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Abstract

Background: Cervical cancer has high morbidity and intratumor heterogeneity. Anoikis, a form of programmed cell death preventing
detached cancer cells from readhering, may serve as a potential prognostic signature for cervical cancer. This study aimed to assess
the predictive performance of anoikis patterns in cervical cancer prognosis. Methods: Differentially expressed anoikis-related genes
(DEARGs) were identified between normal and cancer samples using data from the Gene Expression Omnibus database with the eluci-
dation of mutation status and bio-function. Novel anoikis molecular subtypes were defined in The Cancer Genome Atlas (TCGA) cohort
with consensus clustering analysis. A multigene prognostic signature was constructed through least absolute shrinkage and selection
operator (LASSO) Cox analysis with internal and external validation. The nomogram-based survival probability of cervical cancer over
3 and 5 years was predicted and assessed with calibration, receiver operating characteristic, decision curve analysis, and Kaplan-Meier
curves. Additionally, mutation, function, and immune analysis were conducted among different risk groups. Results: We identified
77 DEARGs between normal and cervical cancer tissues and explored their mutation status and functions. The TCGA cohort could be
categorized into two subtypes based on these genes. Furthermore, seven prognostic signature genes were constructed, and the nomogram
involving DEARGs and clinicopathological characteristics showed satisfactory predictive performance. Functional analysis indicated
that immune-related genes were enriched, and immune status, as well as sensitivity of chemotherapies and targeting drugs, were corre-
lated with the risk model. Conclusions: Anoikis patterns play important roles in tumor immunity and can be used to predict the prognosis
of cervical cancers.
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1. Introduction
Cervical cancer (CC) is a common gynecological ma-

lignant tumor that poses a threat to women’s health globally
[1,2]. The widespread use of cervical screening programs
and human papillomavirus (HPV) vaccines in recent years
[3], has resulted in a reduction in the incidence of CC in
developed countries [4]. Despite being one of the most pre-
ventable cancers, CC remains the second leading cause of
premature cancer death among women aged 20–39 years in
the United States [5], and a high burden in many low- and
middle-income countries [6–10]. While HPV infections has
been known to promote CC [11], its impact on CC prog-
nosis is currently inconclusive and the FIGO (International
Federation of Gynaecology and Obstetrics) staging system
is still the main prognostic indicator [12]. Nevertheless,
FIGO stage is inapplicable to the heterogeneity analysis of
CC patients [13]. Therefore, the identification of subgroups
of CC with accurate prognostic biomarkers and the devel-
opment of predictive models are urgently needed for better
treatment guidance.

Anoikis or matrix detachment-induced apoptosis, first
introduced in 1993 by Meredith et al. [14], is a specific
form of programmed apoptosis triggered by losing con-
tact with their extracellular matrix (ECM) or neighboring
cells. It plays a pivotal role in maintaining tissue home-
ostasis by preventing dislodged cells from readhering to
other substrates for abnormal proliferation [15]. Cancer
cells must develop anoikis resistance in order to survive un-
der anchorage-independent conditions, such as in the blood
or lymphatics circulation, before forming metastatic foci in
distant organs [16,17]. Metastasis is responsible for up to
90% of cancer-related deaths [18], and reducing metastasis-
associated mortality remains a major clinical unmet need
[19]. Therefore, understanding the mechanisms driving
anoikis resistancemay help to counteract tumor progression
and prevent metastasis.

An increasing number of anoikis-related genes
(ARGs) have been identified in various tumors [20–24].
Fonseca et al. [20] found that high expression levels
of Plk4 induce anoikis resistance of breast cancer cells
partially through P-cadherin upregulation. A previous
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study revealed that nuclearMYH9 promotes CTNNB1 tran-
scription, which conferred resistance to anoikis in gastric
cancer [21]. In a study by Jin et al. [22], GDH1-mediated
metabolic reprogramming of glutaminolysis has been
verified to promote anoikis resistance and tumor metastasis
in LKB1-deficient lung cancer. In addition, ARGs have
been proven to be associated with prognosis in several
tumors through bioinformatic analyses [25–30]. While
several studies have identified that anoikis resistance exerts
important functions in the oncogenesis of CC [31–34], the
comprehensive analyses of the implications of anoikis in
CC are still limited.

In this study, differentially expressed ARGs
(DEARGs) were screened between normal and CC
tissues based on the datasets from the Gene Expression
Omnibus (GEO) database with mutation and function
analysis. Then, the subgroups of CC based on these
DEARGs and a gene signature was identified in The Can-
cer Genome Atlas (TCGA) cohort. The prognostic value
of the gene signature was validated in external cohort and
its expression was validated through the Gene Expression
Profiling Interactive Analysis (GEPIA). Nomogram anal-
ysis in combination with the DEARGs and other clinical
characteristics for predicting the survival probability of
CC patients in 3 and 5 years was conducted and assessed.
We then performed mutation and function analysis among
differentially expressed genes (DEGs) between low-
and high-risk groups. The correlation between anoikis
molecular subtypes and the immune microenvironment
landscape of CC was also explored.

2. Methods
2.1 Data Sources and Preprocessing

We retrieved expression profile microarray datasets
from the GEO database (https://www.ncbi.nlm.nih.gov/g
eo/) with similar platforms, prioritizing tissue-based ones
for normal cervix and CC analysis while excluding cell
line based and other datasets. The final cohort included
data from GSE6791 (the code number of cohort in GEO
database, including 20 CC samples and 8 normal cervix
samples with platform coded GPL570, similarly here-
inafter), GSE7803 (21 CC samples and 10 normal cervix
samples with platform GPL96), GSE9750 (33 CC sam-
ples and 24 normal cervix samples with platform GPL96),
GSE39001 (19 CC samples and 5 normal cervix sam-
ples with platform GPL6244), GSE52903 (55 CC samples
and 17 normal cervix samples with platform GPL6244),
GSE63514 (28 CC samples and 24 normal cervix samples
with platform GPL570), with a total of 264 samples (176
CC samples and 88 normal samples). We integrated ex-
pression profiles using the Combat function of the ‘sva’
R package (version 4.2.1, R: A language and environ-
ment for statistical computing, R Foundation for Statisti-
cal Computing, Vienna, Austria, similarly hereinafter) to
remove batch effects [35,36] and downloaded 801 ARGs

from the GeneCards database (https://www.genecards.or
g/). DEARGs were analyzed when a given gene expression
was detected across all six datasets.

