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Abstract

Background: Abnormalities in regulated cell death (RCD) are involved in multiple diseases. However, the role of RCD in intracranial
aneurysms (IA) remains unknown. The aim of this study was to explore different RCD processes in the pathogenesis of IA.Methods:
Four microarray datasets (GSE75436, GSE54083, GSE13353, GSE15629) and one RNA sequencing (RNA-seq) dataset (GSE122897)
were extracted from the Gene Expression Omnibus (GEO) database. The microarray datasets were merged to form the training set,
while the RNA-seq dataset was used as the validation set. Differentially expressed genes (DEGs), gene set enrichment analysis (GSEA),
and gene set variation analysis (GSVA) were used to investigate the role of different types of RCD, including apoptosis, necroptosis,
autophagy, ferroptosis and pyroptosis in the formation of IA. A novel cell death classification system for IA was established using an
unsupervised consensus clustering algorithm based on cell death signature genes. Differences in functional enrichment, cell death-related
regulators, and immune infiltration between two cell death clusters were evaluated. Finally, predictive genes were identified using the
least absolute shrinkage and selection operator (LASSO) regression, random forest and logistic regression, allowing a prediction model
to be constructed for IA rupture. Results: Multiple RCD processes were significantly activated in IAs compared to controls. A total of
33 signature genes related to cell death were identified. The IA samples were divided into two clusters based on the cell death signature.
The cell death-high subtype had a relatively higher rate of rupture, and higher enrichment levels for multiple cell death processes and
several signal transduction and immune-related pathways. Immune infiltration analysis showed that cell death scores were correlated
with multiple immune cell types, including macrophages, mast cells, T cells and B cells. A six-gene prediction model was constructed
to predict rupture. The area under curves (AUCs) for predicting rupture in the training and validation cohorts were 0.924 and 0.855,
respectively. Conclusions: Comprehensively analysis of RCD in IA and found that multiple RCD types are likely to be involved in IA
formation and rupture. These cell death processes were correlated with inflammation and immunity. We present novel insights into the
mechanism of IA pathogenesis that should help to guide further research.
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1. Introduction

Intracranial aneurysms (IA) are abnormal bumps on
the intracranial wall and the most common cause of sub-
arachnoid hemorrhage (SAH). The overall mean prevalence
of unruptured IAs has been estimated to be 2.8% (95% CI,
2.0%–3.9%), with a mean age of 50 years [1]. Ruptured
IAs can result in devastating SAH, with a mortality of ap-
proximately 50% and neurologic morbidity in 30%–50%
of survivors [2]. Interventional endovascular management
and microsurgical clipping are still the main methods used
to treat IA [3]. However, the risks and potential complica-
tions of surgery cannot be ignored, and some patients may
not tolerate surgical treatment. Additionally, the detection
rate for unruptured IAs is increasing due to advances in
imaging techniques. Therefore, for patients with high-risk
IA and those who cannot tolerate surgical treatment, non-
invasive treatments such as pharmacotherapy and targeted

therapy are promising methods for preventing the progres-
sion and rupture of IAs [4–8]. In order to find an effective
therapeutic strategy, it is important to understand the patho-
physiological mechanisms of IA formation and rupture.

The initiator of endothelial dysfunction is hemody-
namic stress. Macrophage-activated inflammation is con-
sidered to be a pivotal event in the formation, progression
and rupture of IA. The inflammatory response and the re-
lease of matrix metalloproteinases (MMPs) lead to degen-
eration of the extracellular matrix (ECM) and phenotypic
modulation of vascular smooth muscle cells (VSMC). This
eventually results in apoptosis of VSMCs and the forma-
tion of aneurysms [9–12]. VSMC apoptosis is therefore a
characteristic feature of IA. Abnormalities in regulated cell
death (RCD) processes, including apoptosis and nonapop-
totic cell death, have been observed in the pathogenesis of
various diseases [13,14]. Apoptosis in the aneurysm walls
has been widely reported in patients with IA [15–18]. Al-
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though apoptotic cell death is closely associated with in-
flammation and immunity [14,19], the role of non-apoptotic
cell death in IAs has not yet been elucidated.

The aim of the present study was therefore to explore
the contribution of various types of cell death in the patho-
genesis of IA, including apoptosis, necroptosis, autophagy,
ferroptosis and pyroptosis. We found that multiple types of
cell death were involved in IA formation. Furthermore, pa-
tients with IA were clustered according to their cell death-
related signature genes. This identified two subtypes of cell
death related to rupture, immune infiltration, and inflam-
mation. Subsequently, we constructed a prediction model
that was able to predict IA rupture. Our findings indicate a
potential connection between various cell death processes
and the formation and rupture of IAs. These results provide
novel insights into the non-surgical therapy of IAs.

2. Materials and Methods
2.1 Data Acquisition and Preprocessing

The workflow chart showing the study design is pre-
sented in Fig. 1. Five datasets of IA were obtained from the
Gene Expression Omnibus (GEO) database (https://www.
ncbi.nlm.nih.gov/geo/), including four microarray datasets
(GSE75436, GSE54083, GSE13353, GSE15629) and one
RNA sequencing (RNA-seq) dataset (GSE122897). Details
of the selected datasets are shown in Supplementary Ta-
ble 1. Raw data from the four microarrays were merged.
Batch effects were removed by package “SVA” [20], and
data normalization was implemented by package “limma”
in R [21] (Supplementary Fig. 1). Corresponding clinical
data were obtained from the appropriatemetadata within the
GEO database. The merged microarray data were used as
the training set, and the RNA-seq data used as the validation
set.

