
Front. Biosci. (Landmark Ed) 2023; 28(11): 302
https://doi.org/10.31083/j.fbl2811302

Copyright: © 2023 The Author(s). Published by IMR Press.
This is an open access article under the CC BY 4.0 license.

Publisher’s Note: IMR Press stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Review

The Function, Underlying Mechanism and Clinical Potential of
Exosomes in Colorectal Cancer
Jinhong Han1,†, Shuai Ma2,†, Yao Zhao2, Bingxian Wang2, Shuang Ding2, Yuhan Hu2,3,4,*
1Department of Human Anatomy and Histology, School of Basic Medical Sciences, Xinxiang Medical University, 453000 Xinxiang, Henan, China
2Department of Pathology, School of Basic Medical Sciences, Xinxiang Medical University, 453000 Xinxiang, Henan, China
3Department of Pathology, The Third Affiliated Hospital of Xinxiang Medical University, 453000 Xinxiang, Henan, China
4Micromorphology Laboratory, School of Basic Medical Sciences, Xinxiang Medical University, 453000 Xinxiang, Henan, China
*Correspondence: 052106@xxmu.edu.cn (Yuhan Hu)
†These authors contributed equally.
Academic Editor: Qingping Dou
Submitted: 15 March 2023 Revised: 2 June 2023 Accepted: 8 June 2023 Published: 24 November 2023

Abstract

Colorectal cancer (CRC) is a lethal malignancy worldwide. Exosomes are extracellular vesicles derived from the endosomal pathway
of nearly all cells and can be found in body fluids. They can be considered an intercellular system in the human body that can mediate
near- and long-distance intercellular communication due to their features and functions. Investigations have revealed that exosomes are
participated in different processes, physiologically and pathologically, especially in cancer. However, the clinical value of exosomes and
their mechanisms of action in CRC are unclear and have not been systematically assessed. The purpose of this review is to discuss how
exosomes play a role in the occurrence and development of CRC, with a particular focus on the functions and underlying mechanisms of
tumor-derived exosomes as well as non-tumor-derived exosomes. We also describe the evidence that exosomes can be used as diagnostic
and prognostic markers for CRC. In addition, the possibilities of exosomes in CRC clinical transformation are also discussed.
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1. Introduction
Worldwide, colorectal cancer (CRC) is a commonma-

lignant tumor [1]. According to the Global Cancer Statistics
2020, CRC is the third most commonly diagnosed cancer,
the second leading cause of cancer death in women, and the
third leading cause of incidence and mortality in men [2].
It is a malignancy originating from the mucosal epithelium
and glands of the large intestine. Histologically, there are
several subtypes of CRC, and approximately 90% of CRCs
are adenocarcinomas [3]. Patients with CRC often present
with anemia, blood in the stools, aberrant bowel movement,
andweight loss [4]. It has been demonstrated that the occur-
rence of CRC is related to dietary patterns, metabolism, and
inflammation [5]. The initiation and progression of CRC
may also be affected by environmental and genetic factors
[6]. Thus, CRC is the result of a complexmulti-step process
involving numerous factors and genes. For patients with
CRC, the systemic treatment regimens utilized for clini-
cal management include tumor resection, 5-Fluorouracil-
based chemotherapy, radiotherapy, anti-angiogenic treat-
ment, targeted therapy, and immunotherapy [7–9]. Al-
though the death rate of CRC has decreased due to earlier
screenings and improved treatments, more than one-third
of patients die within 5 years of initial diagnosis, with liver
metastases being the most fatal cause of death [10–12].

Exosomes are extracellular vesicles (EVs) with diam-
eters ranging from 40 to 160 nm. They are derived from
the endosomal pathway of nearly all cells, and they can be
found in cell culture fluids, breastmilk, blood, urine, pleural
effusion, saliva, and other body fluids [13–15]. Exosomes
carry specific cargo consisting of DNA, RNA, cytosolic and
cell-surface proteins, metabolites, and lipids. They can be
thought of as an intercellular system in the human body that
mediate communication between cells and influence a va-
riety of cell biological behaviors [13,16]. During the gen-
eration of exosomes, the plasma membrane is double in-
vaginated, and intracellular multivesicular bodies (MVBs)
containing intraluminal vesicles (ILVs) are formed. MVBs
fuse to the plasma membrane, and ILVs are ultimately se-
creted as exosomes through exocytosis. The uptake of exo-
somes is not random but depends on the surface proteins on
the membrane of exosomes and recipient cells [17]. When
exosomes encounter suitable recipient cells, exosomes can
adhere to the surface of recipient cells through the interac-
tion of ligands and receptors. They can directly fuse with
cell membranes or be endocytosed by recipient cells and re-
lease the cargo into target cells (Fig. 1) [13,14]. Numerous
studies have shown that exosomes are involved in different
physiological and pathological processes, such as inflam-
matory responses, cancer development, metastasis, and im-
munity [17,18].

https://www.imrpress.com/journal/FBL
https://doi.org/10.31083/j.fbl2811302
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Fig. 1. Biogenesis and intercellular communications of exosomes. The plasma membrane is double invaginated, forming the in-
tracellular multivesicular bodies (MVBs) containing intraluminal vesicles (ILVs). MVBs fuse to the plasma membrane, and ILVs are
ultimately secreted as exosomes through exocytosis. The intercellular communications of exosomes depend on the interactions between
ligands and receptors. When the exosomes meet the proper recipient cells, they can directly fuse with cell membranes or be endocytosed
by recipient cells and release the cargo into target cells.

Recently, it has been demonstrated that exosomes play
a role in the occurrence, development, invasion, metasta-
sis, tumor microenvironment (TME) remodeling, chemore-
sistance, and other processes in CRC [19]. This paper re-
views the functions and underlyingmechanisms of action of
tumor-derived and non-tumor-derived exosomes in CRC,
intending to summarize the previous studies on potential
biomarkers and effective targets for the treatment of CRC.

2. Physiological and Pathological Functions
of Exosomes

Exosomes were first reported as a “type of small vesi-
cles” in 1983, and the name “exosome” was first used in
1989 [20,21]. They were initially believed to be super-
fluous membrane vesicles during cell maturation, with the
effect of regulating membrane function, removing cellular
debris, and eliminating surface molecules [14]. However,
exosomes have successfully attracted attention among re-
searchers because of their special roles in multiple facets of
cell activity.

Exosomes can be secreted by the donor cells through
exocytosis and accepted by the recipient cells through en-
docytosis or directly fusing to cell membranes. Thus, ex-
osomes act as a medium in intercellular communications
and transmit information to a large number of cells and lo-
cations, physiologically or pathologically (Fig. 2).

Exosomes are involved in the signal transduction of
the nervous system due to reciprocal signal transfer among
sensory and motor neurons, interneurons, and glial cells
[22]. Moreover, they play an important role in the aging
process [23]. Exosomes also play an important role in re-
productive development. They are involved in gamete mat-
uration, fertilization, embryo implantation, immunological
communication between the mother and the fetus, and fe-
tal protection by regulating local and/or systemic immune
responses, organ development, and melanin synthesis [24–
28]. Additionally, exosomes are related to cell prolifera-
tion, homeostasis, and maturation, such as in hepatocytes
and reticulocytes [20,29].
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Fig. 2. Exosomes play a role in physiological and pathological processes. Exosomes are involved in basic physiological processes such
as immune response, neural communication, gamete maturation, fertilization, embryo implantation, organ development, cell differentia-
tion and matrix synthesis, melanin synthesis, cell proliferation, homeostasis, and maturation. They are also involved in some pathological
processes, such as immune disturbance, tumorigenesis, cancer cell migration and metastasis, angiogenesis, metabolic reprogramming,
tumor microenvironment (TME) formation, pathogen infection, neurodegenerative diseases, and cardiovascular disease.