TCGA database (https://portal.gdc.cancer.gov/) was
used to obtain the RNA sequencing, mutation, and clini-
cal data of 304 cervical squamous cell carcinoma and endo-
cervical adenocarcinoma (CESC) samples for constructing
prognostic features. These data were pre-processed through
the R packages and algorithms to extract the expression pro-
file matrix and the clinical and pathological characteristics,
including their survival status, survival times, CC stage and
grade, and the acceptance of radiotherapy. The samples
with a follow-up time of <30 days or without full informa-
tion of stage were excluded, and 244 samples were retained.
Besides, an independent microarray cervical cancer exter-
nal validation cohort was extracted from the GSE44001
(300 CC samples with disease-free survival time) in our
study. Finally, data of 481 small molecules from Thera-
peutics Response Portal (CTRP) and 265 small molecules
fromGenomics of Drug Sensitivity in Cancer (GDSC) were
used in drug sensitivity analysis with GSCALite (Gene Set
Cancer Analysis, a web server for gene set cancer analysis,
which is available on http://bioinfo.life.hust.edu.cn/web/G
SCALite/).

2.2 Identification of Differentially Expressed
Anoikis-Related Genes in Cervical Cancer

The DEARGs between CC and normal cervix tissues
were identified by the ‘limma’ package, during which an
empirical bayes technique was performed with six crucial
steps: building a gene expression matrix, building an ex-
perimental design matrix, building a contrast matrix, fitting
a linear model, Bayes test, and generating a result report.
To prevent the possibility of false-positive effects, |log2
fold change (FC)| >1, with an adjusted p <0.05, was set
as the cutoffs for statistically significant DEARGs selec-
tion. A heatmap and volcano plot were generated using
the ‘pheatmap’ and the ‘ggplot2’ R package to visualize
DEARGs in CC.

2.3 Development of the Prognostic Anoikis-Related Genes
Signature in Cervical Cancer

The consensus clustering analysis of the DEARGs
in TCGA-CESC cohort was performed with ‘Consensus-
ClusterPlus’ R package [37]. The Univariate Cox regres-
sion analyses were performed on DEARGs for association
with overall survival (OS) [38]. The candidate prognostic
DEARGs that might predict OS were presented using a for-
est plot with a criterion of p < 0.1.

The R package ‘caret’ was used to randomly divide
the 244 TCGA-CESC samples into the training and test-
ing sets at a 6:4 ratio. In the training cohort, a least ab-
solute shrinkage and selection operator (LASSO) Cox re-
gression algorithm was performed to determine the opti-
mal prognostic DEARGs (penalty parameter, the λ, was
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estimated through 10-fold cross-validation) using the ‘glm-
net’ R package, during which the risk of overfitting was
minimized in the modeling process. Then a prognostic
signature based on the multivariate Cox regression analy-
sis was constructed to calculate the risk scores of the pa-
tient in the entire TCGA-CESC dataset with consistent for-
mula. The time-dependent receiver operating characteristic
(ROC) curves of training, testing and entire cohort were vi-
sualized by the ‘survminer’ and ‘timeROC’ packages, and
the area under the curve (AUC) was calculated to measure
the discrimination performance of the prognostic scoring
model in 1, 3, and 5 years.

Subsequently, the best threshold point of ROC in train-
ing cohort was used to stratify each patient in entire set into
the high-risk group (HRG) and the low-risk group (LRG).
Therefore, the signature was validated with the testing set
and the entire TCGA dataset. Kaplan-Meier (KM) curve
was generated to evaluate the difference in OS between
the HRG and LRG by using the ‘survival’ and ‘survminer’
R packages (p < 0.05 was considered statistically differ-
ent). The performance of the prognostic scoring model
developed above was further validated by external cohort
GSE44001 datasets through predicting the disease-free sur-
vival (DFS) with the consistent formula and cutoff point.
The independence of risk scores was evaluated through a
Multivariate Cox regression analysis with age, stage, and
risk score as covariables (statistical significance was iden-
tified as p < 0.05).

2.4 Construction and Evaluation of the Nomogram
Containing Anoikis Patterns and Clinical Factors

ROC curves were drawn with the ‘pROC’ and ‘gg-
plot2’ R package to compare the discrimination perfor-
mance of age, stage, and risk score calculated from the sig-
nature in predicting survival outcome. To predict the sur-
vival probability of CC patients in 3 and 5 years, a nomo-
gram was generated according to the risk score and clin-
icopathologic factors (age and stage) by using the ‘rms’
and ‘survival’ packages. The prognostic accuracy of the
nomogramwas assessed by the Hosmer-Lemeshow calibra-
tion curves, the time-dependent ROC curves for 1-, 3-, and
5-years, and the decision curve analysis (DCA) curves in
the entire TCGA dataset, which was achieved by the ‘rms’,
‘timeROC’, and ‘ggDCA’ R package. Finally, based on the
best threshold point of ROC, the entire TCGA cohort was
divided into HRG and LRG and the survival differences be-
tween two groups were illustrated using KM survival anal-
ysis.

