
Front. Biosci. (Landmark Ed) 2023; 28(11): 304
https://doi.org/10.31083/j.fbl2811304

Copyright: © 2023 The Author(s). Published by IMR Press.
This is an open access article under the CC BY 4.0 license.

Publisher’s Note: IMR Press stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Original Research

Integrated Single-Cell and Transcriptome Sequencing Analyses
Develop a Ubiquitination-Associated Signature in Gastric Cancer and
Identified OTULIN as a Novel Biomarker
Zhongting Huang1,*, Zhiyong Zhang1, Yangyang Tu1, Haibin He1, Feng Qiu1,
Hailong Qian1, Chunshu Pan2,*
1Department of Gastrointestinal Surgery, Ningbo Medical Center Lihuili Hospital, The Affiliated Lihuili Hospital, Ningbo University, 315000 Ningbo,
Zhejiang, China
2Department of Radiology, Ningbo No.2 Hospital, 315000 Ningbo, Zhejiang, China
*Correspondence: lhlhuangzhongting@nbu.edu.cn (Zhongting Huang); panchunshu@nimte.ac.cn (Chunshu Pan)
Academic Editor: Feng Jiang
Submitted: 12 April 2023 Revised: 24 June 2023 Accepted: 10 July 2023 Published: 27 November 2023

Abstract

Background: Gastric cancer (GC) is the most commonly diagnosed digestive system malignancy with a dismal survival outcome. The
prognostic value of ubiquitination-related genes (URGs) in GC has yet to be discovered. Methods: TwoGC cohort datasets were obtained
from the Cancer Genome Atlas Program (TCGA) and Gene Expression Omnibus (GEO) databases. Stepwise Cox analysis was employed
to generate a signature. Then, we applied unsupervised clustering analysis to determine subclusters in GC based on URGs. Single-cell
analysis was carried out to depict the cellular location of model genes. The CIBERSORT method was performed to estimate the immune
landscape. Finally, preliminary wet lab work was utilized to disclose the potential effect of OTULIN. Results: Our proposed signature
was set up based on five URGs (OTULIN,UBE2C,USP1,USP2, andMAPT) which could serve as a risk classifier to categorize GC cases.
In addition, it was demonstrated that the ubiquitination-associated model could depict the immune landscape and forecast immunotherapy
response for GC patients. Furthermore, in vitro experiments determined the function and effect of OUTLIN in GC. We observed that the
knockdown of OUTLIN could suppress cell viability and metastatic ability of GC cell lines. Conclusions: Our data lays the groundwork
for a comprehensive investigation into the role of URGs in GC and determined OTULIN as a candidate GC biomarker.
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1. Introduction
Gastric cancer (GC) is a common malignant neoplasm

of the digestive system. It has the fourth-highest incidence
and the second-highest mortality rate in the world. With the
continuous improvement of treatment, the mortality rate of
GC has decreased worldwide [1]. However, the survival
outcome of GC cases is dismal as the mechanisms affect-
ing prognosis are still unclear. Consequently, the further
investigation of molecular mechanisms involved in the oc-
currence, development, and prognosis of gastric cancer and
the search for valuable molecular markers is critical.

Recent studies have shown that the tumor microen-
vironment (TME) plays a central role in the development
of tumors. The TME is a complex system consisting of
low oxygen, low pH, high pressure, and a large number of
growth factors and protein hydrolases, which regulate a va-
riety of tumor biological behaviors [2]. The TME consists
of tumor cells, stromal cells, and an extracellular matrix.
The local homeostatic environment, composed of fibrob-
lasts, immune cells, some endothelial cells, and an extracel-
lular matrix, allows for tumor development, invasion, and
metastasis [3]. A suitable microenvironment is the “soil”
for tumor growth, which can cause genomic instability, pro-

vide scaffolds and barriers, generate immune regions, in-
duce bidirectional differentiation and form a permissive mi-
croenvironment, and promote the formation and develop-
ment of tumors [4,5]. Therefore, it is crucial to focus on the
TME to illuminate the mechanisms of GC tumorigenesis.

