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Abstract

The presence of protein aggregates is a hallmark of many neurodegenerative diseases, including Parkinson’s disease (PD), Alzheimer’s
disease (AD), and frontotemporal lobar degeneration (FTLD). Traditionally, each disease has been associated with the aggregation
of specific proteins, which serve as disease-specific biomarkers. For example, aggregates of α-synuclein (α-syn) are found in α-
synucleinopathies such as PD, dementia with Lewy bodies (DLB), and multiple system atrophy (MSA). Similarly, AD is characterized by
aggregates of amyloid-beta (Aβ) and tau proteins. However, it has been observed that these protein aggregates can also occur in other neu-
rodegenerative diseases, contributing to disease progression. For instance, α-syn aggregates have been detected in AD, Down syndrome,
Huntington’s disease, prion diseases, and various forms of FTLD. Similarly, Aβ aggregates have been found in conditions like DLB
and PD. Tau aggregates, in addition to being present in primary tauopathies, have been identified in prion diseases, α-synucleinopathies,
and cognitively healthy aged subjects. Finally, aggregates of TDP-43, typically associated with FTLD and amyotrophic lateral sclero-
sis (ALS), have been observed in AD, progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), MSA, DLB, and other
neurodegenerative diseases. These findings highlight the complexity of protein aggregation in neurodegeneration and suggest potential
interactions and common mechanisms underlying different diseases. A deeper understating of this complex scenario may eventually lead
to the identification of a better elucidation of the pathogenetic mechanisms of these devastating conditions and hopefully new therapeutic
stragegies.
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1. Introduction: Brain Protein Aggregates -
A Traditional View

Protein aggregation is a common feature of many neu-
rodegenerative diseases (NDs), including Parkinson’s dis-
ease (PD) and Alzheimer’s disease (AD). According to tra-
ditional view, each ND is characterized by aggregation of
one or two specific proteins, which are therefore considered
disease-specific biomarkers and their detection and charac-
teristic distribution pattern in the brain allow for a defini-
tive disease diagnosis. Prior to aggregating, these proteins
undergo conformational rearrangements which give them
a propensity to clump and form toxic species that can im-
pair brain functions. For instance, aggregates of aberrant
α-synuclein (α-syn) are found in a group of pathologies
referred to as α-synucleinopathies, which include, in ad-
dition to PD, also dementia with Lewy bodies (DLB) and
multiple system atrophy (MSA). The classification of these
conditions depends on the clinical presentation and the spa-
tiotemporal accumulation of pathological α-syn [1]. In PD,
aggregates of α-syn are found within neurons of the sub-
stantia nigra and the basal forebrain but also in the cor-

tex, olfactory bulb and limbic system [2,3]. These species
trigger the activation of glial cells and the release of pro-
inflammatory cytokines which can result in cell death [4].
In DLB, α-syn often deposits within neurons of the neo-
cortex, limbic system, brainstem and amygdala [5] while in
MSA α-syn preferentially aggregates in oligodendrocytes,
forming the typical glial cytoplasmic inclusions (GCIs) [6].
The involvement of α-syn in multiple disorders (PD, DLB
and MSA) has allowed for the demonstration that this pro-
tein might exists as “strains”, which are characterized by
different aberrant structures and toxic properties, similarly
towhat has beenwidely described for prion diseases [7–13].
Different strains of α-syn are also believed to be respon-
sible for the phenotypic heterogeneity of the same pathol-
ogy, as in the case of PD [14,15] and MSA (that can present
with parkinsonism (MSA-P) or cerebellar ataxia (MSA-C))
[16,17], although further studies are needed. Prion dis-
eases are caused by the misfolding of the cellular prion pro-
tein (PrPC) into a toxic species able to self-replicate named
prion (PrPSc) which accumulates in the brain. PrPSc can
adopt variable aberrant and toxic conformations that give
rise to different diseases or disease-phenotypes, including
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the sporadic Creutzfeldt-Jakob disease (sCJD) and the re-
cently discovered variably protease-sensitive prionopathy
(VPSPr) [13,18,19].