2.5 Expression Validation of the Differentially Expressed
ARGs

The expression level of the prognostic DEARGs in
prediction model were visualized as boxplot with the ‘gg-
plot2’ R package. Then the Spearman correlation coef-
ficients among these DEARGs were calculated using the

‘corrplot’ R package. With the GEPIA public database
(http://gepia.cancer-pku.cn/index.html) as external valida-
tion cohort (including 306 CESC samples and 13 normal
cervix samples from TCGA database and The Genotype-
Tissue Expression (GTEx) database), we reanalyzed the ex-
pression level of these DEARGs included in prognostic sig-
nature.

2.6 Analysis of Tumor Somatic Mutation Mode
The somatic mutation data were obtained from TCGA

and the mutation information was extracted in R software.
The positions of the DEARGs between normal cervix and
CC samples, and the DEGs between different risk groups
were profiled through ‘RCircos’ R package [39]. Somatic
variation of the DEARGs in the TCGA-CESC dataset was
profiled using ‘maftools’ package. Simultaneously, the tu-
mor mutation burden (TMB) of each sample was calculated
with the ‘tmb’ function in ‘maftools’ package and demon-
strated with waterfall plot and scatter diagram. Then, the
‘maftools’ package was also used for creating waterfall di-
agrams to show the distribution of top 15 genes with highest
somatic mutation frequency in HRG and LRG categorized
by final prognostic model [40].

2.7 Functional Analysis
Gene Ontology (GO) and Kyoto Encyclopedia of

Genes and Genomes (KEGG) enrichment analysis were
performed through the ‘clusterProfiler’, ‘GOplot’, and
‘ggthemes’ R packages to elucidate the potential biologi-
cal mechanism and functions of the DEGs, which included
the DEARGs between CC and normal cervix samples in
the cohort merged by 6 datasets from GEO database, and
the DEGs between low- and high-risk groups in TCGA-
CESC dataset. The biological process, cellular processes,
and molecular functions were assessed respectively in GO
analysis. The functions or pathways with p < 0.05 were
defined as significantly enriched.

2.8 Immune Infiltration Analysis
To investigate the relationship between the immune

infiltration status and our prognostic model, single-sample
gene set enrichment analysis (ssGSEA) algorithms was
used to calculate the immune cell infiltration profile of the
TCGA-CESC dataset with ‘limma’ and ‘GSVA’ packages.
The results were presented as a boxplot to compare the
different immune cell abundance between HRG and LRG.
Furthermore, the Spearman correlation coefficients of risk
scores calculated from the final prognostic model and the
immune cells abundance/immune checkpoints were visual-
ized using ‘corrplot’ R package.

2.9 Statistical Analysis
Statistical analyses of this study were performed us-

ing the R program (version 4.2.1, R Foundation for Statisti-
cal Computing, Vienna, Austria). Single-factor analysis of
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variance was applied to compare the gene expression lev-
els between the normal cervix and CC tissues, while the
Pearson chi-square test was used to compare the categori-
cal variables. The prognoses between different risk groups
were compared using the KM analysis with a two-sided log-
rank test. To assess the independent prognostic value of the
risk model, we used univariate and multivariate Cox regres-
sion models. When comparing the immune cell infiltration
between the two groups, the Mann–Whitney test was used.

3. Results
3.1 Identification of DEARGs between Normal Cervix and
CC Samples

The flowchart of this study is illustrated in Fig. 1A.
We obtained RNA transcriptome data and corresponding
clinical data of 264 cervix samples (including 176 CC and
88 normal cervix) from the GEO database (merged by
GSE6791, GSE7803, GSE9750, GSE39001, GSE52903,
GSE63514), and 11,965 genes were detected across all 6
datasets (Fig. 1B,C). Among 801 ARGs identified from the
GeneCards dataset, 673 ARGs were sequenced in our co-
hort and their expression data were used to screen DEARGs
by comparing them between CC and normal tissues.

Principal component analysis (PCA) showed that the
expression of these 673 ARGs varied between normal
cervix and CC samples, suggesting a potential role for
anoikis in CC development (Fig. 1D). We screened 77
DEARGs (40 upregulated and 37 downregulated in tumors)
using a threshold of |log2 fold change (FC)| >1 and ad-
justed p < 0.05. Heatmaps and volcano plots were gener-
ated to visualize the expression patterns of these DEARGs
between CC and normal tissues (Fig. 1E–G).

3.2 Somatic Mutated Mode Analysis and Functional
Analysis of DEARGs

The position of DEARGs were plotted on the dia-
gram of the chromosome, their expression heatmap and
the regulated status were also shown using the “RCircos”
package (Fig. 2A). We investigated somatic mutations of
the 77 DEARGs in 289 TCGA-CESC patients and found
the top 5 most frequently mutated DEARGs were BRCA1,
PIK3R1, BRCA2, AR, and DNMT1. The top 30 were an-
alyzed and displayed through waterfall plots (Fig. 2B). It
was shown that missense mutations constituted the vast ma-
jority of mutations after further categorization, the single
nucleotide polymorphism was the most frequent mutation
type and the most frequent single nucleotide variant was the
C>T transversion. The TMB of DEARGs were also shown
in the waterfall plot and displayed through specific scat-
ter diagrams (Fig. 2C). Then the TCGA-CESC cohort was
divided into low- and high-TMB subgroups based on the
threshold of ROC curve. However, KM analysis showed
no significant difference between the survival of two groups
(Supplementary Fig. 1A,B).

