of the im5C-
DSCGA model, we compared it to the existing most ad-
vanced computational method, the Deepm5C model, to
identify m5C sites in human RNA sequences. Here, to pro-
vide a fair performance comparison, we used the same five-
fold cross-validation and independent tests as the Deepm5C
model to evaluate performances. The im5C-DSCGAmodel
outperformed the Deepm5C model, further illustrating the
better generalization capability of our proposed im5C-
DSCGA model.

Table 6 presents the performance of the im5C-
DSCGAmodel compared to the existing prediction method
Deepm5C model on the training dataset for the five-fold
cross-validation. Table 7 shows the performance of the
im5C-DSCGA model compared to the existing prediction
method Deepm5C model on the independent test dataset.
The SP and MCC of the im5C-DSCGA model outper-
formedDeepm5Cwith the training data and five-fold cross-

validation. Similarly, the SP, Acc, and MCC of the im5C-
DSCGA model outperformed the im5C-DSCGA model by
5.1%, 0.7%, and 3.0%, respectively, using independent
tests. This result indicates the strong potential of using the
im5C-DSCGA model in the RNA modification site predic-
tion task.

In addition, our im5C-DSCGA model was tested as
a transfer learning model using 240 samples from H. sapi-
ens, which were from the iRNA-PseColl model [40]. Our
model scored 59.2%, 75.4%, and 53.8% on the SP, Acc,
and MCC metrics, respectively, although there was a slight
decrease, which may be due to the fact that the two bench-
mark datasets involve different tissues and cell types. It
was 15.9% higher on the Sn metric at 91.7%. However,
as a transfer learning model, ours still showed good results
in predicting samples from H. sapiens. Additional infor-
mation on the prediction methods of the m5C site can be
explored from the review [31].

3.2.5 im5C-DSCGA Model Performance
In the im5C-DSCGA model proposed in this work,

Fig. 20 shows the performance of the model for five-fold
cross-validation on the training dataset. It can be clearly
seen that the performance of each fold of the five-fold cross-
validation is relatively stable. In addition, Fig. 21 shows
the ROC curve plots for the im5C-DSCGA model on the
training dataset for the five-fold cross-validation and on the
independent tests. This result further highlights the stability
and reliability of the im5C-DSCGA model.

3.3 Analysis on Features
Contrasting Various Feature Encode Methods

Using the im5C-DSCGA network framework pro-
posed in this work, we compared the performance of five
different feature encodingmethods, including one-hot, one-
hot + NPF, one-hot + ND, NPF + ND, and one-hot + NPF
+ ND. They encode RNA sequences into 4 × 41, 7 ×
41, 5 × 41, 4 × 41, and 8 × 41 feature matrixes, respec-
tively. Thereafter, these five encoded generated feature ma-
trices were inputted into the im5C-DSCGA network frame-
work, and the experimental results on the five-fold cross-
validation and independent tests are displayed in Fig. 22,
respectively.

It can be distinctly seen that the four feature encoding
methods, one-hot, one-hot + NPF, one-hot + ND, and one-
hot + NPF + ND, significantly outperform the NCP + ND
feature encoding. However, the feature encoding for the
one-hot + NPF + ND combination outperformed the fea-
ture encoding for the other combinations, in terms of MCC
performance evaluation metrics. Therefore, we adopted the
one-hot + NPF + ND feature encoding as the final feature
encoding method for the im5C-DSCGA network frame-
work.
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4. Conclusions
In this study, we designed a novel deep learning-based

model named im5C-DSCGA to accurately identify m5C
modification sites in human RNA. The main innovation of
the im5C-DSCGA model exists in the following three as-
pects. First, we used the improved DenseNet method and
the CBAM Attention mechanism as advanced local feature
extractors. Secondly, we used the BGRUmethod to capture
the long-term dependencies of high-level local features and
used Self-Attention to extract global features. Finally, we
used the ensemble learning method to generate a better gen-
eralization ability in the im5C-DSCGA model. From the
metrics of the experimental results, the deep learning im5C-
DSCGA model proposed in this study obtains a satisfac-
tory prediction result. The MCC metric reached 72.1% on
the independent test, which is 3.0% higher than the current
state-of-the-art Deepm5C model prediction method. Over-
all, the im5C-DSCGA model achieves a more accurate and
stable performance than theDeepm5Cmodel, which further
proves the effectiveness of our model.

The completion of the im5C-DSCGA model will help
researchers to better identify m5C modification sites in hu-
man RNA. Furthermore, we will extend this work in subse-
quent studies by trying to build a network framework using
the BERT method and Transformer model alongside deep
learning. In the future, we will consider building a network
of servers, which can provide many conveniences. In ad-
dition, all datasets and source code for the im5C-DSCGA
model are freely accessible at https://github.com/lulukoss/
im5C-DSCGA.
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