Exosomes are involved in immune response and infec-
tion [30,31]. They participate in antigen presentation and
induce the activation of T and/or B cells [32]. The contents
of exosomes are involved in regulating innate and adaptive
immune responses. It has been demonstrated that the DNA
of some intracellular bacteria sorted into exosomes is able
to activate innate immune responses or lower antibacterial
defenses [33].

Numerous studies have demonstrated that exosomes
are widely involved in the occurrence and development of
cancers. They are a double-edged sword in tumor growth
and progression. For example, exosomes derived from
M2 macrophages can inhibit the migration and invasion
of glioma cells [34]. Alternatively, the impact of tumor
exosomal DNA on inflammatory responses can indirectly
worsen cancer [35]. In addition, tumor-derived exosomes
can promote immune evasion by cancer cells and gener-
ate an immunosuppressive microenvironment [17,36]. Ex-
osomes derived from tumor cells may be absorbed by sur-
rounding cells and transform the microenvironment into
one that is prone to tumor development [37]. They also par-
ticipate in tumor growth, metastasis, apoptosis, metabolic
reprogramming, extracellular matrix degradation, stromal
reprogramming, immune surveillance escape, and drug re-
sistance [23,38,39]. In addition, exosomes are involved
in neurodegenerative diseases, cardiovascular disease, and
pathogenic infections [14,40].

3. The Underlying Mechanisms of Exosome
Functions in CRC

Numerous studies have explored the relationship be-
tween exosomes and the pathogenesis of different cancers.
The data demonstrated that exosomes have a relationship
with the hallmarks of cancer, such as sustaining prolifera-
tion signaling, activating invasion and metastasis, inducing
angiogenesis, metabolic reprogramming, and immune eva-
sion [41]. We reviewed the functions and mechanisms of
exosomes in CRC, including CRC cell-generated exosomes
and non-tumor cell-produced exosomes.

3.1 CRC Tumor-Derived Exosomes
Tumor-derived exosomes (TDEs) were first named in

1981, and it has attracted much attention in the past years
[42]. Exosomes act as signal messengers or transducers
for communications between cells [43]. Once the recipi-
ent cells take up TDEs, the exosomes are internalized, and
exosomal contents (such as microRNA, lncRNA, and cir-
cRNA) are released. The recipient cells respond to these
exosomal contents by changing their phenotypes. This pro-
cess is finely regulated and specifically determined by com-
plex surface molecules on the extracellular vesicles and the
recipient cell membrane [44]. This paper will summarize
the functions and mechanisms of tumor-derived exosomes
in CRC (Fig. 3; Table 1, Ref. [45–92]).
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Fig. 3. Mechanism of tumor-derived exosomes in colorectal cancer (CRC). Exosomes derived from CRC cells can transport their
cargo to other cells and play an important role in the occurrence and progression of CRC, including tumor growth, invasion andmetastasis,
angiogenesis, immune evasion, TME remodeling, metabolic reprogramming, and therapy resistance.

3.1.1 Tumor Growth

One of the typical hallmarks of cancer is sustaining
proliferation signaling, ultimately causing the rapid growth
of the tumor. CRC tumor-derived exosomes (CTDEs) can
regulate the growth of CRC cells through a variety of path-
ways, such as involvement in cell proliferation, cell cy-
cle, and apoptosis. For example, circLPAR1 is encapsu-
lated by CRC cell exosomes, internalized by CRC cells,
and inhibits tumor growth. The investigation of underly-
ing mechanisms showed that exosome circLPAR1 might
bind to eIF3h directly and inhibit METTL3-eIF3h inter-
action, ultimately reducing the translation of BRD4 [45].
Exosome-carried circ_0094343 derived from CRC cells
plays an inhibitory role in the proliferation and clone for-
mation of HCT116 cells via the miR-766-5p/TRIM67 axis
[46]. Exosomal circ_PTPRA can function as a compet-
ing endogenous RNA (ceRNA) and increase the expres-
sion of SMAD4 by binding to miR-671-5p, ultimately in-
ducing CRC cell cycle arrest and inhibiting cell prolifer-
ation [47]. It has also been demonstrated that a hypoxic

microenvironment in CRC may promote tumor cells to re-
lease exosomes rich in miR-410-3p. These exosomes may
transfer to normoxic cells and enhance the proliferation of
normoxic CRC cells [93]. Exosomal circEPB41L2 derived
from CRC cells could suppress CRC cell proliferation and
promote apoptosis by serving as a sponge for miR-21-5p
and miR-942-5p and regulating the PTEN/AKT signaling
pathway [48]. CRC cell exosome miR-224-5p promotes
cell proliferation by downregulating CMTM4, thus promot-
ing the malignant transformation of human normal colonic
epithelial cells [49]. Oncogenicmutantβ-catenin contained
in the extracellular vesicles can activate the Wnt signaling
pathway in the recipient cells and increase tumor burden in
vivo [50].

3.1.2 Invasion and Metastasis

Invasion and metastasis are the leading causes of
cancer-associated death in patients with CRC; however,
the molecular mechanisms underlying tumor invasion and
metastasis are complex and elusive [94]. Numerous studies
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Table 1. The function and mechanism of tumor-derived exosomes in CRC.
Type Molecule Function Target Ref.

miRNA miR-934 Promote colorectal cancer liver metastasis PTEN [51]
miR-106b Promote migration, invasion, and metastasis PDCD4 [53]
miR-135a-5p Promote CRC liver metastasis kinase 2-yes-associated

protein-MMP7 axis
[54]

miR-25-3p Facilitate vascular permeability and angiogenesis KLF2, KLF4 [68]
miR-25-3p, miR-130b-
3p, miR-425-5p

Enhance M2 polarization of macrophages and induce liver
metastasis of CRC

[95]

miR-208b Treg expansion, oxaliplatin resistance PDCD4 [72]
miR-146a-5p, miR-155-
5p