2.2 Identification of Differentially Expressed Genes
Differentially expressed genes (DEGs) were identi-

fied using the empirical Bayesian approach of the “limma”
package [21]. Genes with p < 0.05 and |log2 fold change
(FC)| >0.5 between IA samples and control artery samples
were considered to be DEG. The “pheatmap” package was
used to draw heatmaps, and the “ggplot2” package used to
draw volcano plots. The overlap of DEGs between the mi-
croarray and the RNA-seq datasets was shown using the
“VennDiagram” package.

2.3 Cell Death Processes Enrichment Analysis
Gene set enrichment analysis (GSEA) is a method to

assess the distribution trend of genes in a predefined set
[22]. In the present study, GSEA was used to assess the
contribution of different cell death pathways to IA forma-
tion. The apoptosis, necroptosis, autophagy and ferroptosis
pathways were downloaded from the Kyoto Encyclopedia
of Genes and Genomes (KEGG) database (https://www.ke
gg.jp/), and the pyroptosis gene sets were downloaded from

theMolecular Signatures Database (MSigDB) (http://www.
gsea-msigdb.org/gsea/msigdb/index.jsp). GSEA was per-
formed using the “ClusterProfiler” package and visualized
using the “enrichplot” package. The threshold was set to
an adjusted p (p.adj) < 0.05. Gene set variation analy-
sis (GSVA) was performed using the “GSVA” package to
quantify the expression levels of various cell death path-
ways in all samples [23]. A p < 0.05 was considered to
indicate statistical significance between the IA and control
groups. We also used the “Pathview” R package to visual-
ize the relative expression levels of key genes in the KEGG
pathways of apoptosis, necroptosis, autophagy and ferrop-
tosis in IA samples [24]. In addition, the major positive and
negative regulators of apoptosis, necroptosis, autophagy,
ferroptosis and pyroptosis were obtained from the previous
literature (Supplementary Table 2) [13,14,19]. The differ-
ent expression levels of these regulators between the IA and
control samples were visualized by heatmaps.

2.4 Identification of Molecular Subtypes Based on Cell
Death Signature

Enrichment analysis suggested that multiple cell death
pathways were enriched in the IA samples. There-
fore, we constructed an integrative classification of regu-
lated cell death. The sets of apoptosis, necroptosis and
pyroptosis genes were downloaded from MSigDB, the
autophagy-related genes were downloaded from the Human
Autophagy Database (HADb) (http://www.autophagy.lu/),
and the ferroptosis-related genes were downloaded from
FerrDb V2 (http://www.zhounan.org/ferrdb/current/). The
various types of cell death-related genes were intersected
with DEGs separately to obtain the cell death signature
genes.

To further identify different IA patterns related to cell
death signature genes, an unsupervised consensus cluster-
ing algorithm was applied with the k-means method using
the “ConsensusClusterPlus” package [25]. Clustering was
iterated 1000 times to ensure the stability of the classifica-
tion. The optimal number of clusters was determined by the
relative changes in the area under the cumulative distribu-
tion function (CDF) curves of the consensus score and the
consensus heatmap. The novel cell death classification was
visualized and verified using a principal component anal-
ysis (PCA) with the “factoextra” package. Single sample
GSEA (ssGSEA) was applied to quantify the enrichment
level of the set of cell death signature genes for each sample
using the “GSVA” package. ssGSEA scores were defined
as cell death scores.

2.5 Determination of DEGs in Different Cell Death
Clusters

DEGs were screened using the “limma” package in
two cell death clusters. p < 0.05 and |log2 FC| >1
were defined as the threshold for differential expression
of genes between two clusters. The results of differential
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Fig. 1. Workflow chart. IA, intracranial aneurysm; DEG, differentially expressed gene; WGCNA,weighted gene co-expression network
analysis.

gene expression were displayed using volcano graphs and
heatmaps. The overlapping DEGs identified in the microar-
ray and RNA-seq datasets were shown in Venn diagrams.

2.6 Functional Enrichment Analysis Between Different
Cell Death Clusters

The “ClusterProfiler” R package was used to perform
Gene Ontology (GO) functional and KEGG pathway en-
richment analysis of the newly identified DEGs [26]. Sig-
nificantly enriched functions and pathways were selected
with an adjusted p-value (p.adj) < 0.05 and false discov-
ery rate (FDR) <0.2. To comprehensively explore differ-
entially expressed levels of various signaling pathways in
the two cell death patterns, the pathways for cell growth
and death, signal transduction, signaling molecules and in-
teraction, and immune system were downloaded from the

KEGG database. The GSVA was implemented and the
GSVA scores of different signaling pathways between the
two cell death clusters were compared using the “limma”
tool. A p.adj < 0.05 was considered to indicate statisti-
cal significance. Furthermore, the differentially expressed
levels of the main regulators of various cell death types be-
tween two clusters were compared by the “limma” package.

