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Abstract

Background: Kidney clear cell carcinoma (KIRC) is the most common type of kidney cancer, accounting for approximately 60–85%
of all the kidney cancers. However, there are few options available for early treatment. Therefore, it is extremely important to identify
biomarkers and study therapeutic targets for KIRC.Methods: Since there are few studies on KIRC, we used a data-driven approach to
identify differential genes. Here, we used miRNA gene expression profile data from the TCGA database species of KIRC and proposed
a machine learning-based approach to quantify the importance score of each gene. Then, an ensemble method was utilized to find
the optimal subset of genes used to predict KIRC by clustering. The most genetic subset was then used to classify and predict KIRC.
Results: Differential genes were screened by several traditional differential analysis methods, and the selected gene subset showed a
better performance. Independent testing sets from the GEO database were used to verify the effectiveness of the optimal subset of genes.
Besides, cross-validation was made to verify the effectiveness of the approach. Conclusions: Finally, important genes, such as miR-140
and miR-210, were found to be involved in the biochemical processes of KIRC, which also proved the effectiveness of our approach.
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1. Introduction
Kidney clear cell carcinoma (KIRC) is one of the most

common and deadliest urological cancers, accounting for
approximately 3% of human malignancies [1] and more
than 116,000 deaths per year in patients with KIRC [2].

Despite significant improvements in the diagnosis and
treatment of KIRC over the past two decades [3,4], its prog-
nostic chemotherapeutic approach and treatment of metas-
tasis remain limited due to the uncertain cause of its devel-
opment. Therefore, there is a strong need to identify effec-
tive biomarkers to further investigate the pathogenesis of
KIRC to facilitate the treatment of this cancer [5,6].

With the development of sequencing technology, mi-
croarrays based on high-throughput platforms have been
widely used for obtaining intracellular gene expressions,
and the corresponding statistical analysis is considered the
most promising tool for medical oncology research. It has
also become increasingly easy to obtain intracellular gene
expression by high-throughput sequencing [7].

After obtaining the gene expressions, there are two
main methods for performing differential expression anal-
ysis from gene expression profile matrices: parametric and
non-parametric methods. Parametric methods capture all
the information about the parameters in the data. In this
way, valuable genes in data can be predicted by analyzing
the model used and its parameters. When parametric meth-
ods are applied to differential expression analysis, each ex-

pression value for each gene is mapped to a specific distri-
bution, such as Poisson [8,9] or negative binomial [10,11].
As to a non-parametric method, it is not allowed to impose
the rigid model to be fitted. Besides, it can obtain more de-
tails about data distribution. Since a non-parametric model
takes into account the inability to fit the data distribution
from a limited set of parameters, the amount of information
about the data increases as the amount of data increases.

The commonly used methods for differential expres-
sion analysis on expression profile matrices of cancer cells
are EdgeR [12–14] and baySeq [15], both of which use neg-
ative binomial models. Limma [16], which is considered to
be a linear model, is also commonly used. Non-parametric
methods such as NOIseq [17] and SAMseq [18] are also
in existence. Besides, there are transcript-based assays that
can be used for differential gene identification, such as EB-
Seq [19] and Cuffdiff2 [20].

Differentially expressed gene in bioinformatics re-
search is still under development [21,22]. A typical ap-
proach is to use the DESeq2 R package to screen for cy-
togenetic risk-associated differential expression genes [23].
However, most biomarkers for studying cancers focus only
on the screening of individual differential genes and do not
take into account the interaction of genes. Yuan [24] pro-
posed a systems biology approach named weighted gene
expression network analysis (WGCNA) to characterize the
correlation patterns between genes across microarray or
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Fig. 1. The computed important scores of miRNAs for each classifier. (A) Gene importance calculated by LR classifier. (B) Gene
importance calculated by DTC classifier. (C) Gene importance calculated by SVM classifier. (D) Gene importance calculated by KNN
classifier. (E) Gene importance calculated by MNB classifier. (F) Gene importance calculated by LDA classifier. Most genes have gene
importance nearly zero. Genes with the highest importance scores are tagged with gene names. Abbreviations: LR, logistic regression;
DTC, decision tree classifier; SVM, support vector machine; KNN, support vector machine; MNB, multinomial naïve Bayes; LDA,
Fisher’s linear discriminant.