Activate CAFs and enhance the invasive capacity of CRC
cells

SOCS1, ZBTB2 [78]

miR-1246/92b-3p/27a-
3p

Promote metastasis [57]

miR-21-5p Induce angiogenesis and vascular permeability KRIT1 [69]
miR‐221/222 Promote metastasis SPINT1 [58]
miRNA-335-5p Promote migration, invasion, and metastasis RASA1 [59]
miR-200c-3p Inhibit migration and invasion, and promote apoptosis

after LPS stimulation
ZEB-1 [60]

miR-46146 OX resistance PDCD10 [89]
miR-106b-3p Promote metastasis DLC-1 [61]
miR-19b Enhance radioresistance and stemness of CRC cell FBXW7 [90]
microRNA-21-5p Induce an inflammatory premetastatic niche TLR7 [63]
miR-1229 Promote angiogenesis HIPK2 [70]
miR-17-5p Promote CRC cell growth and inhibit anti-tumor immunity SPOP [76]
miR‑10a Promote lung metastasis [66]
miR-10b Activate fibroblasts to become CAFs PIK3CA [82]
miR-1255b-5p Suppress EMT and liver metastasis hTERT [67]
miR-224-5p Promote tumor growth CMTM4 [49]
miR-203 Promote the differentiation of monocytes to M2-TAMs [83]
miR-101-3p Be related to metabolic reprogramming, promote tumor

growth, migration, and 5-FU resistance
HIPK3 [84]

lncRNA RPPH1 Promote metastasis and proliferation TUBB3 [55]
SNHG10 Contribute to immune escape INHBC [73]
lnc-HOXB8-1:2 Lead to TAM infiltration and M2 polarization hsa-miR-6825-5p [74]
CRNDE-h Promote Th17 cell differentiation RORγt [75]
MALAT1 Promote the invasion and metastasis miR-26a/26b [62]
PCAT1 Promote EMT and liver metastasis miR-329-3p [65]
HOTTIP Increase resistance of CRC cells to mitomycin miR-214 [92]
91H Enhance CRC metastasis HNRNPK [49]
HOTAIR Impede anti-tumor immunity PKM2 [77]

circRNA CircLPAR1 Suppress tumor growth eIF3h [45]
CircPACRGL Promote proliferation, invasion, migration, and

differentiation of N1 to N2 neutrophils
miR-142-3p/miR-506-3p [52]

Circ-133 Promote cell migration GEF-H1 [56]
Circ_0005963 Promote chemoresistance miR-122 [86]
circ_0000338 Improve the chemoresistance miR-217 and

miR-485-3p
[88]

circ_0094343 Inhibit proliferation, clone formation, and glycolysis miR-766-5p [46]
circ_PTPRA Induce CRC cell cycle arrest and inhibited cell

proliferation
miR-671-5p [47]

circ-FBXW7 Ameliorate chemoresistance to oxaliplatin in CRC miR-128-3p [91]
circEPB41L2 Suppress CRC cell proliferation, migration, and invasion

and promote apoptosis
miR-21-5p, miR-942-5p [48]
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Table 1. Continued.
Type Molecule Function Target Ref.

Others HSPC111 Altered lipid metabolism of CAFs and promote liver
metastasis

ACLY [79]

p-STAT3 Promote 5-FU resistance [87]
ANGPTL1 Attenuate CRC liver metastasis MMP9 [80]
CXCL16 Promote metastasis [57]
Wnt4 Enhance migration and invasion [64]
IRF-2 Remodel the lymphatic network and promote metastasis VEGFC [70]
CXCL1, CXCL2 Attract CRCSC-primed neutrophils to promote

tumorigenesis of CRC cells
IL-1β [81]

Wnt4 Promote Angiogenesis β-Catenin [71]
β-catenin promote cancer progression Wnt signaling pathway [50]
KRAS Alter the metabolic state of recipient colonic epithelial

cells
[85]

have shown that CTDEs are associated with the invasion
and metastasis of CRC. For example, tumor-derived exo-
somes miR-934 can target PTEN, resulting in downregula-
tion of the PTEN expression, which in turn activates the
PI3K/AKT signaling pathway to induce M2 macrophage
polarization, ultimately promoting CRC liver metastasis
[51]. Cancer-derived exosomal circPACRGL can absorb
miR-142-3p/miR-506-3p as a sponge and facilitate the TGF-
β1 expression, thus promoting CRC cell migration and in-
vasion [52]. The exosomes of CRC cells which have un-
dergone EMT contain miR-106b, and miR-106b in exo-
somes can directly inhibit PDCD4 post-transcriptionally,
activate the PI3Kγ/AKT/mTOR signaling pathway, and pro-
mote the M2 polarization of macrophages. Activated M2
macrophages promote EMT-mediated CRC cell migration,
invasion, andmetastasis in a positive feedbackmanner [53].
The hypoxic microenvironment in the CRC primary le-
sion promotes exosome release, selectively initiating the
formation of a favorable premetastatic niche in the liver.
Molecular mechanism exploration has found that Kupffer
cells (KCs) can engulf exosomes containing miR-135a-5p,
which enter the liver from the blood circulation. Exoso-
mal miR-135a-5p initiates the large tumor suppressor ki-
nase 2-yes-associated protein-MMP7 axis and promotes
CRC liver metastasis [54]. Exosome-encapsulated miR-
NAs, which are from CRC cells, can enhance the M2 polar-
ization of macrophages and contribute to CXCL12/CXCR4-
induced liver metastasis of CRC [95]. LncRNA RPPH1
is significantly upregulated in CRC tissues, and it could
be encapsulated in the exosomes of CRC cells. Then, ex-
osomes rich in RPPH1 are transported into macrophages
and mediate macrophage M2 polarization, thereby promot-
ing metastasis and proliferation of CRC cells [55]. Hy-
poxia can induce the secretion of circ-133-rich exosomes,
which are transported into normoxic cancer cells. Circ-133
contained in the exosomes promotes cell migration via the
miR-133a/GEF-H1/RhoA axis [56]. Exosomal miR-27b-
3p secreted after epithelial-mesenchymal transformation of

CRC cells increases vascular permeability and promotes the
production of circulating tumor cells (CTCs), thus promot-
ing the metastasis of CRC [96]. HuR, which is an RNA-
binding protein contained in CRC-derived exosomes, can
stabilize c-Myc mRNA and promote lung cell proliferation
[97]. Fusobacterium nucleatum infection may stimulate
tumor cells to generate exosomes rich in miR-1246/92b-
3p/27a-3p and CXCL16/RhoA/IL-8 that are delivered to
uninfected cells to promote metastatic behaviors in CRC
[57]. Exosomal miR-221/222 targets SPINT1 and plays a
key role in forming a favorable premetastatic niche (PMN),
thus leading to the metastasis of CRC [58]. Exosome-
transmitted miRNA-335-5p derived from metastatic CRC
cells promotes CRC migration, invasion, and metastasis
which may be due to EMT caused by RASA1 [59]. MiR-
200c-3p in exosomes derived fromCRC cells influences the
exosomal expression of ZEB-1 mRNA, and further alters
ZEB-1 protein expression in CRC cells, ultimately inhibit-
ing CRCmigration and invasion after LPS stimulation [60].
CRC-derived exosomal miR-106b-3p promotes metastasis
by down-regulating DLC-1 expression. Serum exosome
miR-106b-3p could be a potential molecular biomarker for
prognosis andmay be a target for the treatment of CRC [61].
ExosomalMALAT1 sponges miR-26a/26b, enhances FUT4
fucosylation, and activates the PI3K/Akt pathway, ulti-
mately promoting the invasion and metastasis of CRC [62].
MicroRNA-21-5p is highly enriched in CRC-derived exo-
somes and is essential for creating a liver proinflammatory
phenotype and liver metastasis of CRC by inducing an in-
flammatory premetastatic niche through the miR-21-TLR7-
IL-6 axis, therefore promoting liver metastasis [63]. Exo-
somal miR-193a and let-7g facilitate cancer primary CRC
progression and peritoneal metastasis by targetingMMP16
and CDKN1A [98]. It is also demonstrated that hypoxia
may promote the release of Wnt4-rich exosomes which are
derived from tumor cells. The Wnt4-rich exosomes are de-
livered to normoxic cells and facilitate the migration and
invasion of normoxic CRC cells [64]. Exosomal IRF-2
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remodels the lymphatic network in a sentinel lymph node
(SLN) and may predict the development of CRC lymph
node (LN) metastases [99]. Exosomes rich in circPABPC1
are transported from CRC cells to CRC cells and are in-
volved in the progression of CRC. In the nucleus, circ-
PABPC1 initiates the transcription ofHMGA2 by recruiting
KDM4C to its promoter and reducing the H3K9me3 mod-
ification. In the cytoplasm, it inhibits the degradation of
ADAM19 and BMP4, which is mediated by miR-874 and
miR-1292. Thus, circPABPC1 facilitates liver metastasis in
CRC via upregulating the expression of HMGA2, BMP4,
and ADAM19 [100]. Exosomes carrying circ-ABCC1 from
CD133+ cells have the ability to mediate cell stemness and
metastasis in CRC [101]. LncRNA PCAT1, which is from
CRC exosomes, can promote the EMT and liver metasta-
sis of CRC. Because exosome lncRNA PCAT1 can influ-
ence miR-329-3p and the activity of the Netrin-1-CD146
complex in circulating tumor cells (CTCs) [65]. Exoso-
mal‑miR‑10a derived from CRC cells reduced the expres-
sion of IL‑6, IL‑8, and IL‑1β in normal human lung fi-
broblasts (NHLFs), thereby reducing the proliferative and
migratory activities of primary NHLFs. This will help us
understand the mechanism underlying the process of CRC
lung metastasis [66]. Exosomal miR-1255b-5p targets hu-
man telomerase reverse transcriptase and inhibits its expres-
sion in CRC cells, ultimately suppressing tumor progres-
sion and liver metastasis of CRC [67]. Exosomal lncRNA
91H enhances CRCmetastasis by modifyingHNRNPK ex-
pression in CRC [49].