2.7 Immune Cell Infiltration
The algorithms “MCPcounter” [27] and “xCell” [28]

were used to examine the immunocyte infiltration of IAs.
The immune cell composition of patients with different cell
death clusters was compared and shown in boxplots. Corre-
lations between cell death scores and the infiltration levels
of different immune cell types were analyzed using Spear-
man correlation analysis.
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Fig. 2. Identification of differentially expressed genes (DEGs) and analysis of cell death enrichment. (A) Volcano plot and heatmap
of DEGs identified in the microarray set. (B) Volcano plot and heatmap of DEGs identified in the RNA-seq set. (C) Venn diagram of
DEGs. (D,E) Gene set variation analysis (GSVA) of cell death pathways. (F,G) Gene set enrichment analysis (GSEA) of cell death
pathways.

2.8 Weighted Gene Co-Expression Network Analysis

Weighted gene co-expression network analysis
(WGCNA) was performed using the “WGCNA” R
package to determine the gene modules linked to the
different cell death patterns [29]. The WGCNA network

was first constructed using a scale-free topology net-
work with an optimal soft threshold. The relationship
between the gene modules and two cell death clusters
was then evaluated by Spearman correlation analysis and
shown in heatmaps. The genes in the module with the
strongest correlation with cluster A were imported into
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the STRING database (https://cn.string-db.org/). The
protein-protein interaction (PPI) network was obtained
with high confidence (minimum required interaction score
= 0.700) and visualized using Cytoscape software (version
3.9.1, https://cytoscape.org/, GitHub Inc, San Francisco,
CA, USA). Finally, the CytoHubba plugin was used to
determine the hub proteins in the PPI network via the
degree algorithm.

2.9 Construction and Validation of a Prediction Model for
IA Rupture

The merged microarray dataset was used as the train-
ing set, and the RNA-seq dataset was used as the validation
set. The DEGs identified between two cell death clusters
were used for screening. First, the least absolute shrinkage
and selection operator (LASSO) technique and random for-
est (RF) algorithm were used to eliminate redundant vari-
ables. The optimal parameter with the lowest error rate and
the best stability tree number was determined by calculat-
ing the error rates for 1 to 1000 trees. The Gini coefficient
method was applied to evaluate the importance of the vari-
ables through RF. Univariate logistic regression was then
performed to further select valuable predictive genes for IA
rupture. The generalized linear model was finally used to
develop a prediction model of IA rupture. The predictive
performance of the generalized linear model was measured
by the concordance index (C index) and receiver operating
characteristic (ROC) curves [30]. Calibration was evalu-
ated using a calibration plot [31]. The goodness of fit of the
model was assessed by the Hosmer-Lemeshow (HL) test.
LASSO regression, logistic regression, and generalized lin-
ear model were conducted using the “glmnet” R package.
The random forest was carried out using the “random For-
est” package in R. ROC curves were performed using the
“pROC” package.

2.10 Statistical Analysis
All of the statistical analysis was performed in R (ver-

sion 4.2.1, https://www.r-project.org, the Comprehensive R
Archive Network, Vienna, Austria). Continuous data were
expressed as means ± standard deviations (SDs), or quar-
tiles (medians [25th percentiles, 75th percentiles]), while
categorical data were summarized as frequencies and per-
centages. Student’s t test or the Wilcoxon test were used
for pairwise comparison between two groups. The statisti-
cal significance in all of the analyses was assumed to be p
< 0.05.

3. Results
3.1 Profiles of DEGs

The merged microarray dataset included 61 IA and 30
control samples. The RNA-seq dataset included 44 IA and
16 control samples. The microarray cohort contained 27
ruptured IAs and 19 unruptured IAs, with the rupture status
of the remaining 15 IA samples being unknown. The RNA-

seq cohort contained 21 ruptured IAs, 21 unruptured IAs,
and two IAs with unclear rupture status. A total of 1849
DEGs were identified in the microarray dataset, including
975 upregulated genes and 874 downregulated genes. In
the RNA-seq dataset, 1486 upregulated DEGs and 1506
downregulated DEGs were identified. Volcano plots and
heatmaps were used to visualize the expression of DEGs
in all cases (Fig. 2A,B). The Venn diagrams show the in-
tersection of DEGs between the microarray and RNA-seq
datasets. These yielded 350 upregulated DEGs and 257
downregulated DEGs (Fig. 2C).

3.2 Cell Death Processes Enrichment Analysis

GSEA and GSVA were performed to explore the role
of various types of RCD in IA formation. GSVA results
in the microarray cohort showed that apoptosis, necrop-
tosis, and ferroptosis expression levels were significantly
higher in the IA samples than in controls (Fig. 2D). In the
RNA-seq dataset, apoptosis, necroptosis, and pyroptosis
showed higher expression in IA than in control samples
(Fig. 2E). In the microarray dataset, GSEA revealed that
IAs were significantly enriched in apoptosis, ferroptosis
and pyroptosis-related pathways (Fig. 2F). In the RNA-seq
set, DEGs were markedly enriched in apoptosis, necropto-
sis and pyroptosis (Fig. 2G). The relative expression levels
of key genes in the apoptosis, necroptosis, autophagy, and
ferroptosis pathways were visualized using pathview plots
(Supplementary Fig. 2). The expression levels of multiple
positive regulators of cell death were higher in IAs than in
controls, while several negative regulators were downregu-
lated in IAs (Fig. 3A,B).