RNA sequence data. WGCNA is regarded as a cluster
or module for finding highly related genes and identifying
phenotypic modules [25]. However, this method also iden-
tifies differential genes individually and analyzes intercel-
lular interactions afterward.

miRNAs are a group of endogenous small non-coding
RNAs that regulate gene expressions by binding to untrans-
lated regions of target mRNAs [26] and are involved in
gene expressions in various biological phenomena, such
as homeostasis, development, proliferation, and apoptosis
[27,28]. In this paper, the interaction of miRNAs is hypoth-
esized and thought to jointly regulate kidney clear cell car-
cinoma. A machine learning-based classification method is
proposed to quantify the importance of each miRNA; thus,
an optimal miRNA combination (including miR-210, miR-
621, miR-140, etc.) is discovered from the TCGA database
as a statistical signature for diagnosis of KIRC.

2. Materials and Methods
2.1 Data

The miRNA expression profiles of KIRC used in this
study are obtained from the TCGA database. There are 611
samples, in which cancer and adjacent normal samples are
539 and 72, respectively. The miRNAs with zero variance
in expression are excluded and a set with 1343 miRNAs is
obtained. A normalization is made on each miRNA using
FPKM.

2.2 Finding Differential miRNAs Using Feature Selection
Feature selection is a common method to eliminate

redundant and irrelevant variables with the aim of reduc-
ing feature dimensionality and discovering a valid subset of
genes as a diagnostic biomarker to make data fitting simpler
and prediction more accurate [29,30].

The cause of KIRC is generally due to mutation of
some genes. However, the probability of mutation is small,
which means that only a small number of mutations in can-
cer and adjacent normal cells lead to differential expres-
sions and even cellular carcinogenesis. Therefore, we spec-
ulate that the number of the most differential miRNAs is
countable.

In addition, there are often multiple miRNAs that act
in combination in a biochemical reaction. That is, there are
single miRNAs that do not express differently between can-
cer and normal tissues, but two or more of these miRNAs
that together show differential expressions. In that case, the
miRNAs that have a difference in combination cannot be
found by conventional methods. To treat this situation, full
enumeration is considered. To discover the optimal miR-
NAs for discrimination between KIRC and normal sam-
ples, eachmiRNA tuple in each dimensional combination is
tried. For miRNA expression profiles, the number of miR-
NAs is usually much larger than the number of samples, so
the time complexity of the full permutation is O(n!), which
is too computationally intensive.
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Thus, a random miRNA selection way is considered.
Firstly, m miRNAs are randomly selected every time, and a
corresponding classification result such as accuracy is cal-
culated on the expression profiles corresponding to cancer
and normal tissues. If one of the n miRNAs is viewed to
be important for discrimination between KIRC and normal
samples, interference with the miRNA will significantly
impact the classification result.

We propose a method to quantify this impact. First of
all, 70% of the data set is randomly divided as a training
set. Classifiers such as logistic regression (LR), decision
tree classifier (DTC), support vector machine (SVM), k-
nearest-neighbor (KNN), multinomial naïve Bayes (MNB),
and Fisher’s linear discriminant (LDA) are trained by using
the Python package Scikit-learn [31]. Then, predictions are
made on the 30% of the left data. That is, the classification
accuracy Score1 is obtained. After that, a one-time permu-
tation on expressions of miRNA i is made. The classifiers
are then used tomake predictions on the processed data with
classification accuracy to be Score2. The importance of the
ith miRNA for the accurate classification of KIRC and ad-
jacent normal samples is calculated as follows,

impacti = Score1− Score2 (1)

where impacti is the importance score of the ith miRNA.
Due to the uneven distribution of positive and neg-

ative samples, the classification accuracy is modified and
expressed as follows,

Accuracy =
TP

TP+FN + TN
TN+FP

2
(2)

where FN, TP, FP and TN represent false negative, true pos-
itive, false positive and true negative, respectively. Positive
and negative samples refer to KIRC and normal tissues.