Aggregates of amyloid-beta (Aβ) and tau are the main
hallmarks of AD: Aβ forms extracellular plaques whose
deposition follows a spatiotemporal pathway beginning in
the neocortex and then spreading to the allocortex, basal
ganglia, midbrain, pons and cerebellum [20]; while tau
forms intraneuronal neurofibrillary tangles (NFTs) com-
posed of hyperphosphorylated protein which spread from
the transentorhinal region to the entorhinal region, hip-
pocampus, temporal neocortex and superior temporal neo-
cortex [20–22]. Aβ deposition precedes tau aggregation by
several years or decades and preclinical studies have shown
that Aβ is able to trigger the formation of NFTs, whichmore
closely correlate with cognitive decline [23–25]. Interest-
ingly, recent studies have suggested that the phenotypic het-
erogeneity of AD may be linked to the existence of various
Aβ strains capable to affect distinct brain regions, as ob-
served in the case of α-synucleinopathies [26–30]. Studies
with 18F-florbetapir positron emission tomography (PET)
imaging performed on healthy subjects showed Aβ depo-
sition in the cortex which increased with age and these
findings were in accord with postmortem analyses, which
showed an age-dependent increase of Aβ plaques in the
brain of healthy individuals [31–33].

Aggregates of tau, TDP-43 or FUS (FUsed in Sar-
coma protein) characterize a group of diseases known
as frontotemporal lobar degeneration (FTLD) that can
be classified in tauopathies, TDP-43 proteinopathies or
FUS proteinopathies, respectively. Tauopathies (40% of
FTLD cases) can be further divided in primary tauopathies
which include corticobasal degeneration (CBD), progres-
sive supranuclear palsy (PSP), primary age-related tauopa-
thy (PART), argyrophilic grain disease (AGD), tangle only
dementia (TOD) and Pick’s disease (PiD) [34]; or sec-
ondary tauopathies, where tau is not the unique patho-
logical feature, and include AD and chronic traumatic
encephalopathy (CTE) [35]. Primary and secondary
tauopathies are characterized by the accumulation of abnor-
mal tau protein in the form of neuropil threads, neurofibril-
lary tangles (NFTs) or tau-positive astrocytes [36–42]. The
tau protein is usually associated to microtubules in neuronal
cells and regulates their maintenance and shape as well as
the axonal transport. Tau can be found also in astrocytes
and oligodendrocytes. Once this protein undergoes aber-
rant conformational rearrangements, it aggregates most of
the time under hyper-phosphorylated forms. Interestingly,
the biochemical composition of tau which aggregates dif-
fer between diseases. For instance, PiD is characterized by
the presence of tau isoform containing three microtubule-
binding repeats (3R); while CBD, PSP and AGD show the
presence of tau with four microtubule-binding repeats (4R).
In the case of AD, the aggregates of tau are composed by
both 3R and 4R isoforms [43–45].

As previously mentioned forα-syn and Aβ, the patho-
genesis of tauopathies may involve the formation of dis-
tinct tau strains which can create unique patterns of neu-
ropathology for each disease [46]. TDP-43 proteinopathies
(45% of FTLD cases), include FTLD-TDP as well as amy-
otrophic lateral sclerosis (ALS) and limbic-predominant
age-related TDP-43 encephalopathy (LATE) which are in-
stead characterized by the presence of neuronal intranu-
clear and cytoplasmic inclusions of TDP-43, which is often
hyper-phosphorylated, N-terminally truncated and ubiqui-
tinated [47–54]. Interestingly, mutations in progranulin
protein (PGRN) cause FTD with TDP-43 pathology [55].
Aggregates of toxic C-terminal TDP-43 species are found
in the cytoplasm of neurons (in brain and spinal cord) of
more than 97% of amyotrophic lateral sclerosis (ALS) cases
and seems to impair neuronal proteostasis while promoting
progressive loss of motor function [56–60]. The 90% of
ALS are sporadic while approximately the 10% are caused
by mutations in superoxide dismutase 1 (SOD1), C9orf72,
fused in sarcoma (FUS) genes, or TAR DNA binding pro-
tein (TARDBP) [61]. In particular, there are several mu-
tations affecting the TARDBP protein in different regions:
N-terminal domain (e.g., D89E), RNA recognition motifs
(e.g., K145Q, D219E) and C-terminal region (e.g., Q331K,
M337V, Q343R, N345K, R361S, and N390D) [62].