3.1.3 Angiogenesis

Angiogenesis is critical for tumor growth, survival,
and progression. The process is very complex, including
the degradation of the vessel’s basement membrane, the ac-
tivation, proliferation, and migration of vascular endothe-
lial cells, and reconstruction to form new blood vessels and
networks [102]. Tumor-derived exosomes are largely in-
volved in this process [103]. This has been demonstrated
in the angiogenesis of CRC. For example, exosomal miR-
25-3p, which is CRC cell-derived, directly targets KLF2
and KLF4 and regulates VEGFR2, ZO-1, claudin5, and oc-
cludin expression in endothelial cells, consequently pro-
moting vascular permeability and angiogenesis [68]. Exo-
somal miR-21-5p, which is secreted by CRC cells, induces
angiogenesis and vascular permeability by targeting KRIT1
[69]. MiR-1229, which is derived from the CRC cell exo-
somes, inhibits the expression of HIPK2 protein, thus ac-
tivating the VEGF pathway and promoting angiogenesis
[70]. Exosomal Wnt4 derived from CRC cells increases β-
catenin nuclear translocation in endothelial cells and pro-
motes angiogenesis in CRC [71].

3.1.4 Immune Evasion

Exosomes are important in modulating tumor immune
response and have a dual role. They may activate immune

responses or exhibit strong pro-tumor immune reactions
[17]. Numerous studies have revealed CRC tumor-derived
exosomes (CTDEs) can function as mediators of host anti-
tumor immune responses and tumor cell immune evasion.
For example, miR-208b is secreted by colon cancer cells
and sufficiently transported to recipient T cells. In T cells,
miR-208b, which is delivered by exosomes, directly targets
PDCD4 and induces immune evasion [72]. The CRC cell-
derived exosomal lncRNA SNHG10s can be taken up by
NK cells and suppress the function of NK cells by upregu-
lating INHBC expression. It has been suggested that ex-
osomal lncRNA SNHG10 could lead to the inhibition of
NK cells, ultimately contributing to immune escape [73].
Exosomes containing Lnc-HOXB8-1:2 are secreted by neu-
roendocrine differentiated CRC cells, and Lnc-HOXB8-1:2
from exosomes competitively binds hsa-miR-6825-5p as
ceRNA relieves the inhibitory effect of hsa-miR-6825-5p
on CXCR3 expression, upregulates its expression, and then
leads to TAM infiltration and M2 polarization, and pro-
motes immune evasion of CRC [74]. CRNDE-h, which
is derived from tumor cells, could inhibit ubiquitination
and degradation of RORγt and promote Th17 cell differ-
entiation in CRC [75]. CRC stem cell-derived exosomes
(CRCSC-exos) deliver miR-17-5p to CRC cells. The high
expression ofmiR-17-5p in CRCSC exosomes promotes tu-
mor cell growth by promoting PD-L1 inhibition of SPOP
and inhibits the anti-tumor immunity of CRC [76]. Tumor-
derived HOTAIR could bind to PKM2 and inhibit its ubiq-
uitination degradation, leading to the activation of STAT3
and expression of PDL1, thereby polarizing B cells toward
a regulatory feature and suppressing CD8+ T cell activity
[77].

3.1.5 TME Remodeling

The tumor microenvironment (TME) is a complex
internal environmental system around tumor cells, which
plays an essential role in tumorigenesis. CTDEs in the
TME are essential in the formation and reprogramming of
the TME. For example, miR-146a-5p and miR-155-5p con-
tained in CRC cell exosomes can be secreted by CRC cells
and taken up by the cancer-associated fibroblasts (CAFs).
Then, they may activate CAFs through JAK2-STAT3/NF-
κB signaling. Reciprocally, the activation of CAFs may
further facilitate the invasion of CRC cells [78]. CRC
cell-derived exosomal HSPC111 can be engulfed by CAFs.
In CAFs, it may phosphorylate ACLY and promote the
expression of acetyl-CoA. Acetyl-CoA accumulation fur-
ther increases H3K27 acetylation and promotes CXCL5 ex-
pression in CAFs. Interestingly, CXCL5 from CAFs can
reinforce exosomal HSPC111 excretion from CRC cells
and promote liver metastasis via the CXCL5-CXCR2 axis
[79]. Exosomal ANGPTL1 derived from CRC cells is
mainly taken up by Kupffer cells (KCs). Then, ANGPTL1
can downregulate MMP9 levels by inhibiting the JAK2-
STAT3 signaling pathway in KCs [80]. Tumor exosomal
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tri-phosphate RNAs sustain neutrophil survival by inducing
the expression of IL-1β through a pattern recognition-NF-
κB signaling axis. CRCSC-secreted CXCL1 and CXCL2
then attract CRCSC-primed neutrophils to promote tumori-
genesis of CRC cells via IL-1β [81]. CRC cell-derived ex-
osomes containing miR-10b can be transferred to fibrob-
last cells and activate fibroblasts to become CAFs via the
PI3K/Akt pathway [82]. Studies also revealed that CRC
tumor-derived exosomes contribute to generating pheno-
typically and functionally distinct subsets of CAFs by re-
programming their proteome and may facilitate tumor pro-
gression [77]. Exosomes that carrymiR-203 can be secreted
from CRC cells, and they can be swallowed by monocytes.
In monocytes, miR-203 can promote the expression of M2
markers, suggesting that miR-203 may facilitate the differ-
entiation of monocytes to M2- TAMs [83].