3.3 Identification of Cell Death Signature

Functional enrichment analysis showed that multiple
types of cell death were involved in IA. Therefore, we
further investigated the cell death signature genes associ-
ated with IA. Firstly, we downloaded 161 apoptosis-related
genes, 52 necroptosis-related genes, and 23 pyroptosis-
related genes from the MSigDB database, as well as 222
autophagy-related genes from the HADb database and 198
ferroptosis-related genes from the FerrDb V2 database.
Next, we obtained the overlapping genes by intersecting
various cell death-related genes and the DEGs between IAs
and controls (Fig. 4A). In total, we identified 15 signa-
ture genes related to apoptosis, 5 to necroptosis, 11 to au-
tophagy, 8 to ferroptosis, and 2 to pyroptosis (Fig. 4A). Af-
ter the removal of duplicates, a total of 33 cell death sig-
nature genes were identified. All showed increased expres-
sion in IA samples compared to controls, except for ITPR1,
EGFR, LIFR andCPEB1 (Fig. 4B,C). Spearman correlation
analysis also showed the expression of most of these cell
death signature genes was positively correlated with each
other (Supplementary Fig. 3). Signature genes were up-
loaded to the STRING database and the PPI network was
visualized using Cytoscape software (Fig. 4D). The top 10
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Fig. 3. Expression of cell death-related regulators. (A,B) Heatmaps visualizing the differential expression levels of cell death-related
regulators between IA and control tissues. (C,D) Heatmaps visualizing the differential expression levels of cell death-regulators between
the two cell death clusters. *p < 0.05, **p < 0.01, ***p < 0.001.

hub genes identified by CytoHubba plugin using the degree
algorithm were EGFR, CXCR4, CTSB, FASLG, TIMP1,
GZMB, NLRP3, CCR2, CD69 and CD2 (Fig. 4E).

3.4 A Novel Cell Death Classification for IAs
Consensus clustering analysis was used to determine

the potential integrative cell death classification of IAs. Ac-
cording to the relative change in the area under the CDF
curve and the consensus heatmap, the optimal number of
clusters was determined to be two. All patients in the mi-
croarray dataset were divided into two cell death clusters,
with no appreciable increase detected in the area under the
CDF curve (Fig. 5A–C). A similar result was also obtained
with the RNA-seq dataset (Fig. 5G–I). PCA showed the
cell death signature could separate IAs into two distinguish-
able patterns (Fig. 5D,J). Based on the cell death signa-
ture ssGSEA scores, cluster A could be defined as a cell
death-high subtype, and cluster B as a cell death-low sub-
type (Fig. 5E,K). Furthermore, the cell death-based classi-
fication was associated with different clinical phenotypes:
cluster A had a high risk of rupture, but cluster B had a rel-
atively lower rate of rupture (Fig. 5F,L). A consensus clus-
tering analysis was also performed to identify potential IA
subtypes based on different types of cell death. Apoptosis-,
necroptosis-, autophagy-, ferroptosis- and pyroptosis-based
clustering separated the IAs into two similar clusters. Over-
all, the Sankey diagrams indicated the cell death signature-
based classification provided a better reflection of the clin-
ical phenotypes than the clusters established for each inde-
pendent type of cell death (Supplementary Fig. 4).

3.5 DEGs and Pathway Enrichment Between Different
Cell Death Subtypes

Given that patients in cluster A had a high risk of rup-
ture, we further investigated DEGs and functional path-
ways between the two cell death clusters so as to bet-
ter understand the potential mechanism of IA progression.
DEGs between the two clusters are shown in Fig. 6A,B
and Fig. 6E,F. GO and KEGG enrichment analysis re-
vealed the DEGs were significantly enriched in immune-
related terms (e.g., lymphocyte activation, mononuclear
cell proliferation, macrophage activation, and mast cell ac-
tivation). Furthermore, inflammatory pathways (e.g., cy-
tokine activity and chemokine signaling pathway), ECM
degradation-related processes (e.g., extracellular matrix
disassembly and collagen catabolic process) were activated,
but smooth muscle contraction and muscle tissue develop-
ment were significantly inhibited (z-score <0) in cluster A
(Supplementary Fig. 5C–H).

GSVA revealed that patients in cluster A showed up-
regulation of cell growth and death-related pathways in-
cluding apoptosis, ferroptosis, necroptosis and pyroptosis,
as well as signal transduction pathways such as MAPK,
VEGF, JAK-STAT, NF-κB, TNF and HIF-1. Cluster B
showed marked upregulation of Hedgehog, TGF-β and
Hippo signaling pathways. Samples in cluster A were
also significantly enriched in various immune system-
related pathways (Fig. 6C,G). Spearman correlation anal-
ysis showed that activation of apoptosis, necroptosis, fer-
roptosis and pyroptosis were strongly and positively cor-
related with the activation of VEGF, JAK-STAT, NF-κB,
TNF, Toll-like receptor, NOD-like receptor and chemokine
signaling pathways. Furthermore, the expression of mTOR
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Fig. 4. Identification of cell death signature genes. (A) Venn diagram of various cell death-related genes and DEGs. Table showing
cell death signature genes. (B,C) Boxplots of cell death signature genes in IAs compared to control tissues. (D) The PPI network of
cell death signature genes. Orange represents upregulated DEGs, while blue represents downregulated DEGs. (E) Construction of PPI
network for the top 10 cell death signature genes; the redder the color, the higher the rank. ns p ≥ 0.05, *p < 0.05, **p < 0.01, ***p <
0.001.

signaling pathways was significantly and positively corre-
lated with the activation of autophagy (Fig. 6D,H).