Functional enrichment analyses were performed to re-
veal the potential biological functions associated with the

DEARGs. As illustrated in Fig. 2D, KEGG enrichment
analysis demonstrated that the correlated genesweremainly
clustered in several terms, such as cell cycle, transcrip-
tional misregulation in cancer, microRNAs in cancer, IL-17
signaling pathway, signaling pathways regulating pluripo-
tency of stem cells, endocrine resistance, focal adhesion,
and the AMPK signaling pathway. At the same the time,
GO functional terms of DEARGs in biological process (BP)
were significantly enriched in mitotic cell cycle phase tran-
sition, positive regulation of cell cycle, and epidermis de-
velopment categories (Fig. 2E). Cell component related
functions of these DEARGs were mainly enriched in the
chromosomal region, nuclear ubiquitin ligase complex, and
specific granules, among others (Fig. 2F). Molecular func-
tion (MF) mainly focuses on promoter-specific chromatin
binding, serine-type endopeptidase activity, and serine-type
peptidase activity categories (Fig. 2G). Taken together, it
was suggested that the DEARGs may be mainly associated
with CC proliferation and migration, such as the regulation
of cell cycle and adhesion ability. Consistent with known
dysfunctions in CC, these results suggest the reliability of
our findings.

3.3 Development and Validation of the DEARGs Signature
To explore the connections between the expression of

the 77 DEARGs and CC subtypes, we performed a con-
sensus clustering analysis on all 244 CC patients who met
the inclusion and exclusion criteria in the TCGA cohort.
By increasing the clustering variable (k) from 2 to 10, we
found that when k = 2, the intragroup correlations were the
highest and the intergroup correlations were low, indicating
that the 244 CC patients could be divided into two clusters
based on the 77 DEARGs (Fig. 3A). The different expres-
sions of DEARGs between the two clusters were further
profiled through PCA (Fig. 3B). TheOS timewas compared
between the two clusters, but no obvious differences were
found (p = 0.37, Fig. 3C), suggesting that further screen-
ing of DEARGs for establishing the prognostic predicting
signature in CC patients was needed.

First, the 244 CC patients were randomly grouped into
training (147 patients) and testing sets (97 patients) at a
6:4 ratio. Using the univariate Cox regression analysis, 19
DEARGs possibly associated with OS in the training set
were screened with a criterion of p < 0.1 (Fig. 3D). To
avoid overfitting the prognostic signature, we performed
the LASSO regression on these DEARGs with a 10-fold in-
ternal cross validation (Fig. 3E,F). Then, a prognostic scor-
ing model including 7 optimal prognostic genes (CXCL8,
SLPI, CDH3,MMP13, SPP1, ITGA8, and KLF4) was con-
structed (Fig. 3G). It was shown in the forest plot that the
risk scores could discriminate the OS of CC patients in the
training set well (Log-Rank test global p < 5 × 10−6) and
the OS predicting accuracy of the risk scores in the training
cohort was also verified (concordance index = 0.79).
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Fig. 1. Profile of the study and the screening of DEARGs. (A) The workflow of data analysis. (B,C) Venn diagram of 6 datasets
from GEO database. (D) Principal component analysis of the ARGs between normal and tumor samples in GEO cohort. (E) Expression
heatmap of the ARGs in GEO cohort. (F,G) Heatmap and volcano plot of the DEARGs in GEO cohort. GEO, Gene Expression Om-
nibus; DEARGs, differentially expressed anoikis-related genes; ARGs, anoikis-related genes; TCGA, The Cancer Genome Atlas; CESC,
cervical squamous cell carcinoma and endocervical adenocarcinoma.
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Fig. 2. Mutation and function analyses of DEARGs. (A) The diagram of chromosome labeled the DEARGs, their expression heatmap
and the regulated status. (B,C) Waterfall plot and TMB distribution of DEARGs in TCGA dataset. (D) Bar diagram showed KEGG
analysis of DEARGs, in which two bars in different direction represent upregulated (red bar) or downregulated (blue bar) signaling
pathways respectively. (E–G) GO analysis of DEARGs in biological process, cell component, and molecular function respectively. GO,
Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; TMB, tumor mutation burden.
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Subsequently, the area under the curve (AUC) value
under the time-dependent ROC curve was calculated to as-
sess the prognostic performance of the risk score, with re-
spective AUC values pertaining to 1-, 3-, and 5-year sur-
vival outcomes of 0.83, 0.83, and 0.84 in the training co-
hort (Fig. 3H). To study the prognostic and risk verifica-
tion abilities of the model, the risk score of each individ-
ual in the testing set was calculated using the same calcula-
tion as that used in the training set. According to the time
ROC analysis, the 1-, 3-, and 5-year AUCs of this signa-
ture were 0.73, 0.72, and 0.60, respectively in the testing
cohort (Fig. 3I). Based on the risk scores of all of the en-
rolled patients, the 1-, 3-, and 5-year AUCs under the time-
dependent ROC were 0.77, 0.78, and 0.70 respectively in
the entire cohort (Fig. 3J). In summary, the ROC curve anal-
yses demonstrated that the DEARGs signature possessed a
satisfactory predicting accuracy.

Patients in the training, testing, and the entire sets
were stratified into two groups: HRG and LRG, based
on the threshold point of the ROC curve calculated from
the formula in the training set. Then, the distribution of
risk score, survival state, and the expression heat map of
selected DEARGs signatures were compared between the
LRG and HRG (Fig. 3K–M). It was shown that established
anoikis-related signatures had a strong ability to predict OS,
whereas increasing risk score was positively correlated with
the patients’ poor survival status. The lower (SLPI, ITGA8,
and KLF4) or higher (CXCL8, CDH3, MMP13, and SPP1)
the expression of these selected DEARGs, the higher the
risk rate, suggesting that these DEARGs help to predict the
risk among patients. This conclusion was consistently vali-
dated in all three sets. The KM curve of the entire TCGA set
demonstrated that the survival probability of CC patients at
the same time in the HRG was significantly lower than the
LRG; and that the OS in the HRG was much shorter than
that in the HRG (p < 1 × 10−4); Fig. 3N).

