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Abstract

Background: Different severities of coronavirus disease 2019 (COVID-19) cause different levels of respiratory symptoms and systemic
inflammation. DNA methylation, a heritable epigenetic process, also shows differential changes in different severities of COVID-19.
DNA methylation is involved in regulating the activity of various immune cells and influences immune pathways associated with viral
infections. It may also be involved in regulating the expression of genes associated with the progression of COVID-19. Methods: In
this study, a sophisticated machine-learning workflow was designed to analyze whole-blood DNA methylation data from COVID-19
patients with different severities versus healthy controls. We aimed to understand the role of DNA methylation in the development of
COVID-19. The sample set contained 101 negative controls, 360 mildly infected individuals, and 113 severely infected individuals. Each
sample involved 768,067 methylation sites. Three feature-ranking algorithms (least absolute shrinkage and selection operator (LASSO),
light gradient-boosting machine (LightGBM), and Monte Carlo feature selection (MCFS)) were used to rank and filter out sites highly
correlatedwith COVID-19. Based on the obtained ranking results, a high-performance classificationmodel was constructed by combining
the feature incremental approach with four classification algorithms (decision tree (DT), k-nearest neighbor (kNN), random forest (RF),
and support vector machine (SVM)). Results: Some essential methylation sites and decision rules were obtained. Conclusions: The
genes (IGSF6, CD38, and TLR2) of some essential methylation sites were confirmed to play important roles in the immune system.
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1. Introduction
Coronavirus disease 2019 (COVID-19) is currently

the most serious public health problem and has caused
millions of deaths worldwide. It can be classified into
mild, moderate, and severe infection categories according
to the clinical manifestations of the SARS-CoV-2 infec-
tion. These manifestations include asymptomatic, fever or
chills, cough, loss of taste and/or smell, muscle or body
aches, nausea or vomiting, and diarrhea. Studies have
shown that severe COVID-19 is associated with host ge-
netic variation related to host immune responses to viral in-
fection and inflammasome modulators. COVID-19 sever-
ity is closely correlated with host factors [1]. Studies have
revealed the interplay of genetic and epigenetic alterations
that control host responses. Epigenetic changes that reg-

ulate chromatin structure have important implications for
genome stability and the maintenance of cellular homeosta-
sis since they are related to the pathophysiology of viral in-
fections. DNA methylation is a heritable epigenetic pro-
cess, whereby methyl groups are added to the C-5 posi-
tion of the DNA cytosine loop by DNAmethyltransferases.
DNAmethylation plays a key role in gene imprinting, X in-
activation, silencing of repeat elements, and transposon ex-
pression. It also participates in cell development and aging
[2]. DNA cytosine methylation at the 5′-C-phosphate G-3′
(CpG) site is highly sensitive to age and environmental fac-
tors [3–6]. COVID-19 severity is associated with impaired
blood cell proportions and epigenetic modification of innate
immune responses [7,8]. Changes in DNA methylation in
neutrophils, B lymphocytes, and CD8+ T lymphocytes reg-
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ulate functional pathways related to autoimmune diseases
and viral defense mechanisms [9]. Epigenetic changes as-
sociated with the respiratory environment can distinguish
patients with severe and mild COVID-19 from those with
systemic autoimmune diseases [10]. Specific hypermethy-
lation in mild cases shows a genetic contribution, whereas
methylation quantitative trait loci are enriched in SNPs as-
sociated with environmental traits [11]. DNA methylation
may affect the expression of genes that regulate COVID-19
progression, which, in this context, is a targetable process.