3.1.6 Metabolic Reprogramming

Metabolic reprogramming is an adaptive mechanism
that enables tumor cells to regulate the flow of their energy
to meet their needs for rapid growth. It is manifested by
an increase in glucose uptake and an enhancement of gly-
colysis under aerobic conditions, as well as high produc-
tion of lactate. These metabolic changes are also known as
the “Warburg effect” [104]. A growing number of studies
have shown that exosomes can mediate metabolic repro-
gramming in cancer [105]. As in CRC, hsa-miR-101-3p,
which is derived from CRC cell exosomes, is associated
with metabolic reprogramming in CRC by targetingHIPK3
[84]. Moreover, mutant KRAS exosomes are able to cause
a Warburg-like effect on recipient colonic epithelial cells
[85].

3.1.7 Therapy Resistance

It has been demonstrated that the delivery of exoso-
mal cargos between different cancer cells is associated with
tumor drug resistance [106]. Exosomes are used as carri-
ers for cell-to-cell communication in the tumor microen-
vironment, however; drug-resistant tumor cells can also
use this property to develop resistance to sensitive cells
[107]. Therapy-resistance mechanisms mediated by CT-
DEs are summarized as follows: hsa_circ_0005963 is in-
volved in chemoresistance in CRC. The exploration of un-
derlying mechanisms showed that hsa_circ_0005963 could
be a sponge for miR-122 [86]. Tumor-secreted miR-208b
directly targets PDCD4 and promotes Treg expansion, and
it may be associated with a decrease of oxaliplatin (OX)-
based chemosensitivity in CRC [72]. It is also demonstrated
that exosomes from RKO/R cells are able to promote ac-
quired 5-FU resistance in CRC, which is mainly related to
p-STAT3 contained in the exosomes [87]. Circ_0000338 is
present in exosomes and improves the chemoresistance of
CRC cells by targeting miR-217 and miR-485-3p [88]. Ex-
osome miR-46146 can be an important promoter of OX re-
sistance by targeting PDCD10 and may be a potential target

for OX resensitization by CRC cells [89]. MiR-19b can be
present in exosomes secreted by CRC cells. By delivering
miR-19b, CRC-derived exosomes enhance the radiation re-
sistance and stemness characteristics of CRC cells. Accord-
ingly, miR-19b inhibition can enhance the efficacy of ra-
diotherapy and reduce the stemness characteristics of CRC,
suggesting that miR-19b inhibition may be a promising
strategy for sensitization of CRC cells to radiotherapy [90].
Exosomal circ-FBXW7 can improve the chemoresistance of
CRC to OX by direct binding to miR-128-3p, which pro-
vides a promising treatment strategy for patients with OX-
resistant CRC [91]. Exosomal circATG4B plays an impor-
tant role in chemoresistance in CRC. The underlying mech-
anisms show that it can competitively bind to TMED10,
prevent TMED10 from binding to ATG4B, and induce in-
creased autophagy, ultimately promoting chemotherapy re-
sistance [108]. Exosomal long non-coding RNA HOTTIP
derived from mitomycin-resistant CRC cells can be trans-
ferred into the parental cells and increase the resistance of
CRC cells to mitomycin via impairing miR-214-mediated
degradation of KPNA3 [92].

3.2 Non-Tumousr-Derived Exosomes in CRC

Although tumor cells are the main cells in the tumor
microenvironment (TME), there are also many other cells,
such as fibroblasts, immune cells, endothelial cells, etc.
[109]. Exosomes secreted by non-CRC cells in the TME
may also affect the fate of CRC cells. Here, we summarize
the functions and mechanisms of non-tumor-derived exo-
somes in CRC (Fig. 4; Table 2, Ref. [110–134]).

For example, CAFs are themain stromal cells in TME.
CAFs can transfer exosomes that are rich in miR-92a-3p
directly to CRC cells and increase the expression of miR-
92a-3p in CRC cells significantly. In CRC cells, miR-92a-
3p directly targets FBXW7 and MOAP1, ultimately pro-
moting the stemness, EMT, metastasis, and chemotherapy
resistance of CRC cells [110]. CAFs can deliver H19 in
exosomes to CRC cells, promoting the stemness and re-
sistance of CRCs. Mechanistically, H19 activates the β-
catenin pathway by serving as a competing endogenous
RNA sponge of miR-141, which could inhibit the stemness
and chemoresistance of CRC cells after delivery to CRC
cells [111]. CAFs-derived exosomes contain a large num-
ber of miR-93-5p, which can promote tumor growth in irra-
diated nude mice [112]. Exosomal LINC00659 could be
secreted by CAFs and taken up by CRC cells. Then, it
could target the miR-342-3p/ANXA2 axis and promote cell
proliferation, invasion, and migration of CRC [113]. Ex-
osomal circEIF3K derived from CAFs promotes the pro-
gression of CRC via miR-214/PD-L1 axis [114]. CAFs-
derived exosomes contain miR‑181d‑5p, which is asso-
ciated with 5-FU sensitivity. It has been demonstrated
that miR‑181d‑5p inhibits 5-FU sensitivity through the
METTL3/miR‑181d‑5p/NCALD axis in CRC cells [115].
CAFs-derived exosome miR-181b-3p promotes the occur-
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Fig. 4. The Mechanism of non-tumor-derived exosomes function in CRC. Exosomes derived from non-CRC cells can transport
their cargo to CRC cells and affect most pathological processes in CRC, including stemness, EMT, migration, invasion, metastasis,
angiogenesis, apoptosis, tumor growth, and therapy resistance.

rence and development of CRC by regulating SNX2 ex-
pression [116]. CAFs-secreted exosome circN4BP2L2 pro-
motes the CRC cell stemness and oxaliplatin resistance
through EIF4A3/PI3K/AKT/mTOR pathway [117]. CAFs
can transmit miR-590-3p to CRC cells through exosomes.
In CRC cells, miR-590-3p enhances the radioresistance of
CRC by regulating the CLCA4-dependent PI3K/Akt sig-
naling pathway [118]. CAFs exosomes are directly swal-
lowed by CRC cells, and miR-625-3p in exosomes is re-
leased and may inhibit the CELF2/WWOX pathway after
entering CRC cells, thereby promoting the migration, inva-
sion, EMT and chemotherapy resistance of CRC cells [119].
CAFs-derived exosomes upregulate microRNA-135b-5p to
promote CRC cell growth and angiogenesis by inhibiting
TXNIP [120]. After entering CRC cells, WEE2-AS1 in the
exosomes of CAFs can promote the degradation ofMOB1A,
thereby inhibiting the Hippo pathway and promoting the
occurrence and progression of CRC tumors [121]. Hy-
poxia can lead to the loss of miR-200b-3p in the exosomes
of CAFs, thereby reducing the sensitivity of CRC cells
to 5-FU [122]. CAFs-exosomes show higher expression
of miR-17-5p than normal fibroblasts-exosomes and can
deliver exosomal miR-17-5p from parental CAFs to CRC

cells. Further studies confirm that that miR-17-5p directly
target RUNX3 3’-UTR to affect CRC metastasis. RUNX3
interacts with the MYC proto-oncogene, and both RUNX3
and MYC bind to the promoter of TGF-β1 on 1005-1296
base pairs, thereby activating the TGF-β signaling pathway
and promoting tumor progression [123]. LncRNA CCAL is
transferred from CAFs to the cancer cells via exosomes and
promotes oxaliplatin resistance of CRC cells. Mechanisti-
cally, CCAL interacts directly with mRNA stabilizing pro-
tein HuR and promoting the expression of β-catenin [124].
Exosomes from the normal fibroblasts also influence CRC
cells. For example, Exosomal Wnts derived from fibrob-
lasts can induce the differentiation of cancer cells to pro-
mote chemoresistance in CRC [125].