Finally, the expression level of the 7 selected
DEARGs between normal and CC samples in the merged
GEO cohort was presented as a boxplot (Fig. 3O). The ex-
pression of these DEARGs were validated using data from
the GEPIA public database with 306 CC and 13 normal
samples (Supplementary Fig. 2). The Spearman corre-
lation coefficients among the 7 DEARGs were then ana-
lyzed (Fig. 3P).CXCL8,CDH3,MMP13, and SPP1, the up-
regulated DEARGs in CC, were positively correlated with
each other, and negatively correlated with SLPI, ITGA8,
and KLF4 (the downregulated DEARGs in CC).

3.4 Construction and Evaluation of the Nomogram
Incorporating the DEARGs and Clinicopathological
Features

The GSE44001 cohort of 300 CC patients with relapse
information was used as a validation set to further evaluate
the prognostic performance of our scoring model. The re-
currence risk score was calculated for each individual in the

GSE44001 dataset based on the predicting model, which
included 7 DEARGs. The AUC of 1-, 3-, and 5-year no
relapse rates under time-dependent ROC curves were 0.71,
0.72, and 0.77, confirming the prediction accuracy of this
model (Fig. 4A). Therefore, this DEARGs signature was
validated to have an important application in predicting the
prognosis, DFS and OS, for patients with CC. These pa-
tients from the GSE44001 cohort were then divided into
HRG (n = 116) and LRG (n = 184) groups using the thresh-
old point of the ROC curve (Fig. 4B). The distribution of
risk scores showed that the patients with elevated risk scores
had higher recurrence rates. The expression levels of the 7
selected DEARGs involved in the signature are also visual-
ized through heatmap. Significant differences in DFS were
evident between the HRG and the LRG of the GSE44001
cohort (p < 0.0001), as was shown in the KM analysis
(Fig. 4C).

The ROC curve indicated that the OS predictive power
of this signature relative to other clinical signatures (includ-
ing age and FIGO stage) was high in the TCGA dataset, of
which the AUC was 0.699 and the 95% confident interval
(95% CI) was between 0.621 to 0.777 (Fig. 4D). To further
verify the accuracy of the ARGs signatures, an independent
prognostic analysis was performed among the DEARGs
risk scores and other clinical signatures through multivari-
ate Cox regression (Fig. 4E). As depicted in the forest plot,
the anoikis risk score was an independent predictor as com-
pared with the other clinical signatures (p < 0.001), sug-
gesting that this signature has stronger predictive power and
higher confidence as compared with the other clinical sig-
natures. Interestingly, the global p value calculated by the
Log-Rank test was remarkably smaller when all variables
were enrolled in the predictive model (p< 1× 10−9) com-
pared when only the DEARGs signature was considered (p
< 5 × 10−6).

To provide a better quantitative method for clinicians
to predict cancer prognosis, we constructed a mixed nomo-
gram combining the prognostic scoring model and clinico-
pathological features to score patients and predict their OS
at 3 and 5 years (Fig. 4F). We also corrected the predictive
performance of this nomogram, and the calibration plots
showed that predicting 3- or 5-year OS based on the nomo-
gram exhibited a consistent agreement between the actual
probability and the predicted probability (Fig. 4G). In addi-
tion, the time-dependent AUCs were 0.82, 0.80, and 0.73
for predicting OS at 1-, 3-, and 5-year time points, sug-
gesting that the predictive performance of the nomogram
was satisfactory (Fig. 4H). We also calculated other met-
rics of our nomogram and compared them with using only
age or stage to predict the prognosis of the TCGA cohort.
The specificity (SP), sensitivity (SN), accuracy (ACC) and
Matthews correlation coefficient (MCC) of the model were
0.799 (0.741–0.857, 95% CI), 0.559 (0.433–0.686, 95%
CI), 0.741 and 0.338. The MCC of the model based on age
or stage were 0.178 and 0.235 respectively, which further
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Fig. 3. Tumor classification based on the DEARGs and constructions of 7-genes risk signature. (A) 244 CC patients were grouped
into two clusters according to the consensus clustering matrix (k = 2). (B) Principal component analysis of the DEARGs between two
clusters in TCGA cohort. (C) KM curves of OS between two clusters. (D) Forest plot of 19 DEARGs screened out by Univariate Cox
regression analysis. (E,F) LASSO regression analysis determined 7 genes for the construction of prognostic signature. (G) Forest plot of
7-genes prognostic scoring model. (H–J) Time-dependent ROC curves of the signature predicting 1, 3, and 5-years survival in training,
internal testing and entire TCGA cohorts. (K–M) Distribution of risk scores, survival state, and the expression heat map of selected
DEARGs in training, internal testing and entire TCGA cohorts. (N) KM curves of OS between two risk groups. (O) Boxplot of 7
DEARGs between two risk group. (P) Correlation coefficients heatmap of 7 DEARGs. KM, Kaplan-Meier; OS, overall survival; ROC,
receiver operating characteristic; LASSO, least absolute shrinkage and selection operator.
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verified that the prognostic ability in our model has been
increased by including the DEARGs. Almost all of the red
curve was in the area above the green and blue solid lines in
theDCA (Fig. 4I), demonstrating a high net benefit could be
obtained by using the nomogram tomake clinical decisions.
According to the risk scores generated from the nomogram,
CC patients in the entire TCGA set were grouped into dif-
ferent risk groups by the threshold point of the ROC curve.
It was demonstrated that patients in the HRG possessed sig-
nificantly inferior OS compared to those in the LRG in the
KM curves (Fig. 4J).

3.5 Identification of DEGs and Somatic Mutation Analysis
between HRG and LRG in TCGA-CESC Cohort

Through differential gene screening, we identified 118
DEGs associated with HRG and LRG in the TCGA-CESC
cohort, including 34 upregulated and 84 downregulated in
the HRG (Fig. 5A,B). Among the 787 ARGs sequenced
in the TCGA dataset, 21 DEARGs, including 13 upreg-
ulated and 8 downregulated, were identified between the
HRG and the LRG (Fig. 5C). The threshold of |log2 fold
change (FC)| and adjusted p value was still set at >1 and
<0.05 respectively. The positions of DEGs between HRG
and LRG were plotted on the chromosome diagram, their
expression heatmap, and the regulated status in the HRG
were also shown via the RCircos’ package (Fig. 5D).

