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Abstract

Background: Pyroptosis plays a crucial role in anti-tumor immunity and in formation of the immune microenvironment. However,
whether pyroptosis is involved in the progression of clear cell renal cell carcinoma (ccRCC) is still unclear. Personalized treatment of
ccRCC requires detailed molecular classification to inform a specific therapy. Methods: Molecular subtyping of ccRCC was performed
based on consensus clustering of pyroptosis-related genes. The characteristics of these molecular subtypes were explored at the genome,
transcriptome and protein levels. Single-cell RNA sequencing and CIBERSORT analysis were used to analyse the immunemicroenviron-
ment of ccRCC, while Lasso regression was used to develop a prediction model based on hub genes. Expression of the pyroptosis-related
gene GSDMB was also investigated at the tissue and cellular levels. Results: Two molecular subtypes were identified based on the clus-
tering of pyroptosis-related genes. Cluster 1 was associated with activation of classical oncogenic pathways, especially the angiogenesis
pathway. Cluster 2 was associated with activation of immune-related pathways and high levels of immunosuppressive cells, exhausted
CD8+ T cells, and tumor-associated fibroblast infiltration. Clusters 1 and 2 were thus defined as the angiogenic and inflamed subtypes,
respectively. The two subtypes were predictive of the response of ccRCC to anti-angiogenic therapy and immunotherapy, with Cluster 1
patients benefiting from anti-angiogenic therapy and Cluster 2 patients showing better response to anti-PD1 inhibitor therapy. Further-
more, a 9-gene expression signature (HJURP, NUF2, KIF15, MELK, TPX2, PLK1, CDCA3, CTLA4, FOXP3) was identified that could
predict outcome and response to immune checkpoint blockade therapy in test cohorts. Finally, GSDMB was found to be involved in the
development of renal clear cell carcinoma. Conclusions: These results on pyroptosis-related genes in ccRCC provide a theoretical basis
for understanding molecular heterogeneity and for the development of individualized treatment strategies.
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1. Introduction
Worldwide, approximately 431,000 patients are diag-

nosed annually with renal carcinoma (RCC), with about
179,000 deaths resulting from this disease [1]. RCC is one
of the most common tumors of the urinary system [2]. The
most common pathologic type of RCC is clear cell renal
cell carcinoma (ccRCC), which accounts for 70–75% of
cases [3,4]. Partial nephrectomy or radical nephrectomy
is usually the first treatment choice for patients with early
RCC, with a 5-year survival rate of 80–90% [5]. However,
about 30% of RCC patients relapse within 5 years after
surgery [6]. Clear cell renal cell carcinoma is not sensi-
tive to chemoradiotherapy [3]. Immunotherapy and anti-
angiogenic therapy, either as monotherapy or in combina-
tion, have significantly improved the clinical outcome of
patients with advanced RCC. However, not all patients are

responsive to these therapies. ccRCC is an extremely het-
erogeneous tumor, and patients with the same pathological
type can have different characteristics. Therefore, it is crit-
ical to understand the molecular basis for the clinical het-
erogeneity observed in ccRCC patients. This will allow for
more informed treatment selection and a deeper understand-
ing of the resistance mechanisms [7].

Pyroptosis is a caspase-dependent, inflammatory
cell death type characterized by pore-formation, cell
swelling, disruption of the plasma membrane, and the re-
lease of cellular contents. A major trigger for pyroptosis
is the gasdermin family (gasdermin A, B, C, D, E and pej-
vakin). Pyroptosis is primarily induced by multiple inflam-
masomes and is carried out by caspases and gasdermin pro-
teins, leading to the formation of membrane pores and the
secretion of cellular contents. Pyroptosis may have differ-
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ent effects in tumors depending on the tissue origin and
the tumor background. On one hand, pyroptosis can sup-
press cancer development. Independently of caspases, cy-
totoxic lymphocytes can induce pyroptosis in tumor cells
that expressing GSDMB. NLRP3 expression is negatively
correlated with hepatocellular carcinoma grade and stage.
Additionally, NLRP1 has been associated with the stage
and prognosis of colorectal cancer [8]. A low level of
GSDME expression is associated with increased resistance
to paclitaxel. Moreover, inflammatory cellular content is
released following pyroptosis and membrane perforation,
thus promoting cancer progression in various ways [9]. El-
evated GSDMD expression is associated with tumor-node-
metastasis and larger tumor size in non-small cell lung can-
cer [10]. Furthermore, high GSDMB expression is asso-
ciated with poor prognosis and metastasis in breast cancer.
These results indicate that pyroptosis-related genes can play
dual roles in tumor progression. However, the roles and
mechanisms of pyroptosis-related genes in ccRCC are still
unclear. The purpose of this study was to illustrate whether
pyroptosis could serve as a basis for individualized treat-
ment of ccCRC patients.