Exosomes from mesenchymal stem cells (MSCs) are
closely related to the therapeutic efficacy of MSCs. Af-
ter being ingested by CRC cells, MSC exosomes can exert
their effects through the miR-100/mTOR/miR-143 axis in
CRC cells, inhibiting the proliferation, migration, invasion,
and metastasis of CRC cells and inducing CRC cell apopto-
sis. It suggests that MSC-exosome treatment and miR-100
restoration might be considered potential therapeutic strate-
gies for CRC [126]. MSC-exosomal miR-3940-5p inhibits
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the growth, metastasis, invasion, and EMT of CRC cells
by targeting ITGA6 and the following TGF-β1 inactivation
[127]. The exosomes produced by bone marrowmesenchy-
mal stem cells (BMSCs) contain abundant miR-4461. Af-
ter being taken up by CRC cells, miR-4461 can directly
target COPB2, leading to COPB2 downregulation and in-
hibiting the migration and invasion of CRC cells [128]. In-
hibited exosomal miR-424 from BMSCs inhibited malig-
nant behaviors of CRC cells by targeting TGFBR3, thus
suppressing the progression of CRC [129]. BMSCs ex-
osomes contain microRNA-16-5p, and exosomes contain-
ing microRNA-16-5p are swallowed by CRC cells, which
inhibit the proliferation, migration, and invasion of CRC
cells and promote apoptosis of CRC cells [130]. Exo-
somes derived from MSCs are rich in miR-22-3p, which
inhibits CRC cell proliferation and invasion by regulating
RAP2B and PI3K/AKT pathways, suggesting the potential
of hBMSCs-exo-miR-22-3p for the treatment of CRC in the
future [131].

Some other cells may also affect the fate of CRC
cells. For example, Granulocytic Myeloid-derived sup-
pressor cells (G-MDSCs) promote the stemness of CRC
cells through exosomal S100A9 [132]. Adipocyte-derived
exosomal MTTP could suppress ferroptosis and promote
chemoresistance in CRC [133]. MiR-203a-3p derived
from hepatocyte exosomes increases the expression of E-
cadherin in CRC cells and inhibits Src expression, which
in turn leads to a decrease in the invasion rate of CRC cells
[134].

4. The Potential Clinical Value of Exosomes
in CRC

Due to their unique properties, exosomes contribute
to many aspects of precise tumor diagnosis and treatment,
including predicting prognosis and drug efficacy, dynamic
monitoring, and precisely targeted drug delivery [14].

4.1 Exosomes in CRC Diagnosis and Prognosis
Because of the various cargos in the exosomes and the

typical features on the surface of exosomes, they can re-
flect the status of their parent cells. Thus, exosomes have
emerged as a platformwith potentially broader and comple-
mentary applications to be used in the field of liquid biopsy
for the diagnosis, prognostic analysis, and monitoring of
cancer [135]. In this manuscript, we summarized the exo-
somes used in the diagnosis and prognosis of CRC (Table 3,
Ref. [55,58,72,75,136–166]).

Exosomal LncRNARPPH1 levels in blood plasma are
higher in untreated CRC patients but lower after tumor re-
section. It displayed a better diagnostic value (AUC = 0.86)
compared to CEA and CA199 and could serve as a potential
target for therapy and diagnosis in CRC [55]. ThemiR-208b
derived from exosomes of CRC cells can promote Treg am-
plification by regulating PDCD4, and it has the ability to
reduce the sensitivity of oxaliplatin-based chemotherapy in

CRC. These research results suggest that the exosomalmiR-
208b can serve as a biomarker for predicting oxaliplatin
treatment response and may become a new target for im-
munotherapy [72]. Exosomal miR-221/222 promotes CRC
progression andmay serve as a novel prognostic marker and
therapeutic target for CRC with liver metastasis [58]. By
deep sequencing, it has been demonstrated that miR-7641
has the potential to be a candidate for the non-invasive and
specific molecular markers for CRC diagnosis and prog-
nosis [167]. Exosome-delivered FZD10 increases Ki-67
expression via Phospho-ERK1/2 and may be a promising
novel prognostic and diagnostic biomarker for CRC [168].
Elevated plasma GPC1+ exosomes and decreased plasma
miR-96-5p and miR-149 expression may be specific mark-
ers for the diagnosis of CRC and targets for the treatment
of CRC. Compared with the healthy control group, the per-
centage of GPC1+ exosomes in tumor tissue and plasma
and the expression of GPC1 protein in exosomes in CRC
patients before surgery were significantly increased. How-
ever, miR-96-5p and miR-149 expression in tumor tissue
and plasma and GPC1+ exosomes in CRC patients were
significantly reduced compared to healthy controls [169].
The expression of exosomal miR-377-3p and miR-381-3p
are decreased in CRC patients; they can serve as circulating
biomarkers of diagnosis for CRC [136]. CircCOG2 is asso-
ciated with poor prognosis and can be used as a therapeutic
target for CRC [137]. Circulating or tissue-basedmiR-1539
derived from CRC cells may be used as a novel potential
biomarker for CRC screening, as well as a predictor of poor
clinicopathological behavior in tumors [138]. Circulating
exosomal miR-150-5p and miR-99b-5p derived from CRC
cells may be considered diagnostic biomarkers for CRC
[139]. Hsa-miR-3937, contained in tumor-originated exo-
somes, is a potential and effective liquid biopsy marker for
CRC detection and therapy [140]. The downregulation of
exosomal miR-548c-5p in serum predicts poor prognosis in
patients with CRC, and thus it may be a critical biomarker
for CRC diagnosis and prognosis [141]. Circulating exoso-
mal CPNE3 may be a diagnostic and prognostic biomarker
for CRC [142]. Plasma exosomal miRNA-139-3p is de-
creased in CRC and may act as a novel biomarker for early
diagnosis and metastasis monitoring in CRC [143]. CRC
cell-derived exosomes are rich in miR-424-5p, and miR-
424-5p is secreted into peripheral blood through exosomes.
The circulating exosomes miR-424-5p can be used as a
marker for early diagnosis of CRC [75]. Exosomal miR-
320d could significantly distinguish metastatic from non-
metastatic CRC patients and be a biomarker for metastatic
CRC [144]. The expression of LncRNAGAS5 andmiR-221
in CRC tissue, patient plasma, and exosomes can be inde-
pendent prognostic factors for CRC [145]. Studies have re-
vealed that the expression of hsa-circ-0004771 in circulat-
ing exosomes in CRC patients is significantly upregulated,
which is expected to become a new biomarker for colorec-
tal cancer diagnosis [146]. After the circ_0006174-rich ex-
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Table 2. The function and mechanism of non-tumor-derived exosomes in CRC.
Type Molecule Source Function Target Ref.

miRNA miR-92a-3p CAFs Promote the stemness, EMT, metastasis, and
chemotherapy resistance of CRC cells