In addition, typical somaticmutations of individuals in
the HRG and the LRGwere investigated using theWaterfall
plots, in which the genes with the top 30mutation frequency
were visualized (Fig. 5E,F). Missense mutations still con-
stituted the vast majority of mutations in both groups after
further categorization based on numerous comprehensive
classifications. A significant difference was observed be-
tween the HRG (94.20%) and the LRG (89.51%) in terms
of the total mutation rate. The mutation rate of the 12 genes
was higher than 10% in the LRG, while all of the top 30mu-
tated genes in the HRG showed amutation frequency higher
than 10%, suggesting that not only the mutation rates were
elevated, but also the genes with a high mutated rate were
increased in the HRG. Furthermore, it was shown in our
study that there was a significant but not so strong relation-
ship between TMB and risk scores (correlation coefficient
= 0.14, p < 0.05, Supplementary Fig. 3).

3.6 Functional Analysis of DEGs between HRG and LRG
and Relationship Between the Risk Scores and Immune
Microenvironment

GO and KEGG pathway enrichment analyses of the
118 DEGs between the HRG and the LRG were conducted
to investigate their potential biological functions. GO en-
richment analysis of BP showed that they were mainly en-
riched in humoral immune response, complement activa-
tion, defense response to bacterium, recognition of phago-
cytosis, and tissue homeostasis (Fig. 6A). Several cell
components related to these DEGs included immunoglob-

ulin complex, blood microparticles, the external side of
the plasma membrane, and the apical plasma membrane
(Fig. 6B). The MF of these genes were mainly clustered in
terms of immunoglobulin receptor binding, antigen bind-
ing, cytokine activity, receptor ligand activity and signal-
ing receptor activator activity (Fig. 6C). KEGG pathway
enrichment analysis revealed that most enriched pathways
weremainly involved in the regulation of immune functions
(Supplementary Fig. 4).

Taken together, these results suggest that the genes in-
volved in immune pathways may have significant differ-
ences between the HRG and the LRG which are discrimi-
nated by our risk model. Therefore, we continued to study
the relationship between the risk score and tumor immune
microenvironment. First, in terms of immune cells, im-
mune penetration is represented by a boxplot constructed
using the ssGSEA (Fig. 6D). It was shown that the abun-
dances of regulatory T cells, neutrophils, and γδ T cells
were markedly enriched in the HRG compared to the LRG,
while the activated B cells, eosinophils, immature dendritic
cells, memory B cells, and effector memory CD8 T cells
were elevated in the LRG. Furthermore, the Spearman cor-
relation coefficients among risk scores and the abundance
of immune cells were visualized in the heatmap to illus-
trate the relationship between the predicted risk and the im-
mune cell infiltration (Fig. 6E). Consequently, the abun-
dance of neutrophils, regulatory T cells, and γδ T cells
were positively associated with risk, while the activated B
cells, eosinophils, monocytes, memory B cells, activated
CD8 T cells, and effector memory CD8 T cells were neg-
atively correlated with risk scores. Given the importance
of checkpoint-based immunotherapy, correlation between
risk scores and the immune checkpoint expression were
found and further studied (Fig. 6F). Many immune check-
points, including LGALS9, HHLA2, TNFRSF14, VTCN1,
CD40LG, CD27, BTLA, CD28, CD48, TMIGD2, CD160,
TNFSF18, TNFRSF18, TNFRSF4, and TIGIT were found
to be negatively correlated with risk scores, while CD276,
CD44, TNFSF9, CD70, and NRP1 were positively cor-
related with risk scores. Based on these results, signif-
icant differences in immune cell infiltration and immune
checkpoint expression were noted between the two differ-
ent risk groups, with several immune cell subtypes and im-
mune checkpoints showing positive or negative correlation
with the risk scores. We also explored the relationship be-
tween DEARGs and other therapies in CC. It was shown
through Spearman correlation that the expression of these
DEARGs were correlated with the sensitivities of cervi-
cal cancer cells to several different chemotherapy or target-
ing drugs (Supplementary Fig. 5, the positive correlation
demonstrates that the gene high expression is resistant to
the drug and vice versa).
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Fig. 4. External validation of the 7-genes signature and construction of nomogram involved DEARGs and clinical factors. (A)
Time-dependent ROC curves of 1, 3, and 5-years relapse in GSE44001 cohorts. (B) Distribution of risk scores, survival state, and the
expression heatmap of selected DEARGs in GSE44001 cohorts. (C) KM curves of DFS between two risk groups. (D) ROC curves of
DEARGs signature, age, and stage predicting survival respectively. (E) Forest plot of prognostic scoring model constructed by anoikis
pattern combined with clinical factors. (F) Nomogram of the risk model involved anoikis pattern and clinical factors. (G) Calibration
curves compare nomogram predicted survival probabilities with actual ones. (H) Time-dependent ROC curves of the risk model predicted
1, 3, and 5-years survival in TCGA dataset. (I) DCA analysis of the risk model. (J) KM curves of OS between two risk groups defined
by risk model. DFS, disease-free survival; DCA, decision curve analysis.
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Fig. 5. DEGs and mutation analysis between different risk groups. (A,B) Heatmap and volcano plots of the DEGs between high-and
low-risk groups in TCGA cohort. (C) Volcano plot of the DEARGs between high-and low-risk groups in TCGA cohort. (D) The diagram
of chromosome labeled the DEGs between high-and low-risk groups, their expression heatmap and the regulated status. (E,F) Waterfall
plots of top 30 mutated genes in high-and low-risk groups of TCGA dataset.
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Fig. 6. Functional analysis of DEGs and immune analysis between low- and high-risk groups. (A–C) GO analysis of DEGs between
low- and high-risk groups in biological process, cell component, and molecular function respectively. (D) Boxplot of immune cells
infiltration between two risk group. (E) Heatmap of spearman correlation coefficients between risk scores and the abundances of immune
cells. (F) Heatmap of spearman correlation coefficients between risk scores and the expressions of immune checkpoints.
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4. Discussion
Cervical cancer is one of the malignancies that imper-