An epigenome-wide association study of novel coron-
avirus infections revealed important DNAmethylation reg-
ulation processes associated with COVID-19 progression
[12]. Specific differences in CpG methylation were found
between patients with severe and mild diseases. The differ-
ential methylation is primarily related to the activation of
the interferon signaling pathway and the overactivation of
B and T lymphocytes [13–15]. Transcriptomic studies have
confirmed that these pathways are associated with COVID-
19 severity, while it was shown that regulation of these
pathways is mediated by epigenetic changes at the promoter
level of the relevant genes [16]. Moreover, epigenetic dys-
regulation exists in theCD209 signaling pathway, phagocy-
tosis pathway, and AKT signaling pathway in COVID-19
patients with specific blood cell types. CD209 is primar-
ily expressed in B lymphocytes and dendritic cells (DCs),
and it interacts with CD209L in endothelial cells of SARS-
CoV-2 target tissues, which may contribute to virus inva-
sion [17]. Therefore, hypermethylation of the CD209 sig-
naling pathway may be related to the protective effect dur-
ing SARS-CoV-2 infection. Interestingly, EDC3 hyperme-
thylation in severe cases may mediate the overexpression
of the angiotensin-converting enzyme (ACE) 2 protein in
COVID-19 patients, thereby worsening the infection [18].
The hypomethylation signatures associated with COVID-
19 severity include interferon-related signatures and lym-
phocyte activation signatures. Interferon-related features
are associated with systemic autoimmune disease in mild
and severe cases [19]. Further analysis revealed that the
enrichment of transcription-factor binding sites, which reg-
ulate the levels of cytokines (e.g., interleukin (IL)-6, IL-1α,
and IL-12) and other proinflammatory cytokines, is associ-
ated with COVID-19 severity [20–24].

High-throughput sequencing data provides extensive
molecular information relevant to patients with COVID-19.
Our team has previously used machine learning to screen
49 key methylation sites associated with COVID-19. The
degree of methylation at these sites was correlated to the
age of the patient [25]. Accordingly, we aimed to further
explore the COVID-19 mechanism based on whole-blood
genome-wide DNA methylation profiling from 101 nega-
tive controls, 360 patients with mild infections, and 113 in-
dividuals with severe infections.

2. Materials and Methods
Fig. 1 illustrates the flow of the machine-learning

method used in this study. The samples were grouped ac-
cording to COVID-19 severity. The methylation sites were
ranked using three feature-ranking methods. Then, the ob-
tained feature-ranking list was fed into the incremental fea-
ture selection (IFS) framework, which contained four clas-
sification algorithms. In summary, we obtained key methy-
lation sites that were strongly correlated with COVID-19
severity and a model that could predict the COVID-19 sta-
tus of the samples. Quantitative classification rules were
also summarized. This section describes the methods used
in each segment.

2.1 Data
The whole-blood DNA methylation data for the 574

used samples were obtained from the GEO database, with
the accession number: 179325 [26]. The samples were di-
vided into three groups according to the COVID-19 severity
and included 101 negative controls, 360 mildly infected in-
dividuals, and 113 severely infected individuals. The DNA
methylation sites in the samples were considered as fea-
tures, and each sample contained 768,067methylation sites.

2.2 Feature-Ranking Algorithms
The number of DNAmethylation sites involved in the

dataset was large, although only a very small number of
sites were significantly methylated during COVID-19 de-
velopment. All sites were screened and ranked using the
least absolute shrinkage and selection operator (LASSO)
[27], light gradient-boosting machine (LightGBM) [28],
and Monte Carlo feature selection (MCFS) [29]. A higher
site was ranked corresponding to its higher degree of asso-
ciation with the target variable. These methods are exten-
sively accepted in the life sciences [30–33].

2.2.1 Least Absolute Shrinkage and Selection Operator
LASSO is a regression analysis method that ranks

features and performs preliminary feature screening. The
method is internally designed with a penalty function that is
bounded by an L1-type regular formula. The methylation-
site features are assigned to independent variables, and the
absolute values of the coefficients of the independent vari-
ables describe the degree of association with the target vari-
able. By optimizing the function, the coefficients of some
features become zero, indicating that they should be treated
as irrelevant features. Afterward, the remaining features
are ranked according to the absolute value of the coeffi-
cients. Finally, the dimensionality reduction and ranking
of the data are completed.