FBXW7, MOAP1 [110]

miR-93-5p CAFs Against radiation-induced apoptosis FOXA1 [112]
miR‑181d‑5p CAFs Inhibit 5-FU sensitivity NCALD [115]
miR-181b-3p CAFs Promote the occurrence and development of CRC SNX2 [116]
miR-100 MSCs Suppress proliferation, migration, invasion, and metastasis

and induce apoptosis
mTOR [126]

miR-3940-5p MSCs Inhibit the growth, metastasis, invasion, and EMT of CRC
cells

ITGA6 [127]

miR-590-3p CAFs Enhance radioresistance in CRC CLCA4 [118]
miR-625-3p CAFs Promote migration, invasion, EMT, and chemotherapeutic

resistance in CRC cells
CELF2 [119]

microRNA-135b-5p CAFs Promote CRC cell growth and angiogenesis TXNIP [120]
miR-424 BMSCs Promote progression of CRC TGFBR3 [129]
miR-200b-3p CAFs Increase sensitivity to 5-FU HMGB3 [122]
miR-4461 BMSCs Inhibit migration and invasion COPB2 [128]
microRNA-16-5p BMSCs Inhibit proliferation, migration, and invasion, while

promoting apoptosis
ITGA2 [130]

miR-203a-3p hepatocyte Induce EMT Src [134]
miR-17-5p CAFs Contribute to tumor progression RUNX3 [123]
miR-22-3p BMSCs Suppress CRC cell proliferation and invasion RAP2B [131]

LncRNA H19 CAFs Promote the stemness and chemoresistance of CRC miR-141 [111]
LINC00659 CAFs Promote CRC cell proliferation, invasion, and migration miR-342-3p [113]
WEE2-AS1 CAFs Facilitate tumorigenesis and progression MOB1A [121]
CCAL CAFs Promote oxaliplatin resistance of CRC cells HuR [124]

circRNA circEIF3K CAFs Promote the progression of CRC miR-214 [114]
cricN4BP2L2 CAFs Promote the CRC cell stemness and oxaliplatin resistance EIF4A3 [117]

Others MTTP Adipocyte Suppress ferroptosis, promote chemoresistance PRAP1 [133]
S100A9 G-MDSCs Promote the stemness of CRC cells [132]
Wnts Fibroblasts Induce the dedifferentiation of cancer cells to promote

chemoresistance
[125]

osomes enter CRC cells, the DOX resistance of CRCs is
improved through the miR-1205/CCND2 axis. Therefore,
exosome circ_0006174 is expected to become a biomarker
for the diagnosis of chemotherapy resistance in CRC [147].
Serum exosomalmiR-874 is significantly downregulated in
CRC patients and has been negatively associated with dis-
tant metastasis, lymph node metastasis, differentiation, and
advanced TNM stage. Thus, serum exosomalmiR-874may
be a statistically significant independent prognostic factor
for CRC patients [148]. It is also demonstrated that exo-
somal FGB and β2-GP1 can be used as significant diag-
nostic efficacy for early CRC by using comprehensive pro-
teomics analyses [149]. Circulating exosomes miR-17-5p
and miR-92a-3p may be non-invasive prognostic markers
in patients with CRC, being either primary or metastatic
CRC [150]. Exosome lncRNAs FOXD2-AS1, NRIR, and
XLOC_009459 are promising biomarkers for diagnosing
CRC, especially early-stage CRC [151]. Plasma exosomal

miR-21 levels are a useful biomarker for the prediction of
recurrence and poor prognosis in CRC patients with TNM
stage II, III, or IV [152]. MiR-6869-5p may play a cancer-
suppressing role in CRC, and serum exosomemiR-6869-5p
is a promising circulating biomarker for predicting the prog-
nosis of CRC [153]. Serum exosomal miR-122 is a novel
potential diagnostic and prognostic biomarker in CRC pa-
tients with liver metastasis (LM) [154]. Serum exosome
circ-PNN may be a new biological marker for CRC detec-
tion, with non-invasive characteristics, and may play an im-
portant role in the tumorigenesis of CRC [155]. Exosomal
UCA1 is detectable and stable in the serum of CRC pa-
tients. Moreover, circulating exosomes containing UCA1
can predict the clinical outcome of treatment with cetux-
imab in CRC patients [156]. Exosomal miR-150 can be
used as amarker for the prognosis of CRC patients after sur-
gical resection, and its low expression predicts poor prog-
nosis after surgery. Therefore, exosome miR-150 may be a

11

https://www.imrpress.com


Table 3. The Clinical Potential of Exosomes “cargos” in CRC.
Type Exosomes Clinical Potential Ref.

miRNA miR-208b A predictive biomarker for oxaliplatin-based therapy response [72]
miR‐221/222 A prognostic marker and potential therapeutic target for CRC with liver

metastasis
[58]

miR-7641 A molecular biomarker for diagnosis and prognosis of CRC [167]
miR-96-5p and miR-149 A biomarker for early detection of CRC [169]
miR-377-3p and miR-381-3p Circulating biomarkers for diagnosis of CRC [136]
miR-1539 A potential biomarker for screening and a predictor of poor

clinicopathological behavior in CRC
[138]

miR-150-5p and miR-99b-5p Serve as diagnostic biomarkers for CRC [139]
miR-3937 A potential liquid biopsy marker for CRC [140]
miR-548c-5p A critical biomarker for CRC diagnosis and prognosis [141]
miRNA-139-3p A biomarker for early diagnosis and metastasis prediction in CRC [143]
miR-424-5p A biomarker for early diagnosis in CRC [75]
miR-320d A biomarker for metastatic CRC [144]
miR-221 An independent prognostic factor for CRC [145]
miR-874 An independent prognostic factor for overall survival of CRC patients [148]
miR-17-5p and miR-92a-3p A prognostic biomarker for primary and metastatic CRC [150]
miR-21 A predictor of recurrence and poor prognosis in CRC [152]
miR-6869-5p A circulating biomarker for the prognosis of CRC [153]
miR-122 A potential diagnostic and prognostic biomarker for CRC with liver

metastasis
[154]

miR-150 A potential prognostic factor and treatment target for CRC [157]
miR-150-5p A novel non-invasive biomarker for CRC diagnosis and prognosis [159]
miR-125b-5p Be potentially correlated with a more aggressive CRC phenotype [161]
miR-92b A promising biomarker for early detection of CRC [162]
miR-126, miR-1290, miR-23a, and
miR-940

Potential biomarkers for early diagnosis of CRC [164]

microRNA-125b A biomarker of resistance to mFOLFOX6-based chemotherapy in CRC [165]
miR-181b, miR-193b, miR-195,
and miR-411

A predicter for lymph node metastasis in T1 CRC patients [166]

LncRNA RPPH1 A potential biomarker for diagnosis and therapy in CRC [55]
GAS5 An independent prognostic factor for CRC [145]
FOXD2-AS1, NRIR, and
XLOC_009459

Biomarkers for the diagnosis of CRC [151]

UCA1 A predicter for therapeutic efficacy of cetuximab in CRC patients [156]
CCAT2 A potential predictor of CRC [163]

circRNA circCOG2 A biomarker for poor prognosis and a therapeutic target for CRC [137]
circ-0004771 A novel potential diagnostic biomarker of CRC [146]
circ_0006174 A biomarker for the diagnosis of chemoresistance in CRC [147]
circ-PNN A potential biomarker for the detection of CRC [155]