Post-translationalmodification (PTM) refers to the co-
valent processing of proteins during or after translation,
where a modification group is attached to one or sev-
eral amino acid residues or removed by protein hydroly-
sis, thereby changing the properties of the protein. PTM is
widely found in eukaryotic cells and is second only to repli-
cation, transcription, and translation as an important reg-
ulatory mechanism with biological functions [6]. Several
hundred post-translational modifications have been identi-
fied, including phosphorylation, ubiquitination, crotonyla-
tion, glycosylation, carboxylation, acetylation, lactylation,
and ribosylation. The ubiquitin system consists of a com-
plex cascade of reactions, mainly ubiquitin-activating en-
zyme (E1), ubiquitin-conjugating enzyme (E2), and ubiqui-
tin ligase enzyme (E3), which are involved in the regulation
of protein activity, eukaryotic cell cycle, DNA repair, and
apoptosis [7,8].
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The development and evolution of malignant tumors
is a multifactorial induced multi-stage evolutionary process
involving numerous mutational accumulations of genes;
by activating proto-oncogenes and inactivating oncogenes,
their temporal, spatial, quantitative, and qualitative abnor-
mal expression products act on cell growth, differentiation,
and apoptosis. It is well known that cells are the basic units
of life, and the dynamic changes of protein networks and
their related functions are important for life processes [9].
The ubiquitin-proteasome system (UPS) and the lysosomal
system are the two major modes of protein degradation and
quality control. The ubiquitin-mediated protein degrada-
tion system is an important protein quality control system
in cells, which regulates cell viability, signaling, and other
cellular physiological processes [10].

Numerous studies have demonstrated that
ubiquitination-related genes (URGs) are significantly
associated with tumorigenesis. For example, in melanoma,
the ubiquitination of galectin-3 by RNF8 via K48-linked
polyubiquitin chains. Inhibiting galectin-3 restored cy-
tokine levels and immune cell infiltration, providing a
potential option for the management of melanoma [11].
Tian et al. [12] revealed that USP46 could facilitate cell
migration by upregulating ENO1 in esophageal cancer.
Nevertheless, the association between UGRs and the
prognosis of GC is unknown, making it challenging to
exploit ubiquitination-related therapy for GC.

Our study aims to provide insight into the expression
pattern of URGs and their regulatory mechanisms in GC in
order to determine novel and powerful prognostic biomark-
ers of GC.

2. Materials and Methods
2.1 Data Collection

The expression profiling and clinical traits of
375 GC samples were downloaded from the TCGA
website (https://portal.gdc.cancer.gov/). Another
GC-independent dataset (GSE84437) containing tran-
scriptome data and survival information was obtained
from the Gene Expression Omnibus (GEO) database
(https://www.ncbi.nlm.nih.gov/geo/). All raw data were
pre-processed with the limma package in R software (4.1.3,
R Foundation for Statistical Computing, Vienna, Austria).
The exclusion criteria were set as follows: (1) histologic
diagnosis was not GC; (2) samples without completed
data for analysis; and (3) overall survival (OS) time of
less than 30 days. We screened the list of UGRs using a
relevance score greater than 10.0 from the GENECARDS
database website (https://www.genecards.org/). Detailed
information on these URGs is shown in Supplementary
Table 1.

2.2 Construction of the Ubiquitination-Associated
Signature (UAS)

Firstly, we selected the TCGA dataset as a training
set for model establishment. All UGRs were analyzed by
univariate Cox regression to screen out prognosis-related
URGs (p< 0.05). Multivariate analysis was utilized to gen-
erate a prognostic model based on the candidate genes from
univariate Cox regression. Each GC sample’s risk value
was generated using the following formula:

∑n
i=1 coef i ∗

expression level of UAGi. The coef represents the coef-
ficient of each UAG calculated by multivariate Cox anal-
yses. The GC cases were divided into high- and low-risk
groups according to the median risk value.