Cluster A also showed overexpression of multiple
apoptosis-positive regulators (e.g., CASPs, BAK1, BAX,
BCL2L11, PMAIP1, BBC3, BID), necroptosis-positive
regulators (RIPK3 and MLKL), autophagy-positive regu-
lator (ULK2), ferroptosis-positive regulators (e.g., TFRC,
ACSL4, LPCAT3, DPP4, NCOA4 and CARS1) and
pyroptosis-positive regulators (e.g., CASP1, CASP4,
CASP5 and GSDMD), but low expression of apoptosis-
negative regulators (e.g., BCL2, BCL22L1, MCL1 and
BCL2L2), necroptosis-negative regulator (PPM1B) and
ferroptosis-negative regulators (e.g., HSPB1 and NFS1)
(Fig. 3C,D). The simultaneous upregulation of multiple

positive regulators and downregulation of negative regula-
tors indicated that various cell death processes were acti-
vated in cluster A.

3.6 Immune Differences Between the Two Cell Death
Clusters

Differences in immune cell infiltration between the
two cell death patterns was also investigated. In general,
IA tissues in cluster A had higher immune scores and mi-
croenvironment scores than those in cluster B. MCPcounter
analysis revealed that IA samples in cluster A had sig-
nificantly higher levels of T cells, cytotoxic lymphocytes,
B lineage cells, NK cells, monocytic lineage cells, and
myeloid dendritic cells. xCell analysis also showed that IAs
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Fig. 5. Novel cell death classification of intracranial aneurysms (IAs) determined from the microarray set (A–F) and from the
RNA-seq set (G–I). (A,G) Cumulative distribution function (CDF) curves of the consensus score (k = 2–9). (B,H) Relative change in
the area under the CDF curve (k = 2–9). (C,I) Consensus clustering matrix for k = 2, which was the optimal number of clusters. (D,J)
Principal component analysis (PCA) according to cell death clusters. (E,K) Boxplots of single sample GSEA (ssGSEA) scores of IA
samples in cluster A compared to cluster B. (F,L) Distribution of different rupture status groups within cell death clusters.
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Fig. 6. Subgroup analysis between the two cell death clusters in the microarray (A–D) and RNA-seq sets (E–H). Volcano plots
(A,E) and heatmaps (B,F) of DEGs between the two cell death clusters. (C,G) Heatmaps visualizing the GSVA results of cell death,
signal transduction, and immune system-related pathways between the different cell death clusters. (D,H) Spearman correlation analysis
of the GSVA scores for these pathways in IAs. *p < 0.05, **p < 0.01, ***p < 0.001.

in cluster A had more infiltration of dendritic cells (DCs),
mast cells, monocytes, macrophages and B cells (Fig. 7A).
In addition, the infiltration levels of macrophages, M1
macrophages, mast cells, T cells and B cells were posi-
tively correlated with the cell death scores of IA samples
(Fig. 7B). Similar results were observed with the RNA-seq
dataset (Fig. 7C,D).

We further analyzed correlations between the GSVA
scores of different RCD and the degree of immune cell in-
filtration in all IA samples (Supplementary Fig. 6). This
analysis showed that activation of apoptosis, necroptosis,
ferroptosis and pyroptosis in IAs was positively correlated
with the degree of infiltration by monocytes, macrophages,
T cells and B cells. Interestingly, activation of the above
types of RCD was significantly and positively correlated
with the expression of M1 macrophages. However, the ac-

tivation of M2 macrophages was positively correlated with
activation of autophagy, indicating that autophagy plays an
opposite role to other types of RCD in the regulation of
macrophage phenotype switching.

3.7 WGNCA and PPI Network

The optimal soft threshold values in the microarray
and RNA-seq cohorts were 3 and 6, respectively (Fig. 8A
and Supplementary Fig. 7A). Fig. 8B and Supplemen-
tary Fig. 7B show the results of gene clustering and
recognition of co-expression modules. In the microarray
set, the turquoise module correlated significantly with clus-
ter A (r = 0.86, p < 0.001), while the blue module was
significantly related to cluster B (r = 0.45, p < 0.001)
(Fig. 8C). In the RNA-seq cohort, the green/yellow mod-
ule was significantly associated with cluster A (r = 0.74,
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Fig. 7. Immune characteristics of the two cell death clusters. (A,C) Immune cell content histogram. (B,D) Spearman correlation
analysis between cell death scores and the infiltration levels of immune cells. ns p ≥ 0.05, *p < 0.05, **p < 0.01, ***p < 0.001.