ils women health, which resulted in approximately more
than 60,000 deaths of Chinese females due to CC in 2022
[41]. While the incidence has significantly decreased in
developed countries due to screening programs and HPV
vaccines, the survival of CC has still not improved sig-
nificantly since the 1970s and treatment options are still
restricted, especially for advanced CC [42–44]. Anoikis
could be viewed as a physiological process which ensures
tissue homeostasis. Resistance to anoikis might result in
adherent cells proliferating at ectopic sites, which is emerg-
ing as a hallmark of metastatic cancers [20–23,25–30,45].
Therefore, ARGs have attracted much attention for their
important functions in the development of CC [31–34].
Several attempts have been made to explore the promis-
ing prognostic values of ARGs [46]. However, the anoikis-
related molecular subtypes of CC and the performance of
anoikis pattern in predicting mutational status and sensitiv-
ities to therapies has not been verified.

In this study, we first studied the expression profile of
673 ARGs in 176 CC and 88 normal cervix tissues from
the GEO database. It was found that 77 were differentially
expressed, including 40 upregulated (51.9%) and 37 down-
regulated in tumors (48.1%). Their mutation status as well
as bio-functions were further explored. However, the KM
analysis of the two clusters produced by the consensus clus-
tering analysis based on the DEARGs did not show any
significant differences for OS in the TCGA cohort. To fur-
ther assess the prognostic value of these DEARGs, a 7-gene
risk signature was identified using the univariate Coxmodel
combined with LASSO regression analysis, which was then
validated by internal and external datasets. Subsequently, a
nomogram involving DEARGs risk scores and clinical fac-
tors was established to stratify patients into the LRG and the
HRG of CC.More genes with higher mutation rate were de-
tected in HRG. Furthermore, the DEGs between the LRG
and HRG were related to immune-related pathways. The
immune cell infiltration in the LRG and HRG were com-
pared and it was found that the HRG had universally de-
creased levels of infiltrating immune cells and increased
immune-suppressive cells. Finally, the correlation coeffi-
cient of the risk scores with expression of immune check-
points and the DEARGs with the sensitivity to chemothera-
peutic and targeting drugs were calculated, suggesting that
the risk model might predict the therapeutic effect of CC.

It still remained unknown how the 7 DEARGs
(CXCL8, CDH3,MMP13, SPP1, ITGA8, KLF4, and SLPI)
affect the oncogenesis and development of CC. The po-
tential mechanism of these DEARGs might be diverse ac-
cording to previous studies. The elevated expressions of
CXCL8, CDH3, MMP13, and SPP1 were identified as risk
factors for the prognosis of CC in our study. Interleukin-
8 (IL8), alternatively known as CXCL8, is a proinflamma-
tory CXC chemokine that is associated with multiple com-

ponents of tumor microenvironment to regulate the prolif-
eration and migration of various cancer cells. Increasing
evidence has shown that CXCL8/CXCR1/2 signaling plays
a substantial regulatory role in tumor metastasis. For exam-
ple, it was elevated to contribute towardmelanoma progres-
sion upon anoikis resistance and reattachment from cell sus-
pension [47]. It was also demonstrated that CXCL8 inhibits
anoikis of colorectal carcinoma cells via increasing TLAK
cell-originated protein kinase (TOPK, a MAPKK-like ser-
ine/threonine protein kinase) levels and activating AKT and
ERK signaling [48]. A similar pathway was suggested in
head and neck squamous cell carcinoma cells which showed
that blockade of CXCL8 by gene silencing in endothelial
cells inhibited phosphorylation of STAT3, AKT, and ERK of
tumor cells, thus increased their anoikis [49]. In addition,
the autocrine CXCL8was identified to enhance the anoikis-
resistance via the JNK/p38-ATF-2 axis as a pro-invasive
pathway in lung cancer cells [50]. Cadherin 3 (CDH3),
or P-cadherin, belongs to calcium-dependent cell adhesion
proteins. It has been proposed that P-cadherin upregulates
carbon flux through the pentose phosphate pathway and de-
creases oxidative stress in matrix-detached breast cancer
cells, thus promoting anoikis in circulation and metastatic
sites [51]. Its upstream regulation could be varied, for in-
stance, the homeobox gene HOXA9 promotes aggregation
and inhibits anoikis in floating epithelial ovarian cancer
(EOC) cells through its induction of P-cadherin [52]. Ma-
trix metallopeptidase 13 (MMP13), or collagenase 3, could
function in the degradation of multiple extracellular matrix
proteins. It has been shown to shed the Nerve/glial antigen
2 (NG2) on the cell surface, which is a transmembrane pro-
teoglycan receptor that interacts with extracellular matrix to
mediate cell adhesion and proliferation, to attenuate anoikis
[53]. Interestingly, CXCL8/CXCR1/2 signaling might lead
to p38MAPK activation that triggered downstreamMMP13
actions [54]. Secreted phosphoprotein 1 (SPP1), or osteo-
pontin, could be viewed as a non-collagenous bone protein
which is important to cell-matrix interaction or to cytokines
involved in immune-related pathways. It has been found
that invasive tumor cells generate three splice variants of
the metastasis gene osteopontin (a, b, and c), a coalescence
in cancer cells between osteopontin-a and osteopontin-c,
which increases the cellular glucose levels and utilizes this
glucose to generate energy respectively, which could of-
fer energy for detached cancer cells in anoikis resistance
[55]. In addition, osteopontin-c, as the soluble form of os-
teopontin, could protect cancer cells from anoikis during
anchorage-independent growth by inducing the expression
of oxidoreductases [56]. For the study of upstream, it was
shown that breast cancer metastasis suppressor 1 (BRMS1)
sensitizes HCC cells to anoikis by suppressing osteopontin
expression [57].