2. Materials and Methods
2.1 Data Sources

Gene expression data (transcripts per million, TPM)
and the relevant ccRCC prognostic and clinical data were
obtained from The Cancer Genome Atlas (TCGA) (https://
portal.gdc.cancer.gov/) databases. GSE40435, GSE53757,
GSE121636, and GSE156632 were obtained from the Gene
Expression Omnibus (GEO) (https://www.ncbi.nlm.nih.g
ov/geo/). RPPA protein expression data were obtained
from ucsc xena (https://xena.ucsc.edu/). The E-MTAB-
1980, E-MTAB-3267 and E-MTAB-3218 datasets were ob-
tained from the ArrayExpress database (https://www.ebi.
ac.uk/arrayexpress/). CheckMate 025 was obtained from
(CM-025; NCT01668784) and CheckMate-010 from (CM-
010; NCT01354431). The IMvigor210 cohort was down-
loaded from IMvigor210CoreBiologies. A schematic dia-
gram of the study design is shown in Supplementary Fig.
1.

2.2 Consensus Clustering
Molecular subtypes based on pyroptosis-related genes

were identified by the “ConsensusClusterPlus” package.
Repetitions were performed 1000 times to ensure the sta-
bility of results [11].

2.3 Gene Set Variation Analysis (GSVA)
GSVA enrichment was performed using the “GSVA”

R package [12]. The “limma” package was used to identify
differentially expressed genes (DEGs) [13]. The selection
of differentially expressed genes was an adjusted p-value
less than 0.05 and an absolute value of log2 Fold Change
≥0.1.

2.4 Cell Infiltration of the Tumor Microenvironment

Immune cells in the tumor microenvironment (TME)
were quantified using the CIBERSORTx algorithm and
MCP-counter [14,15]. Tumor purity scores were estimated
with the “ESTIMATE” package [16]. The Tumor Immune
Estimation Resource (TIMER) database was used to evalu-
ate the TME [17] (Supplementary Table 1).

2.5 Cancer-Immune Cycle Analysis

The cancer immune cycle reflects the anticancer
immune response and is comprised of 7 steps [18]
(Supplementary Table 2). The relative activities of these
steps determine the fate of tumor cells. The activity of
each step was analyzed by single-sample gene set enrich-
ment analysis (ssGSEA) based on gene expression of each
samples [19].

2.6 Establishment of a Model for Prognostic Analysis

DEGs (log2 Fold Change >0.5) were identified using
a protein interaction algorithm and STRING analysis tool.
Thirty central nodes with optimal connectivity were iden-
tified using the CytoHubba’s Maximal Click Centrality
(MCC) function, and a prediction model was established
using LASSO-Cox analysis [20]. Kaplan-Meier analysis
was used to evaluate patient survival, and a time-dependent
receiver operating characteristic (ROC) curve was used to
evaluate the accuracy of the model.

2.7 Processing of Single-Cell RNA-seq Libraries and
Batch Effect Correction

Barcodes with <5000 total UMIs (Unique Molecu-
lar Identifiers), <200 genes expressed, or mitochondrial
genes were filtered out. Highly expressed genes were se-
lected by genes that retained at least 3 UMIs in at least 200
cells [21]. Cells were separated by coarse clustering using
the scatter v1.12.2 package [22]. Perform Principal Com-
ponent Analysis (PCA) on normalized data and correct for
batch effects on the top 200 PCs using the Mutual Nearest
Neighbors (MNN) method [23].

2.8 Cell Lines and Cell Culture

The human normal cortex/proximal tubule epithelial
cell line HK-2 and two renal clear cell carcinoma cell
lines, 769-P and Caki-1, were from the Chinese Academy
of Sciences Cell Bank (Shanghai, China). The HK-2,
769-P and Caki-1 cell lines were cultured in Dulbecco’s
modified Eagle’s medium (biosharp, Hefei China), RPMI
1640 Medium (biosharp, China) and McCoy’s 5a Modified
Medium (biosharp, China), respectively. This was added
with 10% fetal bovine serum (VivaCell BIOSCIENCES,
Hefei, China), 100 U/mL penicillin and 100 µg/mL strep-
tomycin (Gibco, New York, NY, USA). All cell lines
were found to be mycoplasma-free using the MycAway™
Plus-Color One-Step Mycoplasma Detection Kit (Yeasen
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Biotechnology, Shanghai, China) and were authenticated
shortly before use with a PCR technique (Procell Corpo-
ration, Wuhan, China).