Finally, FUS proteinopathies are the least common
subtype of FTLD (5% of FTLD cases) and are characterized
by the accumulation of FUS in neuronal cells [61,63,64].
The exact mechanisms throughwhichAβ, tau,α-syn, TDP-
43 undergo misfolding and acquire disease-specific struc-
tures are now being elucidated. In addition to genetic pro-
clivity to accumulate misfolded proteins, exposure to en-
vironmental toxins is now known to result in amino acid
misincorporation and subsequent protein misfolding [65–
67]. Certainly, these proteins are key players for the onset
and progression of NDs and their detection as aggregated
species in the brain is crucial for an accurate disease diagno-
sis. Through a prion-like mechanism, Aβ, tau, α-syn, TDP-
43 spread from cell to cell in the brain thus allowing the
propagation of pathology [68]. However, numerous stud-
ies have shown that some individuals show co-occurrence
of more than one ND. In particular, aggregates composed of
proteins which are not primarly involved in the pathologi-
cal process of each ND can be found in postmortem brains
(Fig. 1). These are considered secondary protein aggregates
and may influence the clinical and neuropathological fea-
tures of the NDs, although their role remain unknown. This
work provides an up-to-date review of the literature on the
presence of secondary aggregates in NDs.

2. Alpha-Synuclein Aggregates in
Non-α-Synucleinopathies

Aggregates of misfolded α-syn are commonly found
in the brains of patients with α-synucleinopathies, such as
PD, DLB and MSA [69]. However, several works con-
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Fig. 1. Schematic representation of the traditional (yellow boxes) and recent (green boxes) evidence regarding protein aggregates
in the central nervous system of patients with various neurodegenerative diseases. Histological stains show the typical morphological
features of α-synuclein (α-syn), amyloid-β (Aβ), prion (PrPSc), tau and TDP-43 aggregates found in the brain of patients with PD, AD,
CJD, AD and ALS, respectively. PD, Parkinson’s disease; AD, Alzheimer’s disease; CJD, Creutzfeldt-Jakob disease; ALS, amyotrophic
lateral sclerosis.
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firmed their presence, as secondary aggregates, in the brains
of patients with other neurodegenerative diseases, includ-
ing AD, Down syndrome (DS), Huntington’s disease (HD),
prion diseases, primary tauopathies (CBD and PSP), ALS,
FTLD, parkinsonism-dementia complex of Guam [70–72]
and neurodegeneration with brain iron accumulation type
1 [73,74]. The frequency of α-syn in most of these NDs
is high and is considered the rule rather than the excep-
tion. Regarding AD, α-syn deposits were found in al-
most 50% of postmortem brains [75–77]. These aggregates
were distributed in the neocortex, limbic system (being
the amydgala highly vulnerable to α-syn pathology [78])
and substantia nigra of patients with sporadic and famil-
ial (PSEN1, PSEN2 or APP gene mutations) forms of the
disease [75,76,79–84]; often colocalizing with tau [75,77,
80,82] and less frequently with Aβ aggregates [81,83,85].
Therefore, α-syn pathology often accompanies AD pathol-
ogy and, most importantly, it occurs in the brain of pa-
tients with specific clinical symptoms, including halluci-
nations, unexplained falls and extrapyramidal signs, con-
stituting the nosologic entity of dementia with Lewy bod-
ies (DLB) [5,21,75–77,79,80,82,86–90]. Remarkably, the
presence or absence of α-syn aggregates in AD may fur-
ther contribute to the phenotypic heterogeneity of the dis-
ease, making its clinical diagnosis even more challenging.
In the case of DS, α-syn aggregates were identified mainly
in the amygdala of more than 50% patients with behav-
ioral decline and concomitant AD pathology and were ab-
sent in DS patients who lacked AD pathology or with pre-
served cognitive functions [91–93]. Huntington’s disease
(HD) is an autosomal dominant inherited neurodegenera-
tive condition characterized by the presence of an abnor-
mal form of huntingtin (mHTT) protein which forms toxic
intraneuronal inclusions, leading to choreatic movements,
behavioral disturbances and dementia [94]. Aggregates of
α-syn colocalized with mHTT inclusion of HD patients, al-
though both proteins formed independent homomeric fila-
ments. Thus, mHTT and α-syn and can cross-talk, with the
latter being recruited as a mediator of toxicity in HD. In
particular, α-syn may promote oxidative stress, mitochon-
drial disfunctions and brain inflammation [95–101], which
are all implicated in disease pathogenesis [95,96,102–104].
In the case of prion diseases, α-syn aggregates were found
with low prevalence (9–23%) in the brains of patients with
sCJD and VPSPr [105]. The aggregates were observed in
different brain areas, including the substantia nigra, locus
coeruleus, dorsal motor nucleus of the vagus and cortical
neurons [106], brainstem and amygdala [107] or even in
glial cells of the striato-nigral-system [108]. They often
co-deposited with other amyloidogenic proteins, including
prion, Aβ and tau [105,109–113]. Notably, the presence
of copathology was associated with a prolonged survival in
patients with CJD [114]. Recent studies, performed under
extreme and artificial conditions, showed that aggregates of
α-syn can even cross-seed the aggregation of the prion pro-