p < 0.001), and the cyan module to cluster B (r = 0.85,
p < 0.001) (Supplementary Fig. 7C). The genes within
the modules were significantly correlated with the traits
(cluster A and cluster B) (Fig. 8D,E and Supplementary
Fig. 7D,E). The genes in the turquoise module were up-
loaded to the STRING database and the degree scores of
each protein calculated by Cytoscape using the CytoHubba
plugin. The PPI network found the core proteins related
to cluster A were CD4, TYROBP, ITGB2, CD8A, SYK,
IL10, TLR2, CD86, CCR5, CDF1R, LYN, LCP2, CD44,
VAV1 and CD28 (Fig. 8F). A similar PPI network was ob-
tained from the green/yellowmodule in the RNA-seq cohort
(Supplementary Fig. 7F).

3.8 Construction and Validation of a Prediction Model for
IA Rupture

Since IAs in cell death cluster A had a relatively higher
risk of rupture, DEGs between cell death cluster A and B
were used to identify predictive variables for rupture. Fol-
lowing the removal of samples with unclear rupture status,
46 cases were obtained from the microarray dataset (as the
training cohort) and 42 from the RNA-seq dataset (as the
validation cohort). LASSO regression in the training co-
hort retained 23 genes (Fig. 9A,B). In addition, the top 20
genes according to the mean decrease Gini by RF were also
selected as candidate variables (Fig. 9C,D). Seven genes
were thus identified by intersecting the candidate genes ob-
tained by the LASSO and RF algorithms (Fig. 9E). Subse-
quently, univariate regression identified ANPEP, STK10,
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Fig. 8. Weighted gene co-expression network analysis (WGCNA) in the microarray cohort. (A) Scale-free fit index and mean
connectivity for different soft powers (optimal soft threshold β = 3). (B) Gene clustering and recognition of co-expression modules. (C)
Heatmap of the correlations between gene modules and cell death clusters. (D,E) Correlation between traits (cluster A and cluster B)
and genes in the modules. (F) Construction of the PPI network of hub genes in the turquoise module: the redder the color, the higher the
rank.

DSC2, HPSE, IGFBP1, and S100A8 as risk factors for IA
rupture, each with an odds ratio (OR) >1 and a p < 0.05
(Fig. 9F). ROC curve analysis revealed the efficacy of these
6 genes for independently predicting IA rupture (Fig. 9G).
Boxplots showed that all of them were upregulated in rup-
tured IAs (Fig. 9H). Finally, a prediction model was con-
structed based on the 6 characteristic genes and using a
multifactor, generalized linear model: Y = (–37.5607) +
(1.3321) × ANPEP + (–0.694) × STK10 + (0.6081) ×
DSC2 + (1.93) × HPSE + (1.4639) × IGFBP1 + (0.7208)
× S100A8. The model demonstrated good accuracy in es-
timating the risk of rupture, with a C index of 0.92 (95%
CI, 0.85–1.00) and an area under curve (AUC) of 0.924 in
the training cohort (Fig. 9I). The p value of the HL test was
0.841 (>0.05) and the calibration curve was close to 45◦,

indicating a well-calibrated model (Fig. 9J). In the valida-
tion cohort, the predictivemodel displayed aC index of 0.85
(95%CI, 0.74–0.97) and anAUCof 0.855 for the prediction
of IA rupture. The calibration plot also showed accurate
predictive ability in the validation cohort (Supplementary
Fig. 8).

4. Discussion

The current study is the first to our knowledge to in-
vestigate the role of various types of cell death in the for-
mation and progression of IA. A novel classification system
was developed that separated IAs into two cell death clus-
ters, each with different mechanisms. Furthermore, a pre-
diction model for IA rupture based on the DEGs identified
between the two clusters was established and validated.
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Fig. 9. Construction of the prediction model for IA rupture in the training cohort. (A) Screening of candidate genes using the
LASSO algorithm. (B) Cross-validation for tuning parameter screening in the LASSO regression model. (C) Correlation plot between
the number of trees in random forest (RF) and the model error. (D) The mean decrease in Gini index of the top 20 genes calculated in
the RF classifier. (E) Venn diagram of candidate genes obtained from LASSO and RF. (F) Univariate logistic regression analysis of the
seven candidate genes, which yielded six genes linked to rupture. (G) ROC curve and AUC values of the six risk genes for the prediction
of rupture. (H) Boxplots of six risk genes in ruptured IAs compared to unruptured IAs. (I) ROC curve and AUC values of the prediction
model in rupture prediction. (J) Calibration plot of the prediction model. *p < 0.05, **p < 0.01, ***p < 0.001.

Abnormalities in RCD processes including apopto-
sis, necroptosis, autophagy, ferroptosis and pyroptosis have
been observed in the pathogenesis of various diseases [13,
14]. The first major finding of our study was that multiple
types of cell death were found to be associated with IA for-
mation and progression. Apoptosis is a caspase-dependent
RCD that can be triggered by intrinsic and extrinsic path-
ways [13,32]. Intracellular stress such as DNA damage, en-
doplasmic reticulum stress (ERS), and BH3-only proteins
such as BID can initiate the intrinsic pathway by binding
the anti-apoptotic protein BCL2, thereby leading to activa-
tion of cell death effectors (BAX and BAK) [33]. ERS is
an inducer of apoptosis and has been implicated in the for-
mation of IA [34]. In the present study, BID, BAX and
multiple CASPs were found to be overexpressed in IAs.