2.9 RNA Extraction and qRT-PCR
RNA was isolated from paracancerous and tumor

tissues (16 pairs) using TRIZOL reagent (Invitrogen,
Waltham, MA, USA) according to the manufacturer’s pro-
tocol. Tumor tissues and paracancerous were collected
from 16 ccRCC patients in the Department of Urology,
Fourth Affiliated Hospital of Harbin Medical University.
Informed consent was obtained and signed by patients
for all tissues.The use of tissues was approved by the
Ethics Committee of the Fourth Affiliated Hospital,
Harbin Medical University. The ReverTraAce Qpcr
RT Kit (Toyobo, Tokyo, Japan) was used for qRT-PCR
experiments. The following primers were used for qRT-
PCR: GSDMB: 5′-AGTCTTTGGGTTCGGAGGAT-
3′ (F), 5′-CTGTCTGGGTCCTCCATGT-3′ (R);
ACTB: 5′-CTTCCTTCCTGGGCATGG-3′ (F), 5′-
GCCGCCAGACAGCACTGT-3′ (R).

2.10 Western Blot
The protein expression level in cell lines was deter-

mined by Western blot analysis. Protease inhibitors were
used to isolate and lyse samples in RIPA buffer (Beyotime,
Shanghai, China). Western blot was performed using rab-
bit polyclonal antibody against GSDMB (12885-1-AP, Pro-
teinTech Group, Chicago, IL, USA) and mouse monoclonal
antibody against β-actin (66009-1-Ig, ProteinTech Group,
Chicago, IL, USA).

2.11 Tissue Samples and Immunohistochemistry (IHC)
A total of 35 tissue specimens were collected from 35

patients in the Department of Urology, Fourth Affiliated
Hospital of Harbin Medical University. The use of tissues
was approved by the Ethics Committee of the Fourth Affili-
ated Hospital, Harbin Medical University. GSDMB protein
expression in low- and high-grade ccRCC and in normal
tissues was assessed by IHC. Paraffin-embedded samples
were deparaffinized, rehydrated, and placed in citrate buffer
at 98 °C for 15 min for antigen retrieval. They were then in-
cubated with anti-GSDMB antibody (Proteintech, 1:200
dilution). The expression was then examined by DAB
kit (ORIGIN, Beijing, China).

2.12 Statistical Analysis
Correlation coefficients were calculated using Spear-

man analysis and distance correlation analysis. The log-
rank test was used to determine the significance of differ-
ences between survival curves. ROC curves and the area
under the curve (AUC) were obtained using the “pROC”
and “timeROC” packages. Clinical characteristics were
compared by chi-square or Fisher’s exact test.

3. Results
3.1 Overview of Pyroptosis-Related Genes in ccRCC

Many clinical and genomic studies have shown that
ccRCC is a high immune-infiltrating tumor type [24]. In
the present study, the immune score for ccRCC was sig-
nificantly correlated with poor overall survival (OS) and
with tumor grade and stage (Fig. 1a, Supplementary Fig.
2), in accordance with the findings of a recent study [25].
Cytokines produced by pyroptotic cells recruit immune
cells that subsequently infiltrate the TME, thereby hav-
ing a tumor-promoting or suppressive role [26]. Pyrop-
tosis therefor plays a significant role in the progression
of ccRCC. The differential expression of pyroptosis-related
genes (PRGs) between ccRCC and normal tissue is shown
in Supplementary Fig. 3. Univariate cox analysis was
used to identify genes associated with overall survival
in ccRCC. Twelve genes (AIM2, CASP4, GSDMB, GS-
DME, NLRP1, NLRP6, NOD2, NLRP1, NLRP6, PYCARD,
SCAF11, TIRAP and HMGB1) were selected for subse-
quent analyses due to having p < 0.05. However, only
NLRP6, SCAF11, TIRAP, and HMGB1 were potentially
protective genes (i.e., hazard ratio (HR) <1) for ccRCC
patients, with the remaining genes being associated with
increased risk (HR >1) (Fig. 1b). A pyroptosis network
was created to demonstrate the comprehensive landscape
of PRG interactions, regulations and connections, together
with their prognostic value in ccRCC patients (Fig. 1c). The
expression of these PRGs (log2 FC >1) in the TME, as de-
termined by single-cell RNA sequencing, is presented in
Fig. 1d–f and in Supplementary Fig. 4.