The above method is repeated for n rounds in order to
count as many miRNA combinations as possible. Then the
average importance scores corresponding to all the listed
miRNAs are obtained.

Considering the small sample size with unknown dis-
tribution, six classifiers (i.e., DTC, MNB, KNN, LDA, LR,
and SVM) are utilized for training and validation.

2.3 Clustering
Once the importance score of each miRNA is ob-

tained, how to select the important genes becomes a new
problem. If the importance score threshold is set manually,
subjective factors will be inevitably introduced. Here we
choose to use an unsupervised clustering approach to select
miRNAs according to the importance scores.

A clustering algorithm based on probability distribu-
tion was used in this study, which is implemented based
on the mixture module of the Python Scikit-learn package
[31]. It is assumed that the sample points can be divided

into k clusters, also known as k components, and each clus-
ter obeys a different Gaussian distribution. The probability
of each sample belonging to each distribution is calculated,
and the sample is classified into the cluster with the high-
est probability. Then, based on the expectation maximiza-
tion (EM) algorithm, the parameters of the Gaussian distri-
bution are updated after several iterations until the model
converges to a locally optimal solution.

Finally, the cluster with the highest importance scores
is used as the important feature subset. That is

p(X) =
k∑

i=1

αi ∗ p (X | µi,Σi) (3)

where k is the number of components. αi is the probability
that the sample point belongs to the ith Gaussian distribu-
tion, and p (Xµi, Σi) is the probability density function of
the ith Gaussian distribution, where µi is the mean vector
and Σi is the covariance matrix.

2.4 Ensemble
After clustering on the importance scores, important

feature subsets are obtained from different classifiers. Be-
cause the decision boundaries of these classifiers are differ-
ent, the obtained important feature subsets are different.

To obtain the optimal feature subset, an ensemble
strategy is proposed based on the idea of ensemble learning
to combine all important feature subsets. The simplest way
is to select the important feature subset by the best classi-
fier. But it may lead to model overfitting. The union among
these important feature subsets is calculated to get the opti-
mal feature subset.

The combination of the results from individual classi-
fiers can reduce the possibility of feature missed selection
caused by a large hypothesis space, reduce the learning al-
gorithm into local optimum, and thus improve the general-
ization effect of the model. It can also expand the hypothe-
sis space and learn better approximations.

Therefore, this strategy of training the classifiers indi-
vidually to find the important feature subsets and then com-
bination can find the optimal features that are closer to the
real important features and perform better on other data sets.

2.5 Evaluation
Evaluations are performed for the selected genes. One

is on the testing set, and the other is on the new data sets
built from the TCGA data set with only the selected fea-
tures. In addition, we made cross-validation to test the va-
lidity of the obtained significant genes.

First, the important feature subsets derived from six
different classifiers are evaluated. Each time, an important
feature subset and all genes are used to train the classifier
separately. We use the following evaluation metrics for ac-
curacy evaluation based on the confusion matrix, i.e., TP

3
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Fig. 2. Clustering results of miRNA important scores using Gaussian mixture clustering. (A) Clustering on gene importance
calculated by LR classifier. (B) Clustering on gene importance calculated byDTC classifier. (C) Clustering on gene importance calculated
by SVM classifier. (D) Clustering on gene importance calculated by KNN classifier. (E) Clustering on gene importance calculated by
MNB classifier. (F) Gene importance calculated by LDA classifier. Gene importance calculated by different classifiers has different
Gauss boundaries for clustering.

rate, FP rate, Precision, Recall, F1 measure, and the accu-
racy after balancing positive and negative samples, as are
expressed as follows,

TPrate =
TP

TP + FN
,

FPrate =
FP

FP + TN
,

Precision =
TP

TP + FP
,

Recall =
TP

TP + FN

F1measure =
2 ∗ precision ∗Recall

Precision+Recall
.