2.2.2 LightGBM
LightGBM is based on gradient-boosting decision

trees (DTs) for optimization, which consumes less memory
and is suitable for high-dimensional datasets. It uses the
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Fig. 1. Flow chart of the entire analytical process. Whole-blood DNA methylation data from patients with different COVID-19
severities were analyzed by machine-learning approach. The dataset contained 101 negative controls, 360 mildly infected individuals,
and 113 severely infected individuals. The methylation-site features were analyzed by three feature-selection methods, namely, least
absolute shrinkage and selection operator (LASSO), light gradient-boosting machine (LightGBM), and Monte Carlo feature selection
(MCFS). The obtained feature lists were fed into the incremental feature-selection method, which combined decision tree (DT), k-nearest
neighbor (kNN), random forest (RF), and support vector machine (SVM) to extract key site features and construct effective classifiers
and classification rules.

gradient-based one-side sampling method to discard some
samples with small gradients, and it bundles selected sam-
ples using an exclusive feature-bundling method to merge
mutually exclusive features. It uses a leaf-wise strategy
to construct the tree, extending only the more efficient
branches. The importance of a feature is proportional to
its involvement in the DT.

2.2.3 Monte Carlo Feature Selection
The MCFS method constructs a number of indepen-

dent DTs. Each DT uses a different subset of features and
sample data sets. The features and samples used by each
tree are determined by independent random selection. For
the selected sample subsets, a division was performed t

times into a training subset and a testing subset. By com-
bining the determined p feature subsets, we obtained p × t

DTs. The importance of the sites was expressed using the
relative importance score (RI).

RIg =
∑p×t

τ=1
(ωACC)u

∑
ng(τ)

IG(ng(τ))

(
no.in ng (τ)
no.in τ

)v

,

(1)
where ωACC is the weighted precision of the tree, τ , under
consideration; ng (τ) is the node of the DT whose informa-
tion gain is denoted as IG(ng (τ)); no.in ng (τ) denotes
the sample size of ng (τ); u and v are two positive reals
weighting the ωACC and the ratio no.in ng (τ) /no.in τ ,
respectively.

2.3 Incremental Feature Selection
The use of IFS is well-established in machine learn-

ing research [33,34]. When building a classification model,
computational efficiency needs to be considered. For this

purpose, we performed the IFS method to determine the op-
timum number of features required to build the classifica-
tion model. It converted the list of methylation sites gener-
ated by the rankingmethod into a number of feature subsets.
Depending on the set step size, the number of features con-
tained in these subsets grew equally according to the rank-
ing order. These subsets were used to train the downstream
classification algorithm, where in reference to the perfor-
mance of the obtained models, the finalized feature subset
was the best feature subset, and the model at this point was
the best classification model.

2.4 Synthetic Minority Oversampling Technique
Looking at the sample dataset, a difference existed in

the number of samples within the three classes, whereby
there were 3.6 times more samples from the mildly infected
individuals than from the negative controls. Moreover, di-
rectly training the model using an uneven dataset biased the
results toward the majority classes. The SMOTE method
generated new samples based on known samples. All sam-
ples were projected into the high-dimensional space, and
one sample was randomly selected for the minority classes.
Using Euclidean distance as a metric, SMOTE determined
the k-nearest neighbors to that sample in the same class.
Moreover, any point on the concatenation of this sample
and any of its nearest neighbors can be selected as a new
sample. The above process was repeated and the new sam-
ples were added into minority classes until the number of
samples in each class was balanced.
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2.5 Classification Algorithm
Based on several feature subsets generated by IFS, this

study usedDT [35], kNN [36], RF [37], and SVM [38] algo-
rithms to construct classification models. These algorithms
have been approved by previous publications [34,39–45].

2.5.1 Decision Tree
As its name suggests, the DT algorithm constructs a

tree structure that contains a root, branch, and leaf structure.
The instances were inputted from the root, and the attributes
of the instances were judged in the internal node. Based on
the result, they were transported along the branches of the
tree after several judgments until they reached the leaf struc-
ture. The leaves of the tree contained the final judgment of
the algorithm on the class of the instance. As a white-box
algorithm, the judgment process was transparent, thereby
enabling the highly interpretable classification rules to be
summarized.

2.5.2 K-Nearest Neighbor
The principle of the kNN algorithm was to determine

the category of an unknown sample by comparing the distri-
bution of known samples around a new sample in the feature
space. The samples were mapped into a high-dimensional
space based on the feature vectors; the k-nearest known
samples for each new sample were selected, and the cat-
egory labels for these nearest neighbors were referred to fi-
nally determine the category of the new sample.