3.2 Cluster 1: Angiogenesis Phenotype
The molecular mechanisms underlying the hetero-

geneity of ccRCC were studied with the aim of optimiz-
ing personalized treatment strategies. Using unsupervised
clustering, two different patterns were identified based on
the expression profiles of PRGs with prognostic value (log2
Fold Change >1). These were comprised of 330 sam-
ples in Cluster 1, and 196 samples in Cluster 2 (Fig. 2a,
Supplementary Fig. 5). Survival analysis showed that
patients in Cluster 2 had worse over survival than pa-
tients of Cluster 1 (p < 0.001) (Fig. 2b). Biological func-
tions were assessed by GSVA enrichment analysis between
the two subtypes. Cluster 1 was associated with onco-
genic pathways such as mTOR, Notch, MAPK, Wnt sig-
nalling, metabolic pathways, cell cycle, and DNA damage
response. Cluster 2 contains more immune-related path-
ways, including antigen processing and presentation, and
cytokine-cytokine receptor interactions, implying this sub-
group may be involved in the tumor immunological process
(Fig. 2d). Furthermore, Cluster 2 had higher immune and
stromal scores compared with cluster 1, cluster 2 had higher
immune and stromal scores Cluster 1 (Fig. 2c), implying
the clusters had distinctive TME cell-infiltrating proper-
ties. Further investigation of the stromal composition re-
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Fig. 1. Overview of pyroptosis-related genes in clear cell renal cell carcinoma (ccRCC). (a) Relationship between the Immune Score
and tumor grade and stage (*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001). (b) Forest plot presents pyroptosis-related genes
associated with overall survival in ccRCC in The Cancer Genome Atlas (TCGA) database. (c) Interactions among pyroptosis-related
genes (PRGs) in ccRCC. (The lines connecting PRGs indicate the interactions between them, while the width of the lines indicates the
strength of the connection between them. Blue represents negative correlation and purple represents positive correlation, and the size
of the point represents the strength of the p-value. Purple dots represent risk factors and green dots represent protective factors). (d–f)
Expression of pyroptosis-related genes in the microenvironment of renal clear cell carcinoma based on single-cell RNA sequencing data.

vealed that Cluster 2 had more cancer-associated fibrob-
lasts, while Cluster 1 had more endothelial cells. These
results demonstrate that Cluster 1 tumors had increased an-
giogenesis, similar to the result from the TIMER database
(Fig. 2e). Moreover, evaluation of the subsets at the pro-
tein level further support the clustering results in RPPA
database (Supplementary Table 3). The AKT pS473,
AMPKALPHA, c-KIT, EGFR pY1068, EGFR pY1173,
MAPK pT202Y204, MEK1, SMAD1, SMAD4, CD31,
VEGFR2, and STAT3 pY705 proteins were significantly
expressed in Cluster 1 (Fig. 2f). These proteins participate
in various carcinogenic processes and are also associated
with angiogenesis. For example, CD31 is widely used as a

vascularmarker to assess tumor angiogenesis [27,28], while
VEGFR2 promotes angiogenesis by affecting the prolifera-
tion andmigration of vascular endothelial cells [29]. There-
fore, Cluster 1was referred to as the “angiogenesis subtype”
[30].