(4)

Second, the ensemble feature subset and the differen-
tial genes are evaluated. Three traditional differential anal-
ysis methods are used to search for the differential genes.
The first two are performed by the R package limma and
edgeR, and the last one is performed by a simple two-
sample t-test. The p-value and logFoldChange value of
each gene are calculated after the differential analysis to
screen out differential genes. The threshold for p-value is
set to 0.05, and the threshold for logFoldchange is calcu-
lated as follows,

logFCcutoff = | logFC|+ 2 ∗ σ(| logFC |). (5)

Then new data sets are built on the selected genes. The
same evaluation metrics for accuracy evaluation based on
the confusion matrix are used.

Apart from that, one 5-fold cross-validation is made to
verify the stability and reliability of the results. The TCGA
dataset is divided into five mutually exclusive subsets, and
the gene importance is calculated separately after multiple
training and testing. Five sets of selected genes are ob-
tained.

2.6 Validation
To validate the effectiveness of the obtained optimal

feature subset, independent testing sets of KIRC are se-
lected from the GEO database.

Combinations of any pair of miRNAs are enumerated
to see the effect of different combinations on the sample
grouping, and then all the important miRNAs are also con-
sidered as a combination.

Due to the high dimension of the data, it’s difficult to
observe the distribution. To see the effect of the optimal
feature subset on the sample grouping, the principal com-
ponent analysis method (PCA) is used. PCA retains most
of the effective information while reducing the number of
features. Here, only two principal components are finally
retained for data visualization.
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Fig. 3. Heatmap of the confusion matrix using all genes. (A) The confusion matrix of LR. (B) The confusion matrix of DTC. (C) The
confusion matrix of SVM. (D) The confusion matrix of KNN. (E) The confusion matrix of MNB. (F) The confusion matrix of LDA.

3. Result
In this paper, we analyzed the miRNA expression pro-

files of KIRC and assumed that only countable miRNAs
significantly influenced the classification results. Six clas-
sifiers were used to quantify the importance of eachmiRNA
separately using a premutation-based approach. And a
density-descent clustering method was performed to find
the important miRNAs in KIRC.

3.1 Feature Selection Results

The data were equally divided into halves, each of
which corresponded to the training set and testing set. In
the training set, 70% of the samples were randomly se-
lected to train the six classifiers and the remaining out-of-
bag samples were used to calculate the importance scores
of each miRNA according to Eqn. 1. The procedure was
repeated 700,000 times. The average importance score of
each miRNA was obtained, as shown in Fig. 1. It can be
seen that the miRNAs with high important scores account
for only a fraction of all the miRNAs, about 1%, with miR-
621, miR-210, and miR4456 ranking high in most of the
classifiers. Finding common miRNAs using different clas-
sificationmethods indicates the validity of our method. The
phenomenon that different miRNAs appear with high im-
portant scores indicates that sample distribution affects the
classification results according to different classifiers with
different classification boundaries.

3.2 Clustering Results

For miRNAs that are not involved in the cancer pro-
cess and are expressed at similar levels to non-cancerous

cells, they are not important in the prediction of KIRC. Ac-
cording to the previous hypothesis, only a small number
of variants of miRNAs cause KIRC. Therefore, there will
be a large number of miRNAs with low important scores.
In contrast, the important miRNAs are viewed as outliers.
This can be verified in Fig. 2, which shows the effectiveness
of the clustering method. The important genes are selected
based on the Gaussian boundaries presented by short blue
horizontal lines shown in Fig. 2.

3.3 Classification Results

To verify the validity of the found miRNAs, six clas-
sifiers were separately trained on the training data, and the
classification accuracies were calculated on the indepen-
dent test set. The classification results are shown in Ta-
ble 1. It can be seen that LR and LDA using all the miRNAs
for classification are more efficient than those using the se-
lected miRNAs. And the higher accuracy of LR also means
that there may be overfitting. However, DTC, SVM, KNN,
and MNB achieve better classification results considering
the selected miRNAs. Especially, there is no good hyper-
plane using SVM with all the miRNAs considered, while it
shows much better classification results under the selected
miRNAs. The corresponding confusion matrices are shown
in Figs. 3,4.