tein, leading to the onset of prion diseases [115]. In the case
of tauopathies, few studies reported the presence of α-syn
aggregates in (1) CBD brains (sometimes in patients who
had longer survival) [116–119], (2) PSP brains (∼10–12%
and mainly distributed in substantia nigra, basal forebrain,
amygdala and frontal cortex) [120–124] and (3) a subgroup
of sporadic or genetic FTD brains, especially in cases with
concomitant motor neuron disease (FTD/ALS) [125–127].
α-syn aggregates were found to colocalize with SOD1 in
familial ALS and it was shown that α-syn could accelerate
SOD1 aggregation [128]. Moreover, α-syn aggregates de-
posited in astrocytes and Schwann cells in the spinal cords
and bulbar regions, with a morphology resembling that of
Lewy bodies found in PD [129]. The presence of α-syn ag-
gregates in ALS supports their contribution to motor neuron
disease pathology, as also observed in animal models. This
also rules out PD as incidental pathology [129–137]. Re-
markably, α-syn aggregates were described in 11–15% of
ALS cases with TDP-43 pathology [138,139] and several
works have shown that α-syn can directly interact with tau
[140–143] and TDP-43 [144,145]. In particular, emerging
evidence from preclinical models showed that α-syn and
TDP-43 can form hybrid fibrils whose toxic properties are
more severe compared to those of homotypic fibrils of α-
syn or TDP-43 [145].

Finally, aggregates of α-syn were detected in the brain
of cognitively healthy elderly subjects (∼9–10%) [120,146]
and these findings have allowed for the formulation of some
hypotheses about their meaning: (1) they are inert species,
(2) they represent common findings in normal ageing or
(3) they represent an asymptomatic pathology in subjects at
early disease stage [146–148]. The presence of α-syn ag-
gregates in the brains of non-α-synucleinopathies has the
potential to provide new insights into the complex neu-
ropathology underlying NDs.

3. Amyloid-Beta Aggregates in Non AD
Conditions

Aβ primarily occur in the brain of AD patients, but
they can also occur in some non-AD conditions. For in-
stance, Aβ deposition is present in the brains of nearly 30%
of cognitively normal older individuals, as well as in pa-
tients with mild cognitive impairment (MCI) and dementia.
In particular, neuropathological studies involving a small
cohort of elderly non-demented subjects showed the pres-
ence of numerous Aβ deposits in the temporal cortex and
large and round deposits in most cortical areas, similar to
what is observed in AD brains [149,150]. Even more in-
terestingly, the neuropathological analysis of the brain of
centenarians, revealed that the highest stages of Aβ pathol-
ogy were found in the brains of high performing subjects
[151,152]. Therefore, Aβ deposition may be a common
feature of brain aging andmay contribute to predict the cog-
nitive decline in some non-AD individuals [153]. The most
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conservative interpretation is, therefore, that these represent
early stages of AD pathology not (yet) inducing cognitive
impairment.