3.3 Cluster 2: Inflamed Phenotype

A recent study reported that high immune infiltra-
tion in ccRCC was associated with worse patient outcome
[31]. The immune cells in the microenvironment between
the two subtypes were evaluated based on CIBERSORT.
Cluster 1 showed abundant infiltration of activated in-
nate immune cells, including activated dendritic cells, M1
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Fig. 2. Cluster 1 shows features of an angiogenesis phenotype. (a) 526 ccRCC patients were divided into two subtypes based on
the consensus clustering matrix. (b) Analysis of overall survival in two subgroups. (c) Tumor microenvironment (TME) score in the
two clusters (***p < 0.001). (d) Identification of common pathways in the two subtypes at the transcriptome level using gene set vari-
ation analysis (GSVA). (e) Comparison of the TME between the two subtypes at the transcriptional level based on the Tumor Immune
Estimation Resource (TIMER) database (**p < 0.01; ***p < 0.001). (f) Comparison of proteins associated with the angiogenic sig-
nalling pathway between the two subtypes based on the RPPA database (*p < 0.05; **p < 0.01; ***p < 0.001).
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macrophages, naïve B cells, resting NK cells, mast cells
and resting T4 memory cells. Although Cluster 2 showed
significant immune cell infiltration, this subgroup was en-
riched with regulatory T (Treg) cells and CD8+ T cells
(Fig. 3b). KEGG pathway enrichment analysis revealed
that DEGswere primarily enriched in immune-related path-
ways, with cytokines and cytokine-receptor interactions be-
ing the most significantly enriched. Consequently, we in-
vestigated chemokines, tumor necrosis factor and inter-
leukin in the TME of the two subtypes. Cytokine expres-
sion was significantly different between the subtypes. IL-
4, IL-10 and IL-6 are crucial for immunosuppression and
can promote cancer metastasis [32]. IL-6 can also promote
MDSC differentiation, thus promoting immunosuppression
[33]. CXCL10, CCL4, CCL5, CCL8, CCL19 and CXCL13
have been associated with worse survival of ccRCC patients
[34,35]. CCL5 recruits Treg cells into tumor masses [36].
Markers associated with T cell exhaustion, such as TIGIT,
LAG3, LYN, and TOX, were significantly expressed in
Cluster 2 (Fig. 3a). Although there were more infiltrating
CD8+ T cells, the T cells in Cluster 2 were exhausted or
non-functional, thus confirming our hypothesis. Single-cell
RNA sequencing revealed heterogeneity among infiltrating
CD8+ T cells in the ccRCC microenvironment, with most
showing high expression levels for markers of exhaustion
(Fig. 3c,d). Moreover, exhausted CD8+ T cells were asso-
ciated with tumor stage [37]. Therefore, Cluster 2 was re-
ferred to as the “inflamed subtype” [38]. Anti-angiogenic
therapy and immune checkpoint inhibitors, alone or in com-
bination, can significantly improve the clinical prognosis
of patients with advanced ccRCC. This is due to the high
vascular density and the large number of immune cells in-
filtration in the microenvironment of ccRCC [39]. VEGF,
VEGFR, EGF, EGFR, and KIT are targets for first-line anti-
angiogenesis therapy. The expression of these targets and
of immune checkpoints in the two subgroupswas confirmed
here (Fig. 3e). The results suggest the “angiogenesis sub-
type” may be more sensitive to targeted therapy, while the
“inflamed subtype” may be more sensitive to immunother-
apy.

3.4 Molecular Characteristics of the Two Subtypes and
Differences in Treatment Response

The antitumor immune response requires a series of
stepwise events termed the cancer immune cycle. Neoanti-
gens produced by oncogenesis are first captured by den-
dritic cells (DCs) (step 1). The antigens captured by MHCI
and MHCII molecules are then presented to T cells (step
2). Effector T cells are then primed and activated (step
3). Finally, the activated effector T cells move to the tu-
mor bed (step 4) and subsequently infiltrate (step 5). As
a result, they selectively recognize cancer cells through T-
cell receptor (TCR) interactions (step 6) and kill the tar-
get cancer cell (step 7) [18]. Differences between the two
subtypes were observed here for the cancer-immune cycle

(Fig. 4a). Cluster 2 had a higher score for step 7 due to
more infiltration of CD8+ T cell. However, a high number
of exhausted CD8+ T cells limits the recognition of can-
cer cells, and immune checkpoint blockade can re-awaken
exhausted CD8+ T cells to elicit antitumor immunity [40].
The tumor mutation burden (TMB) is a biomarker of the
immune checkpoint blockade response [41]. Commonly
mutated genes in ccRCC were evaluated here in the two
clusters. BAP1 mutation was more frequent in Cluster 2,
while ATM and PBRM1 mutations were more frequent in
Cluster 1 (Fig. 4b). The TMB was not statistically differ-
ent between the two clusters (Supplementary Fig. 7). Tu-
mors with BAP1 mutation have been associated with con-
siderably worse over survival rates [42,43]. Furthermore,
BAP1-mutant tumors are associated with mTORC1 activa-
tion [44]. The clinical features of the two clusters were in-
vestigated next. Tumors from Cluster 2 had higher grade,
stage and immune score, thus explaining their worse prog-
nosis (Fig. 4c). We further assessed genes that were pre-
viously related to specific biological processes [45]. Clus-
ter 1 contains more oncogenic pathways such as epithelial-
mesenchymal transition (EMT) and Wnt signaling, as well
as the cell cycle and angiogenesis pathway (Fig. 4c). Clus-
ter 2 was enriched in immune pathways, including CD8+
T effectors, immune checkpoint, and Pan-F-TBRS path-
ways. Personalized treatment for ccRCC could therefore
be offered based on the characteristics of significant vas-
cular infiltration in Cluster 1, and of immunosuppression
in Cluster 2. Anti-angiogenic drugs that target VEGF sig-
nalling pathways, including sorafenib and sunitinib, have
been widely used to treat advanced carcinomas [46,47]. In
accordance with our conjecture, the Cluster 1 subgroup in
the E-MTAB-3267 cohort showed a higher objective re-
sponse rate to sunitinib than Cluster 2 (Fig. 4d). Based on
the same genes, tumor samples in the PD-1 inhibitor-treated
cohorts E-MTAB-3218 and CheckMate-010 were divided
into two distinct subgroups, thus demonstrating the robust-
ness of our cluster analysis (Fig. 4e,f). As predicted, Pa-
tients in cluster 2 had a higher reactivity to nivolumab than
Cluster 1 patients.