Moreover, BCL2 was downregulated in cluster A, indicat-
ing involvement of the intrinsic apoptotic pathway in IA
formation and progression. Activation of the tumor necro-
sis factor (TNF) receptor family member FAS and its ligand
FASLG has been shown to trigger the extrinsic apoptotic
pathway [35]. Caspase-8-mediated proteolytic activation of
BID can connect the intrinsic and extrinsic apoptotic path-
ways [36]. The observed overexpression of FASLG, BID
and CASP8 implies the extrinsic pathway is also activated
during IA pathogenesis. Previous studies have reported in-
creased levels of VSMC apoptosis in both human IA and
ruptured IA specimens [15–18]. In addition, several fac-
tors have been found to induce VSMC apoptosis, including
hemodynamic stimulation and inflammation cytokines such
as IL-1β and iNOS [37,38].
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Fig. 10. Mechanism of intracranial aneurysm (IA) formation and rupture. (A) Classical mechanism of IA formation and rupture.
(B) Novel mechanism of IA formation and rupture.

Pyroptosis is an inflammatory, lytic type of RCD
[39]. In the canonical pyroptotic pathway, cytoplasmic
sensors such as NOD-like receptors (NLRPs) can recog-
nize damage-associated molecular patterns (DAMPs) or
pathogen-associated molecular patterns (PAMPs), promote
the release of pro-inflammatory cytokines, and participate
in the assembly of inflammasomes [19,39]. The nucleotide-
binding oligomerization domain-like receptor family pyrin
domain containing 3 (NLRP3) inflammasome is the most
studied inflammasome and is considered to be a critical
driver of multiple vascular diseases [40]. In the present
study, NLRP3 was found to be overexpressed in IAs com-
pared to controls. Using immunohistochemistry, Zhang et
al. [41] reported greater expression of the NLRP3 inflam-
masome in the walls of ruptured human IAs than in unrup-
tured tissues. A recent study also showed that activation
of the NLRP3/IL-1β/MMP9 pathway facilitates the rup-
ture of IA in an estrogen-deficient rat model [42]. There-
fore, NLRP3 is involved in both IA formation and rup-
ture. MMP9 plays a significant role in ECM remodeling
[43]. Thus, we also speculated that pyroptosis is likely to
be involved in the formation and progression of IA through
inflammation and degradation of the ECM. Furthermore,
transcriptional upregulation of pro-IL-1β and NLRP3 is
mediated by the NF-κB signaling pathway and is the first
stage of the NLRP3 inflammasome event [40]. In the
present study, the NF-κB signaling pathway was signifi-
cantly enriched in the cell death-high cluster. In vitro and in

vivo experiments have also shown this pathway is involved
in the pathogenesis of IA [44–46]. Moreover, gasdermin D
(GSDMD), a member of the gasdermin superfamily, is the
key executor of pyroptosis and is cleaved by CASP1/4/5/11
[14,19,39]. These molecules were also found in the cur-
rent study to be overexpressed in the cell death-high clus-
ter. Furthermore, Liu et al. [47] demonstrated that serum
IL-1β and pyroptosis-related proteins were correlated with
aneurysm wall enhancement in unruptured IA, suggesting
that pyroptosis may be associated with the progression of
IA. Together, the above evidence indicates that pyroptosis
may be involved in the pathogenesis of IA.

Necroptosis is a lytic form of RCD [48]. The necrop-
totic process involves the autophosphorylation of receptor-
interacting protein kinase 1 (RIPK1) which in turn ac-
tivates RIPK3 kinase and then RIPK3-mediated phos-
phorylation of mixed-lineage kinase domain-like protein
(MLKL), leading to membrane lysis [49–51]. Human vas-
cular diseases such as ischemic stroke, myocardial infarc-
tion and aortic aneurysm (AA) are closely associated with
necroptosis [52]. Wang et al. [53] reported elevated lev-
els of RIPK3 and RIPK1 in human AA. They also found
that SMC necroptosis can be triggered by RIPK3, and that
lack of RIPK3 prevents the formation of AA in mice. Sub-
sequent research also showed that RIPK1 inhibitors can
promote tissue repair and reduce inflammation in murine
AA induced by elastase [54]. Zhou et al. [55] found
that MLKL and CaMKII were involved in RIPK3-mediated
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SMC necroptosis in mouse AA models. In the current
study, higher expression levels of RIPK3 and MLKL were
found in IAs than in controls, and higher levels in cluster
A than in cluster B. In addition, necroptosis can be trig-
gered by multiple stimuli, such as the TNF (tumor necro-
sis factor) signaling pathway, death receptors (e.g., FAS
and FASLG), Toll-like receptors (TLR3 and TLR4), and
nucleic acid sensors (e.g., ZBP1) [19,56]. Our study re-
vealed the TNF and Toll-like receptor signaling pathways
were strongly correlated with necroptosis, potentially indi-
cating they share a regulatory relationship. Therefore, we
speculate that necroptosis may play a role in the formation
and progression of IA, but further experimental validation
is needed.