Aβ deposits were also found in the brain of individu-
als with DS who have an increased expression of the amy-
loid precursor protein (APP) gene located on chromosome
21. Trisomy 21 leads to a dose-dependent increase in APP
and Aβ production [154,155]. As a result, individuals with
DS develop Aβ deposits in their brains at young age, and
these deposits invariably lead to the development of AD
later in life. In fact, the majority of DS individuals be-
tween the ages of 50 and 60 have an increased risk of de-
veloping dementia due to AD [156,157]. PET data anal-
yses suggested that, similar to AD, Aβ deposits first oc-
cur in the striatum and gradually affect various cortical re-
gions (affecting the rostral prefrontal and cingulate-parietal
cortices) and finally the parahippocampal cortex, thalamus,
and amygdala [158,159]. Aggregates of Aβ were found
in the brains of some patients with DLB, suggesting that
Aβ could contribute to the cognitive decline and alterations
in attentive/executive and language functioning [160,161].
However, there is often an overlap between AD and DLB
pathologies, thus other proteins (e.g., tau) may contribute
to influence disease progression and dementia onset. Re-
cent findings have suggested that there may also be some
overlap between AD and PD. Specifically, some research
has found evidence of Aβ plaques in the brains of indi-
viduals with Parkinson’s disease, particularly in those who
have cognitive impairment or dementia (PDD) in addition
to their motor symptoms. In 2008, Kalaitzakis et al. [162],
in a cohort of 30 patients (16 PDD, 14 PD), found that Aβ
deposition was significantly more prevalent in the striatum
(which includes the caudate nucleus, putamen, and nucleus
accumbens) in PDD cases than in PD cases. One year later,
the same research group described that Aβ deposition in
the claustrum was associated with the occurrence of de-
mentia in PD and DLB patients. The physiological role of
the claustrum is mainly unknown, but it has been linked
to the presence of visual hallucinations in DLB and cog-
nitive impairment in AD [163]. Current evidence as post-
mortem, biochemical, and imaging analyses, increasingly
indicate the involvement of Aβ in PD, and recent studies
indicate a possible role of Aβ in gait disturbances and cog-
nitive impairment in PD patients [164]. However, the role
of Aβ in cognitive decline in PD requires further investiga-
tions [165,166]. Similarly, deposits of Aβ were described
in the brain of a patient with MSA-C and in some cases of
CBD and sCJD [167–173]. Even more intriguingly, altered
level of APP, the Aβ precursor, was found in the brain,
cerebrospinal fluid (CSF) and skin of patients with ALS
and is considered an early indicator of neuromuscular junc-
tion instability and denervation [174]. In vitro studies have
shown that Aβ interacts with SOD1 (an enzyme linked to
ALS) and this lead to an impaired SOD1 enzymatic activ-
ity. Thus, Aβ may modulate ALS progression [175]. An-

other condition characterized by the presence of Aβ is the
cerebral amyloid angiopathy (CAA), a cerebrovascular dis-
ease commonly observed among the elderly [176]. In this
case, the deposition of Aβ occurs mainly within cortical
and leptomeningeal arteries, capillaries and arterioles and
may cause spontaneous intracerebral hemorrhages (ICHs),
other neurologic symptoms or may remain asymptomatic
[177]. While CAA is characterized by amyloid deposition
in vasculature with posterior microbleeds and vascular cog-
nitive impairment, AD involves amyloid deposition in brain
parenchyma and also leads to cognitive impairment. CAA
is recognized as a leading cause of subarachnoid hemor-
rhage [178] and the co-occurrence of CAA and AD pathol-
ogy is often observed in the same brain, with a higher in-
cidence in symptomatic AD patients. However, no signifi-
cant correlation was found between the severity of AD and
CAA pathology [179,180]. Interestingly, CAA can be ob-
served in cognitively normal subjects who test positive for
Aβ on PET imaging [181]. This suggests that CAA may
occur independently of AD [180,182].