3.5 Construction and Validation of a Prognostic Signature

A prognostic signature was developed to predict prog-
nosis and the response to immune checkpoint blockade ther-
apy. Univariate Cox regression analysis was performed us-
ing the MCC function to identify the top 30 central genes in
the two subgroups associated with OS, followed by LASSO
penalty Cox regression analysis of the significant variables
(p < 0.05). A 9-gene signature was then constructed based
on the optimum λ value. The risk score for each patient was
calculated using the following formula: (0.184 × HJURP
exp) + (0.329 × NUF2 exp) + (–0.203 × KIF15 exp) + (–
0.390 × MELK exp) + (–0.101 × TPX2 exp) + (0.250 ×
PLK1 exp) + (0.561 × CDCA3 exp) + (0.050 × CTLA4
exp) + (0.050× FOXP3 exp). Patients in the TCGA dataset
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Fig. 3. Cluster 2 shows an inflamed phenotype. (a) The thermogram shows different expression for chemokines, interleukins, tumor
necrosis factor and T cell exhaustion factors between Clusters 1 and 2 at the transcriptome level (*p< 0.05; **p< 0.01; ***p< 0.001).
(b) The abundance of infiltrating immune cells in the tumor microenvironment was analyzed separately for the two pyroptosis-related
clusters using CIBERSORTx. (c) Characteristics of CD8+ T cells in the tumor microenvironment of ccRCC. (d) Percentage of exhausted
CD8+ T cells in the TME (P1 represents the first patient, P2 means the second patient, and P3 means the third patient). (e) Expression
levels of angiogenic genes and immune checkpoint genes at the transcriptome level between the two subtypes (*p < 0.05; **p < 0.01;
***p < 0.001).
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Fig. 4. Comprehensive analysis of clinical and mutational features of the two clusters, as well as their response to treatment.
(a) Cancer immune cycle analysis in the two clusters. (b) The top 20 mutations found in the two subtypes of ccRCC. (c) The clinical
features, mutation and functional characteristics of the subtypes were comprehensively analyzed (*p< 0.05; **p< 0.01; ***p< 0.001).
(d) Response of the two subtypes to sunitinib therapy (****p< 0.0001). (e) The response to nivolumab treatment was assessed between
the two subtypes using progression-free survival (CR means complete response; PR means partial response; SD means stable disease;
PD means progressive disease) (****p< 0.0001). (f) Response of the two subtypes to nivolumab therapy in CheckMate-010 cohort (**p
< 0.01).
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were then divided into high- and low-risk groups according
to the median score. Survival analysis revealed the low-risk
group had a significantly better clinical outcome than the
high-risk group (Fig. 5a; p < 0.01). Using the same algo-
rithm, risk scores were calculated for ccRCC patients clas-
sified as low- and high-risk subgroups in the E-MTAB-1980
dataset to further validate the prognostic signature. Kaplan-
Meier survival curves showed the OS results for ccRCC pa-
tient subroups was consistent with those from the TCGA
dataset (Fig. 5c; p < 0.001). To investigate whether this
signature could also predict responsiveness to PD-1 ther-
apy, risk scores were calculated using the same algorithm
in the CheckMate-025 and CheckMate-010 datasets for
metastatic ccRCC patients previously treated with VEGF-
directed therapy. The signature predicted both progression-
free survival (PFS) and OS of metastatic ccRCC patients
treated with nivolumab. The low-risk group showed better
response to nivolumab treatment than the high-risk group
(Fig. 5e,f). Moreover, in the IMvigor210 cohort the risk
score also reflected objective response rates and PFS in
urothelial carcinoma patients treated with the PD-L1 in-
hibitor atezolizumab (Supplementary Fig. 8). Univariate
and multivariate Cox analyses were also used to evaluate
whether the signature was an independent prognostic fac-
tor for ccRCC patients. Univariate analysis indicated the
signature was strongly associated with OS in ccRCC pa-
tients from the TCGA dataset [hazard ratio (HR): 3.08 95%
CI: 2.46–3.85, p < 0.001]. Multivariate analysis further
showed the signature was an independent predictor of OS
(HR: 2.10, 95%CI: 1.63–2.70, p< 0.001; Fig. 5g). The test
dataset confirmed the signature was an independent predic-
tor of OS for ccRCC patients in univariate (HR: 4.16, 95%
CI: 2.46–7.03, p< 0.001) and multivariate (HR: 3.62, 95%
CI: 1.89–6.95, p < 0.001) analyses (Fig. 5h). These results
indicate the 9-gene signature may be useful for the clini-
cal evaluation of prognosis. AUC analysis of cases in the
TCGA database revealed the signature showed good accu-
racy, with values of 0.73, 0.72 and 0.75 at 1, 5 and 10 years
of follow-up, respectively (Fig. 5b). The AUC values cal-
culated from the E-MTAB-1980 dataset were 0.89, 0.82 and
0.75 at 1, 5 and 10 years, respectively (Fig. 5d).