2.5.3 Random Forest
RF was based on the DT algorithm. A number of in-

dependent DT models were constructed at once, and ran-
domness was introduced into the selection of features and
training samples used for judgment. Each DT constructed
in this way had a different judgment process for the same
sample, meaning the results often differed. For a sample,
the classification results of each tree were combined, and
the final classification results were obtained using the prin-
ciple of majority rule.

2.5.4 Support Vector Machine
The SVMalgorithm utilized a kernel function that also

mapped the samples into a high-dimensional space based
on feature vectors. Through an optimization function, a
hyperplane was determined in the space. This hyperplane
partitioned the samples of different categories in space and
ensured that the margin between each category of samples
was maximized at this hyperplane. The model presented
the best generalization ability at this time.

2.6 Performance Evaluation
Using the IFS method and above four classification

algorithms, we obtained several classification models and
evaluated the performance of these models using 10-fold
cross-validation [46]. The F1measure is often used as a key

metric to evaluate the performance of classification models,
although it does not perform fairly enough in multiclassifi-
cation problems. The current study required weighting the
F1 measure.

Precisioni =
TPi

TPi + FPi
, (2)

Precisionweighted =
∑L

i=1
Precisioni × wi, (3)

Recalli =
TPi

TPi + FNi
, (4)

Recallweighted =
∑L

i=1
Recalli ×wi, (5)

Weight F1 =
2 · Precisionweighted · Recallweighted
Precisionweighted + Recallweighted

, (6)

where TP represents true positives, FP represents false
positives, FN represents false negatives, i represents the
category, L represents the number of classes, and wi rep-
resents the proportion of samples categorized to the over-
all sample. We also used accuracy (ACC) and Matthew’s
correlation coefficient (MCC) [47] as references. A higher
value corresponded to better model performance.

3. Results
3.1 DNA Methylation Sites Ranking and IFS

Whole-blood DNA methylation data from 574
samples, each containing 768,067 methylation-site fea-
tures, were analyzed using a machine-learning workflow.
LASSO, LightGBM, and MCFS were used to rank all
methylation sites and three ranked lists were obtained
(Supplementary Table 1). LightGBM discarded the
redundant features, meaning only 33,537 features were
output in LightGBM for ranking. The lists involved numer-
ous site features, although only a very small number were
associated with COVID-19 levels. Thus, for subsequent
analyses, only the top 10,000 site features in the list were
used.

The first 10,000 methylation sites in the three lists
were input into the IFS framework, and the step parame-
ter was set to 10. Each list was transformed into a subset of
1000 sites, and these subsets of methylated sites were used
to construct 4 classification models, namely, DT, kNN, RF,
and SVM. Supplementary Table 2 describes the classifi-
cation performance of these models. Based on the perfor-
mance results, IFS curves were plotted using the number of
features as the independent variable to depict the weighted
F1 trend (Fig. 2). The IFS curve observation revealed that
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Fig. 2. IFS curves for evaluating the performance of the three
classification algorithms based on the weighted F1. Four clas-
sifier models were constructed under each algorithm. (A) IFS
curves based on LASSO results. (B) IFS curves based on Light-
GBM results. (C) IFS curves based on MCFS results. IFS, incre-
mental feature selection.

the SVM model always had the highest performance re-
gardless of the list being used. The best SVM model used
the top 3390, 9830, and 8090 methylation sites from the
Lasso, LightGBM, and MCFS lists, respectively, to pro-
vide weighted F1 values of 0.922, 0.918, and 0.947, re-
spectively. Their ACC and MCC results were also excel-
lent, with ACC of 0.922, 0.916, and 0.946, respectively, and
MCC of 0.862, 0.857, and 0.904, respectively (Table 1).

Fig. 3. Venn diagram of the most critical subset of features ob-
tained using LASSO, LightGBM, and MCFS. The overlapping
circles indicate methylation sites that are identified as the most
critical features by the different ranking algorithms.

Fig. 4. The number of rules for the three classes as summa-
rized by the DT classification model, constructed using the
three ranking methods.