2.3 Consensus Gene Clustering
We applied unsupervised clustering through the ‘Con-

sensusClusterPlus’ package [13]. The optimal cluster value
was determined based on the similarity between the expres-
sion matrix of UAGs and the fuzzy clustering measurement
ratio.

2.4 Single-Cell RNA Analysis
We obtained scRNA data (GSE167297) of GC from

the GEO database. The scRNA-seq matrix for individual
samples was analyzed using the Read10× algorithm of the
‘Seurat’ package [14]. Low-quality cells with ≤300 de-
tected genes or ≥10% mitochondrial genes were removed
and normalized by ‘NormalizeData’, the top 1500 highly
variable genes were then identified by the ‘FindVariable-
Features’ function. Data quality control and normalization
were performed by ‘NormalizedData’. The t-SNE method
was used to reduce data dimensionality and obtain differ-
ent cell clusters. All cell populations were annotated using
‘FindAllMarkers’ based on the cell surface markers.

2.5 Gene Set Enrichment Analysis (GSEA)
GSEA was conducted using GSEA software (version

4.0.1, Massachusetts Institute of Technology, and Regents
of the University of California, CA, USA) with 1000 rows.
Hallmark and KEGG terms were selected as the target gene
sets from MSigDB. Total GC cases were divided into two
groups based on risk and enriched for the above gene sets.
Any gene set with FDR <0.25 and p < 0.05 was regarded
as significant.

2.6 Clinical Potency Investigation
CIBERSORT (https://cibersort.stanford.edu/) is an al-

gorithm that estimates the abundance of cell types infil-
trated by patients with tumors based on gene expression
data [15]. Moreover, single sample gene set enrichment
analysis (ssGSEA) was employed to immune activity and
function between two risk groups. The drug sensitivity
analysis was conducted by the ‘pRRophetic’ package to de-
tect which drugs presented different sensitivities among the
two risk groups. The half-maximal inhibitory concentration
(IC50) was calculated to evaluate the drug sensitivity [16].
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Fig. 1. A flowchart of the present research. Gastric cancer (GC), The Cancer Genome Atlas Program (TCGA), Gene Expression
Omnibus (GEO), microsatellite instability (MSI).

2.7 Cell Culture and Transfection

Two human GC cell lines (SGC7901 and BGC823)
and one normal gastric epithelium cell line (GES-1) were
purchased from the Cell Center of Shanghai Institutes. All
cell lines were cultured in RPMI 1640 medium (Invitro-
gen) containing 10% fetal bovine serum and 1% antibiotics
(100 U/mL penicillin G and 100 mg/mL streptomycin) at

37 °C with 5% CO2. The silencing RNA against OTULIN
(si-OTULIN) was synthesized and purchased from RIB-
BIO (Guangzhou, China). The sequence of si-OTULIN is
shown in Supplementary Table 2. Lipofectamine 3000
(Invitrogen) was used for cell transfection. Cell lines were
authenticated by the Shanghai Biowing Applied Biotech-
nology Co.,Ltd and Procell Life Science & Technology
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Fig. 2. Construction process of the ubiquitination-associated signature (UAS). (A) Univariate Cox analysis. (B) Multivariate Cox
analysis for screening model genes. (C) The expression patterns of UAS genes in gastric cancer (GC) and normal specimens. *p< 0.05.

Co.,Ltd. using Short Tandem Repeat profiling (PCR Am-
plification Kit, Corning, New York, USA). Mycoplasma
test was performed in all cell lines every other week using
the Mycoplasma PCR Detection Kit (Beyotime, Shanghai,
China). Only mycoplasma-free cell lines were used.

2.8 Reverse Transcription-Polymerase Chain Reaction
(RT-PCR)

Total RNA was extracted from cells using RNA easy
reagent (Vazyme, Nanjing, China) based on the manufac-
turer’s instructions. RNA was then synthesized to cDNA
by Primerscript Mix (Takara Bio, Kusatsu, Shiga, Japan).
RT-PCR was applied on a Steponeplus system with SYBR
Green Regent (Takara Bio, Japan). The relative expression
was calculated using the 2−∆∆CT method. The primer se-
quences of the genes are shown in Supplementary Table
2.