Ferroptosis is a form of iron-dependent RCD [57].
Iron overload and accumulation of lipid peroxide are the
two characteristic features of ferroptosis [57]. Iron deposi-
tion is the key trigger for ferroptosis and is elevated in IA
tissues compared to controls [58]. Oxidative stress and re-
active oxygen species (ROS) have been widely associated
with a variety of vascular diseases, including IA, AA, aortic
dissection (AD), and atherosclerosis (AS) [59–62]. Increas-
ing evidence suggests that excessive ROS-produced oxida-
tive stress can trigger endothelial damage through ferrop-
tosis and pyroptosis [63]. Furthermore, Sampilvanjil et al.
[64] showed that the death of VSMC induced by a cigarette
smoke extract was ignited by ferroptosis. Zhang et al. [65]
also demonstrated that ferroptosis induces VSMC pheno-
typic switching and neointimal hyperplasia in mice. Fur-
thermore, the present study found that several molecular
components of ferroptosis were upregulated in IA tissue
and in cluster A, including ACSL4 and LPCAT3. A recent
study found that ferroptosis is significantly activated in a
mouse model with caroid artery injury, and also indicated
that activated ferroptotic stress facilitates the dedifferenti-
ation of SMC by modulating mitochondrial function [66].
Jin et al. [67] found that the ferroptosis inhibitor ferrostatin-
1 blocked the VSMC inflammation induced by high hydro-
static pressure. Overall, the above results indicate that fer-
roptosis may be related to the pathogenesis of IA.

Autophagy plays an important role in cell survival,
bioenergetic homoeostasis, organism development, and in
the regulation of cell death [68]. A previous study found
that the expression of autophagy-related genes, includ-
ing LC-3, Beclin-1, ATG5, and ATG14, was significantly
higher in IA tissues compared to normal vessel tissues [69].
An in vitro study also found that shear stress induces mod-
ulation of the VSMC phenotype through autophagy me-
diated by AMPK/mTOR/ULK1 [70]. SPARC has been
shown to induce phenotypic modulation of human brain
VSMCs through AMPK/mTOR-mediated autophagy [71],
with mTOR being a crucial inhibitor of autophagy [72].
An inhibitor of mTOR, rapamycin, has been shown to sup-
press IA development and to limit the growth of AA in
mouse models [73,74]. Although excessive activation of

autophagy can induce autophagic cell death [75], our study
found that autophagy was not significantly activated in
IA. Therefore, we speculate that normal activation of au-
tophagy may have a protective effect on IA.

Of note, non-apoptotic RCD is closely related to in-
flammation and immunity [14,19]. Mature IL-1β and IL-18
are released from cells during the pyroptotic process and
subsequently cause inflammatory responses [76]. RIPK1
can promote neuroinflammation during the necroptotic pro-
cess, and this is considered to be a key driver of neurode-
generation [77]. Furthermore, pyroptosis, necroptosis and
ferroptosis can all cause membrane rupture, resulting in the
release of intracellular components that contain numerous
inflammatory mediators [14,19]. However, autophagy has
the effect of limiting inflammation [78]. For example, au-
tophagy can clear the sources of DAMPs and ROS, thereby
inhibiting the subsequent activation of inflammation and
cell death [78]. In addition, a mutual regulatory relation-
ship exists between cell death and immune cells. For ex-
ample, ferroptosis can be triggered by iron, and ferroptosis-
related regulators such as SLC7A11 and GPX4 can regu-
late cell death in macrophages [79]. In the present study,
correlations were observed between various cell death pro-
cesses and multiple inflammation-related pathways. We
also found a correlation between RCD and the infiltra-
tion of multiple immune cell types such as monocytes,
macrophages, B cells and T cells. Interestingly, our results
indicated that apoptosis, necroptosis, ferroptosis and py-
roptosis may activate M1 macrophages, but that autophagy
may upregulate M2 macrophages. Indeed, macrophage po-
larization is known to play an important role in aneurysm
formation and rupture [80]. M1 macrophages can upregu-
late the inflammatory process and promote the development
of aneurysms [81]. Therefore, regulation of the M1/M2 ra-
tio through the targeting of different types of RCD offers
new prospects for IA treatment.

In summary, in addition to directly causing the death
of endothelial cells and VSMCs, RCD also has multiple
roles in the development of IA, including the modulation
of inflammation and immunity (Fig. 10). These novel in-
sights offer new directions for further mechanistic research
and treatment of IA.

There were several limitations in this study. One was
the lack of basic biological experiments to confirm the role
of different RCD in IA pathogenesis. Another was the ab-
sence of clinical data such as the size of aneurysms, mean-
ing it was not possible to quantify the relationship between
the expression of various RCD components and IA progres-
sion.

5. Conclusions
In conclusion, our study found that multiple RCD

pathways may be involved in IA formation and rupture,
and that these cell death processes were correlated with
inflammation and immunity. We also established an inte-
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grated classification system based on cell death, as well as
a prediction model for IA rupture. Furthermore, we present
novel insights into the mechanism of IA pathogenesis that
may help to guide future research.
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