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Abstract

Background: Due to antibiotic abuse, the problem of bacterial resistance is becoming increasingly serious, and rapid detection of bacterial
resistance has become an urgent issue. Because under the action of antibiotics, different active bacteria have different metabolism of
heavy water, antibiotic resistance of bacteria can be identified according to the existence of a C-D peak in the 2030–2400 cm−1 range in
the Raman spectrum. Methods: To ensure data veracity, a large number of bacteria need to be detected, however, due to the limitation of
the field of view of the high magnification objective, the number of single cells in a single field of view is very small. By combining an
image stitching algorithm, image recognition algorithm, and processing of Raman spectrum and peak-seeking algorithm, can identify and
locate single cells in multiple fields of view at one time and can discriminate whether they are Antimicrobial-resistant bacteria. Results:
In experiments 1 and 2, 2706 bacteria in 9× 11 fields of view and 2048 bacteria in 11× 11 fields of view were detected. Results showed
that in experiment 1, there are 1137 antibiotic-resistant bacteria, accounting for 42%, and 1569 sensitive bacteria, accounting for 58%. In
experiment 2, there are 1087 antibiotic-resistant bacteria, accounting for 53%, and 961 sensitive bacteria, accounting for 47%. It showed
excellent performance in terms of speed and recognition accuracy as compared to traditional manual detection approaches. And solves
the problems of low accuracy of data, a large number of manual experiments, and low efficiency due to the small number of single cells
in the high magnification field of view and different peak-seeking parameters of different Raman spectra. Conclusions: The detection
and analysis method of bacterial Raman spectra based on image stitching can be used for unattended, automatic, rapid and accurate
detection of single cells at high magnification with multiple fields of view. With the characteristics of automatic, high-throughput, rapid,
and accurate identification, it can be used as an unattended, universal and non-invasive means to measure antibiotic-resistant bacteria to
screen for effective antibiotics, which is of great importance for studying the persistence and spread of antibiotics in bacterial pathogens.
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1. Introduction

The first discovery of antibiotics was in 1982, which
was an outstanding milestone in the history of antibiotic de-
velopment. However, the overuse of antibiotics has pro-
duced bacteria resistant to multiple antibiotics [1,2]. The
emergence of antibiotic resistance in bacteria has caused
a great deal of public health concern [3]. An analysis of
the global burden of antimicrobial resistance found that in
2019, resistant bacteria were responsible for 4.95 million
deaths, of which 1.25million were directly due to resistance
[4]. Human health is at great risk due to the massive spread
of antibiotic resistance [5,6]. Therefore, it is necessary to
obtain an ultrasensitive and rapid way to detect bacterial an-
tibiotic resistance [7–9], which is of great significance for
protecting human health.

In 1928, Indian scientist C.V. Raman discovered the
Raman scattering effect. Since the molecular vibrations of
different substances are different, the Raman spectrome-

ter can absorb Raman scattered light to form a spectrum,
thereby providing the “fingerprint” of the substance, that
is, analyzing the biological information of the substance
through the Raman spectroscopy system [10]. In contrast
to traditional single-cell analysis methods, Raman spec-
troscopy has the characteristics of using less sample, rapid
analysis, and no injury to cells [11,12]. Using single-cell
Raman spectroscopy to detect the vibrational modes of
biomolecules in cells can reflect biochemical characteris-
tics or phenotypes at the single-cell level. Cells exhibit
characteristic Raman spectral shifts due to the replacement
of isotope atoms with molecules of matter [6]. Detection
of single-cell activity is key to the study of cellular antibi-
otic resistance. Raman spectroscopy now has proven ap-
plications in the fields such as microbial classification and
analysis of cellular drug resistance [13,14]. In recent years,
the heavy water (D2O) labeling method has been proposed
to substitute traditional isotopic methods for the detection
of single-cell activity [15]. The incorporation of heavy
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water allows the identification of active cells in the sam-
ple while avoiding biases due to the introduction of car-
bon or nitrogen. Cells containing C-D bonds display dis-
tinguishable Raman bands (2030–2400 cm−1), shifted ap-
proximately 3000 cm−1 from C-H vibrations that can serve
as unique biomarkers of the metabolic activity of individ-
ual cells, while under the action of antibiotics to inhibit the
metabolism of cells, susceptible bacteria will not display
this band [6]. Antibiotic-resistant bacteria will continue to
metabolize deuterium in heavy water under the action of
antibiotics. Microscopic Raman spectroscopy can detect
biomacromolecules containing carbon-deuterium chemical
bonds synthesized in cells after bacteria metabolize deu-
terium, thus enabling culture-independent rapid antibiotic
sensitivity detection at the single-cell level [16,17]. There-
fore, single-cell D2O-Raman provides a good approach to
combat antibiotic resistance by revealing the metabolic ac-
tivity of metabolically active cells to antibiotics, regardless
of their culture capacity [18].