2.9 Cell Viability Assay
A total of 10,000 cells per well were seeded into a 96-

well plate. After 24 hours of incubation at 37 °C, cell via-
bility was determined by detecting ATP levels in cell lysates
using the CellTiter-Glo (CTG) Assay.

2.10 Colony-Formation Assay

A total of 200 cells/well were seeded into six-well
plates and incubated for 1-week. Clones were fixed with
methanol and stained with 0.1% crystal violet (Servicebio,
Wuhan, China) when visible to the naked eye. Image-J (ver-
sion 1.5b, LOCI, University of Wisconsin, Madison, WI,
USA) was used for colony counting.

2.11 EdU Assay

EdU assay was performed to evaluate cell prolifera-
tion. The cells were cultured in 96-well plates (5000 cells
per well) with complete medium for 24 h. After a 2 h in-
cubation with EdU solution (50 µM), all cells were fixed
and stained with 1× Apollo® solution for 30 min. Finally,
nuclei were stained with 1 × Hoechst33342.

2.12 Statistical Analysis

All bioinformatics data were analyzed by R software
(version 4.0, Lucent Technologies, Murray Hill, NJ, USA).
and wet lab experimental data were analyzed using Graph-
Pad 9.4 (GraphPad Software, Inc., San Diego, CA, USA).
Survival curves were used to compare survival differences
between the two groups using the Kaplan-Meier (KM)
method. The discrepancies in clinical outcomes between
groups were examined using the Kaplan-Meier survival
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Fig. 3. Performance of the ubiquitination-associated signature. (A,B) Survival curves of survival outcome of GC cases between two
groups in the training and verification sets. (C,D) Receiver operating characteristic (ROC) curves to predict the performance of UAS in
the two GC cohorts. (E,F) Demonstration of the UAS based on the risk score of the training and verification sets, respectively. (G,H)
The proportion of deaths and survival in two subgroups. ROC, receiver operator characteristic.
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analysis. Receiver operator characteristic (ROC) curves
were plotted to confirm the accuracy of UAS. Cox regres-
sion was utilized to detect the independent performance of
UAS in GC.

3. Results
3.1 Development of the Ubiquitination-Associated
Signature (UAS)

A flowchart of the present research is shown in Fig. 1.
Firstly, univariate Cox analysis was employed to obtain
eight potential URGs with significant prognosis values,
which were then enrolled into the multivariate Cox method
(Fig. 2A). Using stepwise Cox methods, we set up the UAS
including five URGs (OTULIN, UBE2C, USP1, USP2, and
MAPT) (Fig. 2B). The risk model equation was: (0.2508
× OTULIN) + (0.2446 × UBE2C) + (0.87167 × USP1)
+ (–0.3729 × USP2) + (–0.3461 × MAPT). Fig. 2C re-
vealed that these URGs were significantly differentially ex-
pressed in GC and normal tissues using the GEPIA2 por-
tal. It was shown that OTULIN, USP1, and UBE2C were
overexpressed in GC specimens, whereas USP2 andMAPT
were upregulated in normal tissues.

3.2 Verification of the UAS
Based on model risk scores constructed from five

URGs, we divided GC cases into high- and low-risk groups,
showing good predictive ability of the model in both the
training and validation groups, and defined them as a USA-
high cohort and UAS-low cohort. Survival curves demon-
strated that high-risk score was associated with dismal OS
in the training set (TCGA cohort), which was confirmed by
the verification set (GSE84437) (Fig. 3A,B). The 1-, 3- and
5-year area under the curves (AUCs) were 0.611, 0.705, and
0.785 for the training set (Fig. 3C), 0.668, 0.619, and 0.723
for the verification set (Fig. 3D), respectively, indicating
the beneficial predictive ability of our constructed UAS.
Fig. 3E,F illustrates the relationship between risk scores and
the pattern of patient survival status (alive or dead) distribu-
tion. Mortality was significantly decreased in the UAS-low
cohort than in the USA-high cohort; both were independent
datasets (Fig. 3G,H).