To compare the optimal feature subset with the differ-
ential genes found by traditional differential analysis meth-
ods, four new datasets were constructed and used for eval-
uation.

Volcano plots of the differential genes are shown in
Fig. 5. The differential genes are divided into up-regulated
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Fig. 4. Heatmap of confusion matrix using the gene subsets. (A) The confusion matrix of LR. (B) The confusion matrix of DTC. (C)
The confusion matrix of SVM. (D) The confusion matrix of KNN. (E) The confusion matrix of MNB. (F) The confusion matrix of LDA.
Python package seaborn was utilized to draw the heatmap.

Table 1. Classification results on the independent test set.
Gene sets TP rate FP rate Precision Recall F1 measure Balance accuracy

LR All 0.972 0 1 0.972 0.986 0.986
Subsets 0.861 0.007 0.939 0.861 0.899 0.927

DTC ALL 0.667 0.059 0.6 0.667 0.632 0.804
Subsets 0.778 0.048 0.683 0.778 0.727 0.865

SVM ALL 0 0 Nan 0 0.5 0.5
Subsets 0.661 0.033 0.71 0.611 0.657 0.789

KNN ALL 0.917 0.019 0.868 0.917 0.892 0.949
Subsets 0.806 0.04 0.707 0.806 0.753 0.949

MNB ALL 0.028 0.004 0.5 0.028 0.053 0.881
Subsets 0.833 0.074 0.6 0.833 0.698 0.88

LDA ALL 0.75 0.07 0.587 0.75 0.659 0.84
Subsets 0.472 0.044 0.586 0.472 0.523 0.714

Abbreviations: TP, true positive; FP, false positive; F1, F1-measure.

genes and down-regulated genes. Blue points in Fig. 5 rep-
resent down-regulated genes, and red points in Fig. 5 rep-
resent down-regulated genes. The top 10 differential genes
are labeled with gene names.

By making a comparison between the proposed
method with the prevailing feature selection methods such
as edgeR, limma, and t-test, the quantitative assessment
metrics of the classification results on the four data sets are
shown in Table 2, and the corresponding ROC curves and
AUCs are shown in Fig. 6.

From Table 2 we can see that the significant genes
found by this method achieved the same or even better clas-
sification results than traditional methods, using only 15
selected genes, which is much smaller than the number of
genes found by traditional differential analysis.

3.4 Validation Results
Each pair of important miRNAs was enumerated and

GSE independent testing sets GSE109368, GSE151423,
and GSE 151419 were used to verify the effectiveness of
each gene combination. After enumeration, it is found that
some pair of miR-210, miR-140 and miR-1270 are more ef-
fective in dividing the sample group as shown in Fig. 7.

All the important miRNAs were also treated as a com-
bination, the features were compressed into two dimensions
by PCA as shown in Fig. 8.

From Figs. 7,8, it can be found that the cancer samples
show some degree of separation from the normal samples,
which verifies the validity of the important miRNAs.
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Table 2. Classification results on the selected genes.
TP rate FP rate Precision Recall F1 measure Balance accuracy Number of features

ensemble 0.895 0.006 0.944 0.895 0.919 0.985 15
t-test 0.579 0 1 0.579 0.733 0.943 25
limma 0.895 0.012 0.895 0.895 0.895 0.965 55
edgeR 0.737 0 1 0.737 0.848 0.988 73

Fig. 5. Volcano plots of the differential genes. (A) The volcano plot of the differential genes searched by edgeR. (B) The volcano plot
of the differential genes searched by limma. (C) The volcano plot of the differential genes searched by t-test. R packages were used to
search for differential genes and draw corresponding volcano plots.

Fig. 6. ROC curves and AUCs. (A) ROC curves using edgeR searching for differential genes with AUC = 0.992. (B) ROC curves
using limma searching for differential genes with AUC = 0.995. (C) ROC curves using two-sample t-test searching for differential genes
with AUC = 0.985. (D) Receiver Operating Characteristic (ROC) curves using the ensemble method searching for important genes with
Area Under Curve (AUC) = 0.988.