In contrast, the activation of ITGA8, KLF4, and SLPI
were shown as protective factors for the prognosis of
CC. Integrin α-8 (ITGA8) encoded the α-8 subunit of the
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heterodimeric integrin α8β1, which belongs to the inte-
grins transmembrane receptor proteins family that mediate
numerous cellular processes including cell adhesion, cy-
toskeletal rearrangement, and activation of cell signaling
pathways. ITGA8 has been shown to be prerequisite for the
proper conduct of anoikis in normal human intestinal ep-
ithelial crypt cells (HIECs), whereas its loss contributes to
Fak/PI3-K/Akt-1 activation in cell suspension culture con-
ditions, consequently conferring a measure of anoikis resis-
tance to HIECs [58]. Kruppel-like factor 4 (KLF4) belongs
to the Kruppel family of transcription factors and is often
co-expressed with KLF5. It has been shown in esophageal
cancer cells that expression of either KLF4 or KLF5 re-
stores sensitivity to anoikis and decreases cell survival [59].
The overexpression of the polarity protein Numbl blocked
anoikis in lung cancer cell migration through the suppres-
sion of KLF4 [60]. However, KLF4 may also have a dif-
ferent impact on anoikis in various cancers. The study by
Farrugia et al. [61] showed that combined suppression of
KLF4/5 sensitized breast cancer cells to anoikis. Secretory
leukocyte protease inhibitor (SLPI), a secreted pleiotropic
protein, was also found to elevate the anoikis resistance
of ovarian cancer cells by blocking elastase degradation of
progranulin (PRGN), which is a potent growth and survival
factor [62]. Interestingly, the expression of SLPI was found
to be elevated in CC samples based on the GEPIA database
(306 CC and 13 normal samples), which reversed the re-
sults in the GEO cohort. Given the often-conflicting results
in different tumors, our results regarding KLF4 and SLPI
provides some insights for further studies in CC. How these
genes interact with each other during anoikis remains to be
further investigated.

The functional enrichment analysis of DEARGs be-
tween normal cervix and CC samples revealed that the
underlying biological mechanisms were mainly enriched
in terms of cell cycle, transcriptional regulation and fo-
cal adhesion, which are correlated with the biological pro-
cess of anoikis and consistent with previous studies [63].
While CESC patients with different TMB were previously
shown to have different survival outcomes [64], the OS of
DEARGs high- and low-TMB groups showed no signifi-
cant difference in our study. It was also shown that TMB
has significant but not such a strong positive relationship
with risk scores in our model, which included DEARGs and
clinicopathological factors. However, different risk groups
defined by our model showed different mutation rates, sug-
gesting that the mutation status may affect the up or down
stream genes rather than ARGs directly. We analysed the
118DEGs between different risk groups and found that they
were mainly involved in immune responses in addition to
tissue homeostasis. Based on the results of our GO and
KEGG analyses, it is reasonable to speculate that anoikis
can regulate the composition of the tumor immunemicroen-
vironment.

Related function analysis of immune cell subsets
showed that HRG had universally decreased levels of in-
filtrating immune cells, while regulatory T cell, γδ T cells,
and neutrophils were enhanced in the HRG. The immuno-
suppressive ability of regulatory T cells has been known to
help with tumor immune evasion in CC [65]. In addition
to the well-established protective role of γδ T cells against
cancer, more recent studies also revealed tumor-promoting
activities, which are often related to the production of IL-17
[66–68]. Furthermore, a possible contribution of IL-17A-
producing γδ T cells to the increased angiogenesis during
HPV-induced squamous cell carcinoma development was
found in recent studies [69]. Interestingly, the IL-17 sig-
naling pathway has been significantly enriched based on
the functional analysis of DEGs between HRG and LRG or
DEARGs between normal and CC samples. In the field of
breast cancer, the γδ T cell/IL-17/neutrophil axis was even
found to have a novel cancer-cell initiated domino effect
within the immune system for the metastasis [66]. Addi-
tionally, we further explored the relationship between im-
mune checkpoints and risk scores. LGALS9, for example,
an immunosuppressive receptor as a therapeutic target, was
found to be negatively correlated with risk scores, which
is in accordance with previous studies in CC [67,68]. Be-
sides immunotherapy, the sensitivity of chemotherapeutic
and targeting drugs were also found to be related to the ex-
pression of selected DEARGs in our model. The findings
of the present study could help identify potential therapeutic
targets and develop individual treatment strategies for CC.

We explored the anoikis-related biomarkers that could
be used for discriminating subgroups of CC and predicting
prognosis and therapeutic responses. However, there are
still a few limitations in our research. First, our research
data comes from public databases and some specific clinical
informationmay have been unavailable. Moreover, in order
to validate our findings and to uncover the mechanism of
anoikis-related genes in CC, further functional experiments
are needed in our laboratory based on cell lines and tissue
samples.

5. Conclusions
In summary, the finding of our study revealed poten-

tial biomarkers and therapeutic targets for anoikis-related
signatures in cervical cancer. Novel subgroups of CC were
defined through clustering based on the anoikis patterns.
The prognostic model based on the ARGs and clinical fac-
tors could refine the predicted performance of CC survival
outcomes, evaluate mutation and immune conditions, and
predict the sensitivities of therapies for CC patients.
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