3.3 Independent Prognosis Analysis of the UAS
We employed Cox regression to detect the indepen-

dent prognostic score of UAS in GC patients. Fig. 4A re-
vealed that univariate analysis remarkably associated the
UAS-high score with dismal survival outcomes. Multi-
variate Cox indicated that the UAS score remained mean-
ingful for forecasting prognosis. In addition, the prognos-
tic independence of UAS was confirmed in the test cohort
(Fig. 4C,D). Additionally, we observed that UAS could
forecast survival outcomes of different clinical subgroups
in terms of age (≤65, n = 197 samples, >65, n = 241 sam-
ples), gender (male, n = 285 samples, female, n = 158 sam-

ples), grade (grade 1–2, n = 171 samples, grade 3, n = 263
samples) and stage (stage I–II, n = 189 samples, stage III–
IV, n = 227 samples) (Fig. 4E).

3.4 Determination of Ubiquitination-Based Molecular
Subtype

To develop a novel molecular subtype in GC, consen-
sus clustering analysis was employed based on 268 URGs.
According to the cumulative distribution function (CDF),
we conducted the tracking plot from k = 2 to 9, where k = 2
was identified as the cluster number to divide patients into
cluster A (n = 304) and cluster B (n = 504) (Fig. 5A). Prin-
cipal component analysis (PCA) indicated that two clusters
of GC cases could be effectively distinguished by our pro-
posed novel molecular subtype (Supplementary Fig. 1A).
Cluster B had a better outcome than cluster A. There was
an obvious difference discrepancy in immunocyte infiltra-
tion between the two subgroups (Fig. 5B,C). Supplemen-
tary Fig. 1B summarizes the relationship between UAS-
based molecular clusters and different clinical traits. We
then identified potential pathways (ubiquitination, DNA re-
pair, and cell cycle) in which clusters might be involved by
KEGG enrichment analysis (Fig. 5D).

3.5 Immune Landscape of GC Patients

Next, we applied CIBERSORT and ssGSEA analyses
to explore the ability of the model to predict the immune
microenvironment of GC patients. In Fig. 6A, B cells mem-
ory, B cells naive, monocytes, mast cells resting, and T cells
CD4 memory resting positively correlated with risk score,
whereas macrophages M0, T cells CD4 memory activated,
and T cells follicular helper were negatively correlated with
risk score. The results from ssGSEA revealed that immune
functions such as CCR, major histocompatibility complex
(MHC) class I, and type II interferon (IFN) response dif-
fered significantly among the two groups (Fig. 6B). Fig. 6C
shows the expression patterns of classical immune check-
points among two groups. It was shown that CD86, CD200,
CD40, NRP1, CD48, CD27, and TNFSF15 were upreg-
ulated in the UAS-high group, whereas in the UAS-high
group, other immune checkpoints exhibited a decreased ex-
pression level.

3.6 Clinical Potency of the UAS

Considering the crucial regulatory role of m6A reg-
ulators in GC progression, we determined the relationship
between risk score and the expression of m6A regulators.
We found that ZC3H13 and FTO were highly expressed
in the UAS-high group. In contrast, HNRNPC, ALKBH5,
YTHDF2, RBM15, YTHDF1, and METTL3 were down-
regulated in the UAS-high group (Fig. 7A). There were
significant differences in the expression of chemoradio-
therapy sensitivity-related genes between the two groups.
As shown in Fig. 7B, AKR1C1, EGFR, FLT3, and KIT
were significantly overexpressed in the UAS-high group
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Fig. 4. Independent prognosis analysis. (A,C) Univariate Cox analysis. (B,D) Multivariate Cox analysis. (E) Subgroup survival
analysis of the UAS in terms of age, gender, grade, and stage.