To extract the most critical sites among the methyla-
tion sites used by the best classifier, we observed the IFS
curves of the SVM models and set the inflection points of
the curves. The inflection points were 150, 80, and 380
for the LASSO, LightGBM, and MCFS lists, respectively.
The performance evaluation of the model at the inflection
points is displayed in Table 1. Recurring methylation sites
tended to play a more important role. We calculated the
intersection from the pre-inflection point sites and plotted
a Wayne diagram (Fig. 3). We did not obtain methylation
sites that appeared in all three lists but obtained 19 features
that appeared in two lists. The specific intersection results
are shown in Supplementary Table 3. A detailed analysis
of these sites is presented later.

5
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Table 1. Performance of SVM classification models constructed from three lists when using the best feature subset and
inflection subset.

Feature ranking algorithms Number of features Weighted F1 MCC ACC

LASSO 150* 0.855 0.761 0.852
3390** 0.922 0.862 0.922

LightGBM 80* 0.852 0.753 0.848
9830** 0.918 0.857 0.916

MCFS 380* 0.843 0.755 0.840
8090** 0.947 0.904 0.946

* indicates the number of features at the inflection points of the IFS curve; ** indicates the
number of features in the best feature subset. MCC, Matthew’s correlation coefficient; ACC,
accuracy.

Table 2. Essential methylation sites identified by multiple algorithms.
Methylation locus Gene symbol Description Algorithm Reference

cg02481950 IGSF6 chr16:21650858-21663981 LASSO, MCFS [48–53]
cg04332373 CD38 chr4:15778275-15853232, CpG island LightGBM, MCFS [54–61]
cg03753191 EPSTI1 chr13:43566902, Shore region of CpG islands LightGBM, MCFS [62]
cg22930808 DTX3L chr4:15778275-15853232, CpG island LightGBM, MCFS [63–67]

3.2 Classification Rules

The DT model demonstrated a transparent decision
process, which helped us obtain specific classification cues.
Based on these cues, we summarized three sets of quanti-
tative classification rules, which had implications for our
understanding of the biological context of these key methy-
lation sites. Supplementary Table 4 shows the specific
classification rules. Each rule contained several parameters
that represented the methylation levels of these sites. For
the different lists, Fig. 4 shows the number of rules repre-
senting the different categories.

4. Discussion
This study had three groups: negative controls, mildly

infected individuals, and severely infected individuals.
Each algorithm presents its advantages, and taking the in-
tersection of the results of multiple algorithms can increase
the coverage and accuracy of the results better than one ap-
proach. Through the intersection of all analysis approaches,
we identified some important methylation features. Com-
bined with previous studies, summarizing the experimental
evidence of the above-mentioned methylation features was
necessary.

4.1 Analysis of Top Features Identified by Multiple
Algorithms

As shown in Fig. 3, using 2 algorithms identified 19
methylation sites, which were generally more essential than
other methylation sites. Here, we selected four for detailed
analysis and these are listed in Table 2 (Ref. [48–67]).

IGSF6 (cg02481950) is located at chr16:21650858-
21663981 and belongs to the immunoglobulin superfam-
ily member 6, which is expressed in dendritic and myeloid

cells [48]. Studies have shown that IGSF6 is associated
with changes in the ratio of M0 macrophages and γ-delta T
cells, alongside plasma cells and monocytes in atheroscle-
rotic plaques. IGSF6 may be related to immune-related
IFN-γ and PD-1 signaling pathways [49] and is reportedly a
susceptibility gene for inflammatory bowel disease; there-
fore, may influence disease manifestations [50]. IGSF6 is
potentially involved in the atrial fibrillation development
mechanism and is associated with the course or mainte-
nance of autoimmune and chronic inflammatory diseases
[51]. Moreover, it can act as a potential molecular marker
for antigen presentation by DCs before host vaccinations
have been identified. After stimulation with human papil-
lomavirus E7 peptide (p11–20), the immune response in
immature DCs (iDCs) is upregulated by IGSF6 and other
molecules. With prolonged stimulation time, the genes re-
lated to the immune response become more significantly
upregulated [52]. DCs play important roles in preventing
viral infection. Thus, the proportion of plasmacytoid and
myeloid DC levels in serum and the IFN level decrease in
patients with severe COVID-19. The impairment of DC
function and interferon secretion correlates to the COVID-
19 severity [53]. Our analysis showed that the methyla-
tion level of IGSF6 increased in severe COVID-19 patients.
These results suggest that the upregulation of these genes
may be a marker of antigen presentation, and IGSF6 may
be a potential molecular marker of the extent of the immune
response in patients with COVID-19.