4. Tau Aggregates in the Brain of
Non-Primary Tauopathies

Aggregates of misfolded tau are commonly found
in the brains of patients with primary and secondary
tauopathies, including AD, CTE, CBD, PSP AGD, TOD,
PART and PiD. However, tau aggregates can be found also
in other neurodegenerative diseases. For instance, tau ag-
gregates could be observed in the brain of patients with
prion diseases, including cases of PrP cerebral amyloid
angiopathy, Gerstmann-Sträussler-Scheinker (GSS), fatal
familial insomnia (FFI), variant Creutzfeldt-Jakob disease
(vCJD) and VPSPr [183–185]. In sCJD the frequency of
tau deposition is not unusually high but it does not often re-
late to prion deposition [186]. However, in GSS tau depo-
sition was found to parallel PrP aggregation, with a cortical
distribution that can reach the deepest neuronal layers. This
specific pattern of tau deposition is mainly observed in GSS
cases with a stop-mutation in the PRNP gene at codons 145,
198 and 217 which are therefore characterized by a higher
degree of neuronal degeneration [187]. Tau deposits were
found in the brain of patients with α-synucleinopathies. In
particular, tau aggregates were found in dopaminergic neu-
rons of the nigrostriatal region in patients with PD, and
PD with dementia; while in the case of DLB, tau and α-
synuclein have been found to codeposit in the same neu-
ronal populations [188,189]. Interestingly, in DLB, there is
a frequent overlap among α-synuclein, tau, and β-amyloid
pathologies which supports the combined contribution of
each protein in disease onset and progression [190]. A few
reports have shown the presence of tau aggregates in the
brain of patients with MSAwith longer disease duration. In
these cases, tau and α-synuclein were found to co-occur in
neuronal and glial cytoplasmic inclusions (NCIs and GCIs,
respectively) [191]. In vitro studies have shown that, in
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some cases, tau enhances α-synuclein toxicity [192,193].
Tau aggregates were also observed in the astrocytes of a
subgroup of ALS cases with cognitive impairment [194].
However, tau aggregation often occurs in Western Pacific
variant of ALS in which ALS, parkinsonism, and demen-
tia co-occur. In this variant, tau-immunoreactive neuronal
inclusions with the morphology of neurofibrillary tangles
(NFTs) are found in the II and III layers of the frontal cortex
[195]. Remarkably, tau pathology is present in many cases
of CAA [196]. These findings provide evidence for a co-
hesive pathological mechanism in which the accumulation
of amyloidogenic peptides within the vasculature initiates
a complex sequence of pathological events, ultimately re-
sulting in the aggregation of tau and subsequent neurode-
generation [197]. Tau aggregates are also found in the
brain of patients with HD and mouse models of the dis-
ease [198,199]. Remarkably, unique expression patterns of
tau isoforms were described in the cortex and putamen of
individuals affected by HD [200]. Interestingly, the pres-
ence of an attenuated motor phenotype of HTT transgenic
mice with genetic tau reduction indicates a role of tau in HD
pathogenesis [201].

Even with the physiological aging, there is a nor-
mal phosphorylated-tau deposition in the brain [202]. The
PART, describes a group of conditions commonly observed
in the brains of aged subjects that are characterized by the
presence of neurofibrillary tangles (NFT) that are indistin-
guishable from those of AD, in the absence of Aβ plaques
[39]. PART represents a pathologic continuumwhich spans
from a condition of focal distribution of neurofibrillary
tangles (NFT) in cognitively normal aged individuals, to
pathological situations that include the tangle-predominant
senile dementia (TPSD), the TOD, the preferential devel-
opment of NFT without senile plaques, and the senile de-
mentia of the neurofibrillary tangle type (SD-NFT) [39].