(Fig. 7B). The proportion of patients with MSS was sig-
nificantly lower in the UAS-low cohort than in the UAS-
high cohort. In comparison, the proportion of MSI-H was
significantly higher in UAS-high cohort (Fig. 7C). In ad-
dition, the risk score was negatively correlated with RNA
stemness score (RNAss) (Fig. 7D). Drug sensitivity anal-
ysis revealed that docetaxel (p = 1.7 × 10−8) had a lower
IC50 value in the high-risk cohort, whereas the other three

drugs displayed a higher IC50 value in the high-risk cohort
(p = 7.1× 10−5 for gefitinib, p = 4.3× 10−9 for rapamycin,
p = 4.4 × 10−9 for sorafenib) (Fig. 7E).

3.7 Single-Cell Analysis of the UAS

Subsequently, we detected the expression pattern of
five model genes at the single-cell level. A total of 14
GC samples from GSE167297 were enrolled into single-
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Fig. 5. Cluster analysis for determination of URGs-basedmolecular subtype. (A) Consensus clustering results. (B) Survival analysis
and (C) immune infiltration analysis between two clusters. (D)Gene set variation analysis (GSVA) based onKyoto Encyclopedia of Genes
and Genomes (KEGG) pathway enrichment. *p < 0.05; **p < 0.01; ***p < 0.001. URGs, ubiquitination-related genes.
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Fig. 6. Immune landscape analysis. (A) The correlation between risk score and immune cells. (B) The difference in immune functions
in two risk groups. (C) Immune checkpoints analysis of the UAS. *p < 0.05; **p < 0.01; ***p < 0.001, ns, no significance.

cell analysis (Supplementary Fig. 2A). The top 1500 vari-
able genes with red labels were collected (Fig. 8A). Fig. 8B
revealed a favorable integration effect between cluster all
samples and 50 PC groups. PCA analysis showed the dis-
tribution of all GC cases with no significant batch effects
(Supplementary Fig. 2B). Using t-SNE diagrams, a to-
tal of 30,365 cells were identified and further clustered
into 20 different subpopulations (Fig. 8C). Based on the
surface marker, we determined 8 cell population types in-
cluding B cells, dendritic cells (DCs) endothelial cells, ep-
ithelial cells, monocytes, NK cells, smooth muscle cells
and T cells (Fig. 8D). Next, the cellular location of five
URGs was detected. We observed that OTULIN, USP1,
and UBE2C were enriched in malignant epithelial cells,
whereas USP2 and MAPT were downregulated in malig-
nant epithelial cells (Fig. 8E).

3.8 Identification of OUTLIN as a Novel Oncogenic
Player in GC

We selected OTULIN to verify our proposedmodel by
various in vitro experiments. Fig. 9A shows that OTULIN,
USP1, and UBE2C were highly expressed in GC cell lines,
whereas USP2 and MAPT were highly expressed in the
GES-1 cell line. A PCR assaywas carried out to confirm the
transfection efficiency of siRNA-OTULIN and OTULIN
(Fig. 9B). CTG assay, colony formation, and EdU assay
were applied to evaluate the cell viability in GC cells. Cell
proliferation was significantly inhibited following the si-
lencing of OTULIN in SGC7901 cells (Fig. 9C–E).

4. Discussion
Ubiquitination is a common post-translational protein

modification that serves an important role in tumor devel-
opment and progression. Ubiquitination is a double-edged
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Fig. 7. Clinical potency of the UAS. (A) The expression patterns of m6A regulators and (B) chemosensitivity-related genes between risk
groups. (C) Correlation between MSI and risk score. (D) Cancer stemness analysis. (E) Drug sensitivity analysis (docetaxel, gefitinib,
rapamycin, and sorafenib). *p < 0.05; **p < 0.01; ***p < 0.001, ns, no significance.

sword in regulating cancer progression, as the substrate pro-
tein might be either an oncogene or a tumor suppressor [17].
For instance, RNF139 was reported to induce cell apoptosis
and block glioma cell survival by targeting the AKT path-
way [18]. However, OTUD6A, as a tumor driver, could
boost cell growth and progression of prostate cancer by sta-
bilizing c-Myc [19]. The dual role of different ubiquitina-
tion members in tumors deserves a comprehensive analy-
sis and exploration in GC.Multigene-based signatures have
gained more attention due to their robust predictive accu-
racy over traditional clinical scores [20,21]. Nevertheless,
biomarkers with prognosis values based on URGs expres-
sion data were not well studied in GC.