Fig. 7. The distribution of sample points. (A) The sample distribution on the GSE109368 data set using miR-140 and miR-1270 as a
combination. (B) The sample distribution on the GSE109368 data set using miR-210 and miR-140 as a combination. (C) The sample
distribution on the GSE151423 data set using miR-210 and miR-1270 as a combination. (D) The sample distribution on the GSE151423
data set using miR-210 and miR-140 as a combination. Samples in red represent cancer groups and samples in blue represent normal
groups.

4. Discussion

It has been suggested that miR210 is associated with
the characteristics of gene expressions in the presence of
cellular hypoxia [32–34]. As to miR210, the overexpres-

sion in tumors is a direct consequence of reduced oxygen
tension in the microenvironment [35]. Moreover, the cel-
lular response to hypoxia is partly a transcriptional process
orchestrated through an oxygen detection mechanism cen-
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Fig. 8. The distribution of sample points using whole important genes. (A) The sample distribution on GSE109368 data set. (B)
The sample distribution on GSE151419 data set. (C) The sample distribution on GSE151423 data set. Samples in red represent cancer
groups and samples in black represent normal groups.

Fig. 9. KEGG Pathway of Renal cell carcinoma.

tered on the hypoxia-inducible factors (HIFs). Under con-
ditions of normal oxygen content, HIF targets it for protea-
somal destruction mediated by an E3 ubiquitin ligase con-
taining Von Hippel-Lindau (VHL) protein.

And a specific disease closely related to theHIF path-
way is KIRC, which is usually associated with the inactiva-
tion of the VHL tumor suppressor gene [36]. Mutations and
heterozygous deletions of the VHL gene have been found in
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57% and 98% of sporadic KIRC cases [37]. TheVHL tumor
suppressor gene product functions as an articulated subunit
of the E3 ubiquitin ligase complex, which targets hydroxy-
latedHIF-1α andHIF-2α for ubiquitination and subsequent
degradation by the 26S proteasome [38,39]. Given its close
relationship with HIF, it is not surprising that miR-210 is
specifically overexpressed in KIRC [40–42]. In addition,
circulating miR-210 levels are elevated in KIRC patients
compared to healthy controls [43].

Besides, eight genes such as HIF1A, VEGFA, and
TGFB1 were found to interact with miR-140 in the KEGG
Pathway of ‘Renal cell carcinoma’.

The eight genes are marked with yellow background
and red border in Fig. 9.

miR-140was also found to be associated with cell pro-
liferation, migration and invasion by in vitro experiments
[44]. In vivo knockdown of miR-140 in mice revealed sig-
nificant inhibition of renal cell carcinoma (RCC) tumor
growth. Moreover, by analyzing the pathway of miR-140,
it was found that this gene inhibited the expression ofKLF9
by binding to the 3′-UTR of KLF9, which could upregulate
the expression of KCNQ1 and thus reduce the growth and
metastasis of RCC.

The functions of the other miRNAs were obtained by
querying David’s tool, the results of which are shown in
Supplementary Material.

5. Conclusions
In this paper, we proposed a machine learning-based

miRNA importance calculation method to find several sub-
sets of miRNAs most associated with KIRC by analyzing
the miRNA expressions of KIRC. Traditional differential
analysis was used to find the differential genes. The clas-
sifier trained with the optimal feature subset, compared to
the former, had close or better classification accuracy in a
relatively small much feature dimension, which reflected
the superiority of this method. Results on the independent
testing set also verified the effectiveness of the found im-
portant miRNAs. The obtained important miRNAs were
investigated and miR-210 was found to be associated with
cellular hypoxia response andVHL tumor suppressor genes.
Besides, miR140 was also involved in the biochemical pro-
cesses of cell proliferation, migration and invasion. The
identified important miRNAs all played a role in key signal-
ing pathways for KIRC progression andmetastasis, and rep-
resented potential targets for KIRC therapy. SomemiRNAs
associated with KIRC (e.g., miR4456, miR1270, miR647
andmiR4664) but not documented in the literaturewere also
identified for further experimental validation.
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