3.6 GSDMB Expression is Associated with ccRCC
Progression and Poor Prognosis

The PRGs with prognostic significance were asso-
ciated with immune cell infiltration, immune checkpoints
(Fig. 6a), and activation of the epithelial-mesenchymal tran-
sition (EMT) (Fig. 6b). Multivariate cox regression anal-
ysis showed that GSDMB was the most significant prog-
nostic factor for ccRCC compared with other pyroptosis-
related genes (Fig. 6c). Moreover, GSDMB was overex-
pressed in ccRCC tissue in GSE40435 and GSE53757 from
the GEO dataset (Supplementary Fig. 9). Kaplan-Meier
analysis showed that GSDMB overexpression was associ-
ated with poor OS of ccRCC patients (Supplementary Fig.

10). The TCGAdatabase showed that GSDMBoverexpres-
sion was significantly correlated to the stage and grade of
ccRCC (Fig. 6d–f). qPCR showed that GSDMB expres-
sion at the transcription level was associated with ccRCC
grade (Supplementary Fig. 11). Differential expression
of GSDMD at the protein level was found between ccRCC
cells and normal kidney cells, confirming previous findings
(Fig. 6g,h). Furthermore, IHC revealed that GSDMB ex-
pression was related to ccRCC grade (Fig. 6i,j). Therefore,
the above results indicate that GSDMB may promote the
occurrence and development of renal clear cell carcinoma,
although the precise mechanisms remain to be determined.

4. Discussion
ccRCC is an immunogenic cancer with a substan-

tial proportion of cytolytic, tumor-infiltrating lymphocytes
(TILs), thus making it a candidate tumor for immunother-
apy. In the present study, the role of pyroptosis in ccRCC
was further explored with the aim of achieving more indi-
vidualized patient therapy treatment. Tumor samples were
first divided into two subtypes according to their expres-
sion of pyroptosis-associated genes with prognostic signif-
icance. The two subtypes showed significantly different
OS amongst ccRCC patients and were thus comprehen-
sively analyzed at the genomic, transcriptomic and protein
levels to explore differences. BAP1 mutation was more
frequent in Cluster 2, while ATM and PBRM1 mutations
were more frequent in Cluster 1. Patients with BAP1 mu-
tations had higher tumor grade and shorter overall sur-
vival. Moreover, recent studies have shown that alterations
to PBRM1 can predict the response to immunotherapy in
patients with renal cell carcinoma [48,49]. GSVA analy-
sis showed Cluster 1 was enriched for carcinogenic acti-
vation pathways, various metabolic pathways, and cell cy-
cle pathways. Cluster 2 was enriched for immune path-
ways. Evaluation of stromal components and immune cells
in the TME revealed that Cluster 2 had more infiltrating im-
mune cells, cancer-associated fibroblasts and stromal cells.
Further analysis of the stromal cells showed that Cluster
1 had more endothelial cells. Cluster 1 was also associ-
ated with canonical oncogenic pathways, especially angio-
genesis, and was therefore named the angiogenic pheno-
type. In contrast, Cluster 2 was named the inflamed phe-
notype because it showed more infiltration with CD8+ T
cells and Treg cells, and more immunosuppressive and T-
cell exhaustion factors in the TME. Treg cells are the key
suppressive cells among the tumor-infiltrating lymphocytes
(TIL) and can indicate poor prognosis [50]. Unlike other tu-
mor types, CD8+ T cells are associated with poor prognosis
in ccRCC, Previous studies have shown that extensive in-
filtration with CD8+ T cells is associated with poor prog-
nosis in patients with primary and metastatic ccRCC [51].
This may be one of the reasons for the poor prognosis ob-
served here for cluster 2 Tumors from Cluster 2 had higher
grade and stage than those from Cluster 1, which may ex-
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Fig. 5. Construction and validation of a subtype-based prognostic signature. (a) Survival analysis of high- and low-risk groups in
patients from the TCGA database. (b) Receiver operating characteristic (ROC) curves demonstrated the accuracy of the risk score in
the TCGA database. (c) Overall survival (OS) analysis of the high- and low-risk groups in patients from the E-MTAB-1980 cohort. (d)
ROC curves demonstrated the accuracy of the risk score in the E-MTAB-1980 dataset. (e) Progression-free survival (PFS) in the high-
and low-risk groups of patients from the CheckMate-025 and CheckMate-010 cohorts. (f) OS in the high- and low-risk groups of patients
from the CheckMate-025 and CheckMate-010 cohorts. (g) Univariate (left) and multivariate (right) analysis of the training set from the
TCGA cohort. (h) Univariate analysis (left) and multivariate (right) analysis of the test set from the E-MTAB-1980 cohort.