CD38 (cg04332373) encodes a type II transmembrane
glycoprotein that synthesizes and hydrolyzes calcium-ion-
mobilized messengers. The cg04332373 methylation site
is located in the shore region of the CpG island. Studies
have shown that CD38 levels in white adipose tissue (WAT)
and the liver increase with age. Senescent cell signals pro-
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Table 3. Important methylation sites in rules.
Methylation locus Gene symbol Description References

cg00197681 TBC1D4 chr13:76056419, CpG island [68]
cg09623286 TLR2 chr4:154605468, CpG island [69–71]

mote the accumulation of CD38+ cells in WAT [54]. CD38
regulates nicotinamide dinucleotide (NAD+) metabolism
and extracellular nucleotide homeostasis, while CD38 in-
hibition and “NAD+ enhancement” can help in metabolic
disorders related to aging, inflammation, and tumor im-
mune hyperplasia [55]. Increased CD38 expression is a
consequence of aging [56], which is a major factor asso-
ciated with the risk of SARS-CoV-2 infection. CD38 plays
an important role in viral infections, including AIDS and
COVID-19 [57]. Thus, in COVID-19 patients, CD38 me-
diates thrombosis and bacterial phagocytosis dependent on
NAD+. CD38 promotes immune-cell migration into the
site of infection through signaling [58,59], meaning CD38
may aggravate SARS-CoV-2 infection and increase the risk
of secondary bacterial infections [60,61]. Activation of
CD38 and decreased NAD+ can be considered features of
aging and may be considered regulators of COVID-19 in
old age. High inflammation in COVID-19 may lead to
CD38 activation, especially causing severe reactions, such
as tissue fibrosis and injury in the elderly [57]. Our anal-
ysis showed that CD38 methylation levels were lower in
patients with severe COVID-19 than in patients with mod-
erate COVID-19. This evidence suggests that SARS-CoV-
2 infection may reduce CD38 methylation levels, promote
CD38 activation, promote immune-cell migration, and in-
duce NAD+-dependent bacterial phagocytosis, ultimately,
leading to local tissue damage and disease risk.

cg03753191 is located at chr13:43566902 and in the
Shore region of CpG islands. It corresponds to the EPSTI1
gene and encodes a protein that promotes tumor invasion
and metastasis. Studies have reported that EPSTI1 expres-
sion levels were significantly upregulated in leukocytes and
nasopharyngeal tissues of COVID-19 patients, compared to
normal tissues. The downregulation of EPSTI1 also pre-
dicted poorer clinical outcomes in patients with COVID-19,
such as intensive care unit hospitalization and increased vi-
ral load. Therefore, EPSTI1 may play an important role in
antiviral immune regulation [62]. The expression profile
of EPSTI1 can classify COVID-19 patients into different
groups, whereby the younger patient population exhibited
a stronger antiviral immune response, higher EPSTI1 ex-
pression level, and better clinical treatment effect. The ex-
pression level or methylation pattern of EPSTI1may signif-
icantly affect the COVID-19 severity by modulating antivi-
ral immune responses.

DTX3L (cg22930808) encodes Deltex E3 ubiquitin
ligase 3L, which plays a role in DNA damage repair and
interferon-mediated antiviral response [63–66]. DTX3L
plays a role in the antiviral response by mediating the “LS-

48”-linked ubiquitination in the C3 protease of the cerebral
myocarditis virus and human rhinovirus, thereby promoting
their proteome-mediated degradation [65]. Dtx3l-related
pathways include DNA damage and the innate immune sys-
tem. The activation of the IFN response has been demon-
strated to induce the adp nucleation of host proteins, which
depend on PARP9 and its binding partner DTX3L. Expres-
sion of the large domain of SARS-CoV-2 nonstructural pro-
tein 3 (Nsp3) or deletion of PARP9 or DTX3L had no ef-
fect on IFN signaling. PARP9/DTX3L-dependent adp nu-
cleation is a downstream effector of the host IFN response,
and the SARS-CoV-2 Nsp3 macrodomain can hydrolyze
the IFN signaling end product [67]. This study has added
evidence to the relationship between DTX3L methylation
patterns and disease severity in patients with SARS-CoV-2
infection, thereby providing more reference for the study of
COVID-19 progression and pathogenesis.