Others FZD10 A biomarker for prognosis and diagnosis of CRC [168]
GPC1 A biomarker for early detection of CRC [169]
CPNE3 A diagnostic and prognostic biomarker for CRC [142]
FGB and β2-GP1 Biomarker for diagnostic efficacy of early CRC [149]
QSOX1 A marker for early diagnosis and non-invasive risk stratification in CRC [158]
KRAS A predictor for outcome in CRC patients with metastasis [160]

prognostic factor and potential therapeutic target for CRC
[157]. Exosome-derivedQSOX1 is a new promisingmarker
for early diagnosis and non-invasive risk stratification of
CRC [158]. Serum exosomal miR-150-5p is expressed dif-
ferently between healthy people and CRC patients and is

expected to be a potential molecular marker for the diag-
nosis and prognosis of CRC [159]. KRAS mutations are
very common in CRC, KRAS mutations are manifested in
exosomes, and plasma exosome KRAS mutation status pre-
dicts the prognosis of patients with metastatic CRC [160].
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The higher the expression of miR-125b-5p in plasma ex-
osomes, the stronger the CRC aggressiveness, suggesting
that miR-125b-5p in plasma exosomes may be related to
the phenotype of CRC aggressiveness [161]. Exosome-
derived miR-92b is down-regulated in the plasma of CRC
patients and can be used as a molecular marker for early
diagnosis of CRC [162]. Circulating CCAT2 is present in
exosomes, protected by exosomes, and can serve as a po-
tential predictor of CRC [163]. In CRC cells, miRNAs
can be encapsulated into exosomes and secreted outside the
cell, regardless of intracellular miRNA expression. Among
these miRNAs, serum exosomes miR-126, miR-1290, miR-
23a, andmiR-940 are novel potential molecular markers for
early diagnosis of CRC [164]. In patients with advanced
and recurrent CRC, plasma exosome microRNA-125b can
be used as a molecular marker for detecting mFOLFOX6-
based chemotherapy resistance [165]. A group of miRNAs
which includes miR-181b, miR-193b, miR-195, and miR-
411, is able to detect lymph node metastasis in the exo-
somal vs. cell-free component. This suggests that exoso-
mal miRNA-based liquid biopsy features can strongly iden-
tify invasive submucosal CRC (T1 CRC) patients at risk of
lymph node metastasis in the preoperative setting [166].

4.2 Exosomes in CRC Clinical Transformation

Because of the properties and functions of exosomes,
they can be designed for drug or functional nucleic acid de-
livery [170] and have the therapeutic potential to be used
in the treatment of CRC. For example, engineered exo-
somes have been used to simultaneously deliver the anti-
cancer drug 5-FU and the miR-21 inhibitor oligonucleotide
(miR-21i) to Her2-positive cancer cells. The results re-
vealed that systematic administration of exosomes loaded
with 5-FU and miR-21i in tumor-bearing mice showed sig-
nificant anti-tumor effects in colon cancer [171]. Studies
have shown that the expression of PGM5 antisense RNA 1
(PGM5-AS1) in colon cancer is induced by GFI1B. PGM5-
AS1 prevents colon cancer cells from proliferating, migrat-
ing, and acquiring oxaliplatin tolerance, and engineered ex-
osomes that co-deliver PGM5-AS1 and oxaliplatin can re-
verse colon cancer resistance [172]. MiR-506-3p delivered
to CRC cells via exosomes reduces CRC proliferation and
induces apoptosis, suggesting that delivery of miR-506-3p
to CRC cells via exosomes may become a novel diagnosis
and treatment method for CRC [173]. Tumor-derived ex-
osomes (TEXs) may induce beneficial anti-tumor immune
responses, and TEXs have shown certain beneficial anti-
tumor properties in addition to miRNA delivery functions,
suggesting that the introduction of TEX-miR-34a may be a
new promising approach for combination therapy for CRC
[174]. Studies have shown that dendritic cells are loaded
with exosomes from cancer stem cell-rich spheroids, which
may be a new potential immunotherapy approach [50]. It
has been reported that the ascites-derived exosomes (Aex),
in combination with the granulocyte-macrophage colony-

stimulating factor (GM-CSF), could be used in the im-
munotherapy of CRC. The phase I clinical trial suggested
that AEX combined with GM-CSF immunotherapy for ad-
vanced CRC is feasible and safe and may be an alternative
to immunotherapy for advanced CRC [175].

Although exosomes have been considered promising
emerging therapeutic options and tumor neo-antigen drug
delivery tools and carriers in tumor precision therapy, there
are still many issues waiting to be resolved. Nowadays, ex-
osomes can be isolated and purified by ultracentrifugation,
density gradient centrifugation, polymer precipitation, ul-
trafiltration, and size exclusion chromatography; however,
flexible and fast detection platforms are still lacking. More-
over, how to load exosomes with specific cargo still need
to be explored. Because few studies have focused on the
fusion-based loading methods present, their detrimental ef-
fects on recipient cells remain unclear [14].

5. Conclusions and Prospects
Exosomes are derived from the endosomal pathway of

nearly all cells and may be considered a cell-to-cell system
in the human body that can mediate near- and long-distance
intercellular communication and affect various aspects of
cell biology. They are involved in different physiological
and pathological processes, such as the communication of
the nervous system, reproduction and development, inflam-
matory responses, cardiovascular diseases, and cancer de-
velopment.

CRC is one of the most highly malignant tumors
worldwide. Numerous studies have revealed that exosomes
play important roles in tumor growth, invasion, metas-
tasis, angiogenesis, immune evasion, TME remodeling,
metabolic reprogramming, therapy resistance, and some
other processes of CRC. Because of these features and func-
tions of exosomes, they may be used in the fields of diagno-
sis, prognosis, and treatment of CRC.We have reviewed the
current state of studies focused on the exosomes in CRC.
We have compared the effects of tumor-derived and non-
tumor-derived exosomes on the processes of CRC, summa-
rized the clinical value of various types of exosomal cargos,
and presented the potential of exosomes to be used in the
clinical transformation process.

However, there are still many issues waiting to be re-
solved before exosome-based therapy can be used in the
clinical treatment of CRCs. First, it is still a problem to
obtain a large number of exosomes quickly so far. The
isolation and purification of exosomes can be realized by
the following methods, such as separation based on the size
of density or particle, sedimentation or phase, affinity, mi-
crofluidic systems, or thermophoretic enrichment. How-
ever, the efficiency, quantity, and quality of exosomes sep-
arated by different separation methods are different, and
there is still a lack of unified methods that can quickly and
effectively obtain exosomes. Moreover, how to equip exo-
somes with specific drugs is also a problem. There are two
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methods for loading exosomes with drug, endogenous and
exogenous. The two methods both have their own disad-
vantages; the endogenous method is not accurate in quan-
tifying the specific substances in the exosomes, while the
loading efficiency is not high using the exogenous methods.
Thus, how to equip exosomes with specific drugs is also a
question that needs to be resolved. Furthermore, the long-
term efficacy and safety of using exosomes in the treatment
of CRC remain unclear. Therefore, there is a need for com-
prehensive clinical studies or trials of exosomes used in
CRC. It is possible that with technological developments
and further clinical trials, exosomes will be a real emerging
tool for the “cell-free” treatment of CRC.
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