plain why Cluster 2 patients had significantly worse prog-
nosis than those from Cluster 1. Differential expression of
angiogenesis-related genes and of immune checkpoints fur-

ther confirmed the cluster phenotypes. Moreover, evalua-
tion of specific steps in the tumor immune cycle revealed
the T cells in Cluster 2 had low ability to recognize tu-
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Fig. 6. Comprehensive analysis of clinical features associated with the two clusters. (a) Relationship between 8 prognostic genes
and infiltrating immune cells in the microenvironment. (b) Relationship between expression of the 8 prognostic genes, angiogenesis-
related genes, and epithelial-mesenchymal transition (EMT)-related genes. (c) Multivariate cox regression analysis of overall survival
was performed for 8 pyroptosis-related genes. (d–f) Relationship between GSDMB and clinical features of clear cell renal cell carcinoma
(*p< 0.05; ***p< 0.001; ****p< 0.0001). (g,h) Relative level of GSDMB protein expression in the HK-2, Caki-1 and 769P cell lines
(*p < 0.05; **p < 0.01). (i) Representative IHC staining for GSDMB in normal, low and high grade ccRCC. (j) GSDMB expression
level in normal (n = 15), low grade (n = 15) and high grade (n = 5) ccRCC tissues (**p < 0.01; ****p < 0.0001).
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mor cells. Thirty hub genes were used to build a model
for predicting the sensitivity to anti-PDL1 therapy. A 9-
gene prognostic signature (HJURP, NUF2, MELK, TPX2,
PLK1, CDCA3, CTLA4, FOXP3, KIF15) was identified
using univariate and LASSO regression analyses. These
genes have been implicated in the progression and treat-
ment resistance of various cancer types [52,53]. The signa-
ture could predict the outcome of ccRCC patients in both
the TCGA and E-MTAB-1980 datasets. Immunotherapy
drugs such as nivolumab prolong the survival of patients
with metastatic ccRCC [54,55], although the response rates
are lower than for other solid tumors. Reliable and robust
biomarkers for the response to immunotherapy are there-
fore required. Of note, our 9-gene signature showed predic-
tive value (Progression-free survival and Over svrvival) for
anti-PD1 therapy, and suggested that low-risk patients may
derive benefit from immune checkpoint blockade therapy.
IHC showed that GSDMB was differentially expressed be-
tween normal renal tissue and low- and high-grade ccRCC.
Similarly, GSDMB was differentially expressed between
HK-2 normal and Caki-1 and 769-P tumor cell lines based
on Western blot. The anti-cancer role of tumor cell py-
rolysis has recently attracted considerable interest. For in-
stance, GSDMBwas also promotes the proliferation and in-
vasion by activating the STAT3 signaling pathway in blad-
der cancer [56]. However, a limitation of the present study
is that data on several important clinical variables (e.g.,
surgery, neoadjuvant chemotherapy, chemoradiotherapy)
was unavailable for most datasets. This may have affected
the apparent prognostic value found here for the immune re-
sponse and pyroptosis state in ccRCC. Therefore, additional
research on the mechanism of pyroptosis may allow further
insight into the role of pyroptosis in ccRCC and provide a
theoretical basis for personalized treatment.

5. Conclusions
In summary, two subgroups of ccRCC patients were

identified based on the expression of pyroptosis-related
genes. A robust prognostic signature was also developed
using the expression of 9 core genes. The expression of
GSDMB was associated with ccRCC progression. Further
studies are needed to confirm the specific role of pyroptosis-
related genes in ccRCC and to identify the associated regu-
latory mechanisms.
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