5. TDP-43 Aggregates in Non TDP-43
Proteinopathies

TDP-43 is mainly localized in the nucleus and is in-
volved in RNA regulation, including transcription, splic-
ing and stabilization [203,204]. The protein can undergo
several post-translational modifications (e.g., hyperphos-
phorylation, cleavage, ubiquitination) which lead to its cy-
toplasmic aggregation [62,205]. TDP-43 inclusion bodies
are commonly observed in neurons and glial cells of pa-
tients with ALS, FTLD-TDP and LATE [62,206]. How-
ever, several studies showed that aggregates of TDP-43 oc-
curs in the brain of patients with other neurodegenerative
diseases as well as neurologically normal subjects. For in-
stance, TDP-43 pathology is present in up to 57% of AD
cases [207,208]. Interestingly, TDP-43 species were found
to colocalize with Aβ and tau aggregates andwere responsi-
ble for a more severe AD pathology, including greater brain
atrophy and memory loss [209]. TDP-43 deposition was
common in limbic predominant and typical AD subtypes

(67% and 59%, respectively), but less prevalent in the hip-
pocampal sparing subtype (21%) [210]. This suggests that
TDP-43 can either influence AD progression and clinical
features (representing a risk factor for developing dementia)
or be the results of neuropathological changes occurring in
advanced AD. Regardless of the AD subtypes, the presence
of TDP-43 aggregates always correlate with worse clinical
progression. The deposition of TDP-43 follows a specific
staging scheme which involves: amygdala (stage 1); en-
thorhinal cortex and subiculum of the hippocampus (stage
2); dentate gyrus of the hippocampus and occipitotempo-
ral cortex (stage 3); insular cortex, basal forebrain, infe-
rior temporal cortex and ventral striatum (stage 4); brain-
stem nuclei (stage 5) and basal ganglia and middle frontal
cortex (stage 6) [211]. In vitro and in vivo studies have
shown that oligomers of Aβ or tau are able to cross-seed
the polymerization of TDP-43 into pathological aggregates
[212] and TDP-43 may regulate Aβ clearance [208,213].
Granulovacuolar degeneration (GVD)may occur as AD co-
pathology and is characterized by the accumulation of TDP-
43 along with other proteins associated with AD [214].

In the case of PSP, a study published in 2016 showed
that out of 945 cases of pathologically confirmed cases,
56 (∼7%) of them were found to have TDP-43 aggregates
mainly affecting the amygdala or hippocampus, or both. In-
terestingly, the progression pattern of TDP-43 aggregates
was very similar to that observed in AD, more than that typ-
ically observed in ALS or FTLD-TDP [215]. Amore recent
study showed that 10 out of 26 spinal cord samples of PSP
patients contained aggregates of TDP-43 (38%), mainly in
motor neurons [216]. The aggregates were composed of the
insoluble C-terminal part of TDP-43.

Compared to PSP, CBD patients are more vulnera-
ble to TDP-43 pathology. In particular, in a study pub-
lished in 2018, of the 187 CBD cases the 45% showed
TDP-43 aggregates, often involving brainstem, pons, sub-
thalamic nucleus, posterior hypothalamus, superior frontal
gyrus and cingulate gyrus [217]. A more recent study con-
firmed the presence of TDP-43 aggregates in spinal cord
samples of CBD patients [216]. In contrast, previous stud-
ies reported lower coincidental deposition of TDP-43 in
CBD cases, spanning from 9% to 24%, but this discrepancy
was associated with differences in the screening methods
used [138,218,219]. Interestingly, the higher prevalence
of TDP-43 pathology in CBD than PSP patients can help
to distinguish these diseases, especially in patients present-
ing with PSP syndrome. Indeed, TDP-43 pathology signif-
icantly influences CBD clinical features. For instance, the
presence of TDP-43 aggregates in the midbrain tectum of
CBD patients may lead to a clinical PSP presentation. Un-
like AD, the amygdala of CBD cases was less affected by
TDP-43 aggregation, while the midbrain, subthalamic nu-
cleus and pons were found to be themost vulnerable regions
[217].
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TDP-43 aggregates with oval, round and ellipsoid
shapes were found to colocalize with hungtingtin (HTT) in-
clusions in cortex and basal ganglia of HD cases [220,221].
Both TDP-43 and HTT proteins are involved in transcrip-
tional regulation and similar to TDP-43 [222], HTT inclu-
sions occur in cytoplasm and nucleus [220].