Our project aimed to develop a prognostic model
based on URGs. We first screen out eight prognostic URGs
and further establish a risk model containing five URGs
by step Cox analysis. Survival curves illustrated that GC
cases in the high-UAS group presented a dismal survival
outcome compared to the low-UAS group. The AUC value
of ROC curves verified the favorable predictive power of
the UAS. Moreover, the results were further verified in the
verification cohort. Subsequently, our proposed UAS was
demonstrated to be an independent prognostic factor asso-
ciated with unfavorable OS in different GC subgroups.

Our constructed model was composed of five URGs
(UBE2C,MAPT, OTULIN, USP1, and USP2), all of which
have previously been shown to be associated with tumor
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Fig. 8. Single-cell sequencing analysis. (A) A total of the top 1500 variable genes with red labels. (B) Data integration and dimen-
sionality reduction. (C) All cells were clustered into 20 subclusters. (D) Classification of all cells into B cells, dendritic cells (DCs),
endothelial cells, epithelial cells, monocytes, NK cells, smooth muscle cells, and T cells. (E) Cellular location of five URGs (OTULIN,
USP1, USP2, UBE2C, andMAPT).
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Fig. 9. Identification of OUTLIN as a novel oncogenic player in GC. (A) Expression patterns of five model genes in different cell
lines were detected by Real-Time Quantitative Reverse Transcription PCR (qRT-PCR) assay. (B) PCR assay indicates the favorable
transfection efficiency in GC cell lines. Cell proliferation in different treatment groups was evaluated by (C) CTG assay, (D) colony
formation, and (E) EdU assay. Scale bar = 200 µm. *p < 0.05; **p < 0.01; ***p < 0.001. CTG, CellTiter-Glo.

survival and progression [22,23]. UBE2C, a key compo-
nent of the ubiquitin-proteasome system, was demonstrated
to promote ubiquitination and degrade cyclins. Together
with E3 ligases, it acts in the anaphase-promoting complex
(APC/C) to regulate the spindle assembly test site [24]. As
revealed by Zhang et al. [25], UBE2Cwas highly expressed
in GC specimens at both mRNA and protein levels. Mean-
while, UBE2C expression was observed to be associated
with lymphatic metastasis and TNM stage. Moreover, Cox-
relevant analyses indicated that UBE2C presented prognos-
tic independence in GC [25]. In breast cancer (BC), silenc-
ing UBE2C could significantly inhibit cell survival by tar-
geting the mTOR signaling pathway, suggesting UBE2C is
expected to be a potential target for the management of BC
[26]. OTULIN, a linear deubiquitinating enzyme, plays a
central part in pathophysiological effects, including cancer,
cell death, vascular regeneration, and neuroinflammation
[27]. Wang et al. [28] demonstrated that OTULIN could
facilitate cell migration and invasion and confer drug re-
sistance to BC by triggering Wnt/β-catenin signaling. As
a classical member deubiquitinating enzyme, numerous re-
ports have disclosed that USP1 exerts a tumor driver in var-
ious tumors, including GC, BC, and osteosarcoma [29–31].
For example, Li et al. [30] found that USP1 could boost
GC cell metastasis through deubiquitination of ID2. Con-
sistent with the above findings, our analysis also indicated
that UBE2C, OTULIN, and USP1 were high-risk genes in
GC (hazard ratio (HR) = 1.227 for UBE2C, HR = 1.285 for
OTULIN, and HR = 2.391 for USP1). Conversely, MAPT

and USP2 were protective genes in GC (HR = 0.707 for
MAPT and HR = 0.689 for USP2). Wu et al. [32] reported
that the knockdown of MAPT could induce chemosensitiv-
ity in GC cells. In addition, USP2 also could suppress lung
cancer survival through the stabilization of the ARID2 pro-
tein [33].