4.2 Analysis of Key Methylation Sites in Rules

In addition to identifying essential methylation sites
by using various algorithms, we also obtained several clas-
sification rules, as listed in Supplementary Table 4. These
rules can predict disease severity based on the methylation
level of key DNA methylation sites. However, it is impos-
sible to analyze them in detail because a huge number of
rules were constructed. Herein, we focused on valuable fea-
tures because they can identify important DNAmethylation
sites and demonstrate their important role as epigenetic-
susceptibility sites in patients infected with SARS-CoV-2.
We collected the scientific findings of other researchers and
preliminarily summarized experimental evidence to con-
duct the discussion. The key methylation sites are listed
in Table 3 (Ref. [68–71]).

TBC1D4 (cg00197681) belongs to TBC1 do-
main family member 4, and cg00197681 is located at
chr13:76056419 and CpG island region. TBC1D4 encodes
a rabbit-GTPase activating protein, which is involved
in regulating glucose homeostasis through transporting
glucose transporter 4 (GLUT4). Human genetic variants
may influence SARS-CoV-2 infection and COVID-19
pathology. Researchers have applied machine-learning
algorithms to predict phosphorylation-associated missense
single nucleotide variants (pSNVs) and found that these
variants are associated with the evolution of host defense
systems [68]. Proteins with pSNVs include TBC1D4 and
TRIM28, which are involved in the regulation of the viral
life cycle and host antiviral response. TBC1D4 may also be
associated with the dysregulation of glucose homeostasis
in SARS-CoV-2 infection. In the present study, we found
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that TBC1D4 methylation levels were higher in patients
with severe COVID-19 than in the normal population.
Combined with previous studies, we hypothesized that
SARS-CoV-2 infection induced an increase in the methyla-
tion levels of TBC1D4, thereby affecting the host antiviral
immunity.

The methylation site cg09623286 is located at
chr4:154605468 and the island region of CpG islands. Its
related gene is Toll-like receptor (TLR) 2, which encodes
products belonging to the TLR family. As a cell surface
protein, TLR2 can form dimers with other TLRs to rec-
ognize pathogen-associated molecular patterns and activate
host immune responses. Activation of different TLR path-
ways leads to the secretion of proinflammatory factors, in-
cluding IL, tumor necrosis factor-alpha, and interferon, and
is involved in SARS-CoV-2 invasion and infection. How-
ever, some TLRs, such as TLR2, may play a dual role
in COVID-19 infection [69]. SARS-CoV-2 infection can
cause severe disease features (e.g., cytokine storm) and or-
gan failure (e.g., testicular and germ-cell damage). Studies
have shown that exposure to SARS-CoV-2 envelope pro-
teins causes TLR2 receptor-dependent testicular cytopapla-
sia [70]. TLR2 mRNA expression levels also significantly
increase in patients with moderate to severe COVID-19.
Moreover, the mRNA expression levels of CK-MB, ACE2,
and neuroproteinase 1 receptors were positively correlated
with TLR2 expression in all patients. The mRNA expres-
sion of TLR2 was positively correlated with renal biomark-
ers and cardiac enzymes in severe and moderate patients.
These results suggested that it may be related to COVID-
19 severity [71]. The present study showed that patients
with moderate COVID-19 had higher methylation levels
than normal controls; however, this was not observed in se-
vere patients. Therefore, the TLR2 methylation level may
serve as an indicator of COVID-19 severity, although the
specific mechanism needs further verification.

5. Conclusions
This study aimed to determine the characteristics

and patterns of methylation sites associated with COVID-
19 severity through computational analysis. The results
showed that the identified key features were validated in
published academic studies. Important features may be in-
volved in viral immune regulation through different methy-
lation patterns or expression levels. Additionally, antivi-
ral immunity was associated with age, which is consistent
with our previous findings. The accuracy and credibility
of the methylation characteristics of important groups were
improved by mutual verification of various methods. On
one hand, it laid the foundation for more accurate analy-
sis methods in the future, while, alternatively, it provided
a broad reference for research on the mechanism of serious
diseases, such as COVID-19.
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