TDP-43 copathology has been reported also in the
brain of patients with MSA, PD and DLB. In particular,
TDP-43 aggregates occur infrequently inMSA (∼7% of the
cases analyzed) and mainly localize in the medial temporal
lobe of aged patients. TDP-43 aggregates were found also
to colocalize withα-synuclein in GCIs indicating a possible
interation between the two proteins [223]. Similarly, TDP-
43 inclusions were reported in the 7% of PD cases and in
the 19% of PD cases with dementia [224]. Conversely, in
the context of DLB, TDP-43 inclusions are observed with
divergent prevalence spanning from 0% to 56% [224–227]
and their distribution mainly affect the amygdala and hip-
pocampal structures, as observed in AD. Interestingly, cin-
gulate and insular cortices were not involved, unlike AD
[228]. In vitro studies have shown that the co-occurrence of
TDP-43 and α-synuclein lead to a more severe α-synuclein
pathology [229,230], likely because TDP-43 is able to en-
hance the toxicity of α-synuclein [231].

Aggregates of TDP-43 were also observed in the brain
of patients with AGD, especially in cases with severe grain
pathology. This study suggests that abnormal accumula-
tion of TDP-43 may be involved in AGD pathological pro-
cess and disease progression. However these findings are
still controversial since other studies postulated that TDP-
43 pathology does not significantly impact the clinical pre-
sentation of AGD [232]. Interestingly, in most AGD cases,
TDP-43 pathology was consistent with LATE [233].

Finally, TDP-43 aggregates were found in the brain
of aged cognitively normal individuals with an incidence
ranging between 11% and 36% and increasing with age
[225,234,235], suggesting that this phenomenon may be
age-dependent but its interpretation is still controversial.

6. Discussion
The concept of identifying a specific neurodegenera-

tive disease based on the accumulation of a particular pro-
tein in the brain (such as tau, TDP43, α-syn) is appealing
and has been crucial for molecular classification. However,
this idea is becoming increasingly challenged by the fact
that, more often than not, multiple proteins aggregate in a
single brain, leading to copathologies that stratify upon the
original disease [236]. In some cases, it may even be un-
clear which condition was the original one.

We have presented a detailed list of protein aggre-
gates that have been reported to associate with the main
proteinopathy in different neurodegenerative diseases. It is
therefore clear that the occurrence of copathologies repre-
sents almost the rule rather than the exceptions in this field.

This may represent the molecular basis of the extreme

phenotypic variability that has been extensively described
for example in Alzheimer disease. AD may coexist with
α-synuclein pathology in DLB, with TDP-43 pathology in
LATE. The coexistence of AD pathology and PARTmay be
postulated andwould be impossible to resolve as tau pathol-
ogy of AD and PART are not distinguishable.

Our knowledge on this field is limited by the difficul-
ties of performing large-scale post mortem neuropatholog-
ical studies that are the only way to obtain detailed descrip-
tion of protein-aggregates topography and burden.

7. Conclusions
This review highlights the complexity of protein ag-

gregation in neurodegeneration and suggests potential com-
mon mechanisms and interactions underlying different dis-
eases. The traditional view of each neurodegenerative dis-
ease (ND) being exclusively associated with a single pro-
tein aggregate is being challenged, and the coexistence of
multiple proteinopathies may contribute to the phenotypic
heterogeneity observed in these conditions. In this sce-
nario, achieving a precise understanding of the patholog-
ical processes occurring during a ND in a living patient
can be accomplished through specific biomarkers tailored
to each proteinopathy. Over the past few years, numerous
methods have been developed to analyze promising periph-
eral biomarkers, such as seed amplification assays, which
have the potential to enhance the clinical diagnosis of neu-
rodegenerative diseases (NDs). However, considering the
complexity of NDs, it is likely that multiple approaches
would be necessary to identify novel and reliable biomark-
ers for a paradigm shift towards a more precise biological-
based diagnosis which overcomes the limits of clinical in-
terpretation. Further research in this field will likely lead
to more comprehensive and accurate disease classifications
and therapeutic approaches aimed at targeting the shared
pathological mechanisms across multiple neurodegenera-
tive disorders. Ultimately, the hope is that these efforts will
pave the way for improved treatments and better outcomes
for patients affected by these devastating diseases.
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