Immune checkpoints (ICPs) are a group of immuno-
suppressive molecules expressed on immunocytes that play
an important role in protecting against autoimmune ef-
fects through modulation of immune activation [34]. ICP
molecule overexpression contributes to the suppression of
immune function and thus encourages the immune escape
of tumors. Our data revealed that the majority of ICPs were
upregulated in the high-UAS group, which may be an im-
portant contributor to their poor prognosis.

In addition to expressing specific antigens that the im-
mune system can recognize, tumor cells also express a va-
riety of immunosuppressive ligands that can bind to in-
hibitory receptors expressed by T cells. BTLA, like other
immune checkpoint molecules (e.g., PD1, CTLA-4, Tim3),
inhibits T-cell activity upon binding to the corresponding
ligands, leading to tumor immune escape [35]. Accord-
ing to the available experimental analysis, anti-PD1/PD-
L1 tumor immunotherapy is effective in specific patients
only, with an overall response rate of about 30%. In con-
trast, the combination of anti-BTLA immunotherapy can
improve tumor control and promote cytokine secretion in
the body. This may indicate that BTLA, as a suppres-
sive immune checkpoint, is also involved in tumor im-
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mune escape [36,37]. NRP1 operates in various tumor cell
functions and microenvironments and is an important pro-
moter of tumor development. NRP1, as a member of the
NRP family, is mainly expressed in vascular endothelial
tissue and interacts with vascular endothelial growth factor
(VEGF) to regulate tumor cell invasion, proliferation, pro-
mote tumor cell inflammatory response, immune response,
and stem cell proliferation processes [38]. CD200, also
known as OX2, is a transmembrane glycoprotein with two
extracellular immunoglobulin structural domains and an in-
tracellular structure consisting of an unknown signaling do-
main of 19 amino acids. In addition to familiar hematologic
tumors, it was upregulated in multiple solid tumors, includ-
ing solid tumors such as ovarian cancer, kidney cancer,
head and neck tumors, and other solid tumors. CD200R,
the homologous receptor for CD200, is also a member of
IgSF. Inhibiting the binding of CD200, a potential immune
checkpoint molecule, to CD200R could theoretically lead
to tumor immunotherapy [39].

To further exploit the predictive power of the UAS in
clinical potency, we further examined the relationship be-
tween scores and chemoradiotherapy signature (AKR1C1,
EGFR, MET, FLT3, KIT, SOX2, EZH2, and TBX5). These
genes inhibit the radiotherapy sensitivity of tumor cells
by promoting DNA damage repairing and restraining cell
death [40–42]. Upregulation of AKR1C1 can diminish
the production of reactive oxygen species and remove free
radicals, resulting in reduced DNA damage, which confer
chemotherapy resistance to cancer cells [42]. EGFR has
been reported to reduce cellular sensitivity to radiotherapy
in various solid tumors, thereby promoting tumor recur-
rence and metastasis [43].

OUTLIN has not been previously reported in GC;
therefore, we chose it for experimental validation. The re-
sults from a set of functional experiments indicated that si-
lencing OUTLIN could inhibit GC cell growth and cell vi-
ability, suggesting OUTLIN may be a potential target for
GC treatment.

There were several limitations within our study. First,
our proposed UAS was generated using public databases;
therefore, additional large-scale prospective and multicen-
ter clinical studies are necessary to verify our data. Further-
more, we only validated OTULIN in the UAS using in vitro
experiments. Further in vivo or molecular experiments are
required to confirm the role of UAS in the future.

5. Conclusions
In this research, a prognostic signature based on five

ubiquitination-associated genes was generated for the first
time; the signature could serve as an independent prognos-
tic factor for GC cases and mirror the immune landscape
of GC. Our proposed signature can adequately forecast sur-
vival outcomes and evaluate the immunotherapy response
of GC cases. Our data provide a valuable reference for GC
detection and treatment.
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