To avoid contingency, the more bacterial Raman spec-
tra analyzed when measuring antibiotic-resistant bacteria,
the more accurate and reliable the experimental conclu-
sions. The method researched in this paper focuses on
single-cell Raman spectra. However, after a certain dilu-
tion, there are still exist impurities and cluster phenomena
in microbial samples. Since the traditional Raman acquisi-
tion method scans through small fields of view one by one
and there are impurities, cluster phenomena, and too few
single cells in a single small field of view, it is necessary
to manually screen the single cell in a single field of view
and it is not feasible to automate the acquisition of a large
number of bacterial Raman spectra. Bacteria at the edge of
the small field of view by the camera are often segmented
by the field of view. Resulting in the same bacterium be-
ing scanned up to four times, or even removed as impurities
because the segmented area is too small, which can lead to
loss of bacteria or repeated measurement of a certain bac-
terium. When each field of view is collected, the position
of the bacteria cannot be automatically positioned, and only
by manual selection. The traditional method [19] can only
scan a single field of view to identify bacteria, and it is nec-
essary to manually select the bacteria to be tested. If there
are too many fields of view, it will increase the volume of
the experiment, the operation is cumbersome, and the ef-
ficiency will be reduced. In addition, the existing Raman
spectrum preprocessing methods mainly include two func-
tions: filtering and baseline correction. Since each parame-
ter in the algorithm has different effects on performance, the
parameters need to be adjusted manually. After the Raman
spectrum is collected, the traditional peak-seeking method
is to find the peak manually or through third-party software,
which cannot realize the whole automated process.

In this paper, we used the single-cell Raman heavy
water isotope labeling technology and introduced an image
stitching algorithm and automatic recognition algorithm,

which can automatically calculate the number of fields to be
spliced based on the set number of single cells, effectively
avoiding redundant splicing and improving the efficiency
of splicing and recognition, so as to realize fully automated
image stitching and single cell recognition. Moreover, in
the peak-seeking part of the Raman spectrum, the adap-
tive iteratively reweighted Penalized Least Squares (air-
PLS) algorithm and the peak-finding algorithm are added
to achieve precise positioning of the Raman spectrum fin-
gerprint, as well as rapid identification of the Raman spec-
trum within the range of 2030–2400 cm−1 whether there
is a C-D peak, realized the fully automated analysis of the
Raman spectrum of all bacteria in the sample. The research
method in this article has achieved high-throughput identi-
fication of single cells and the acquisition of Raman spectra,
making the experimental results more reliable and achiev-
ing unattended automatic identification process of bacterial
antimicrobial resistance.

2. Materials and Methods
2.1 Sample Preparation

Two pathogenic bacteria were selected for this study,
including Klebsiella pneumoniae and Staphylococcus au-
reus. Among them, Klebsiella pneumoniae included
meropenem-resistant strains (minimum inhibitory concen-
tration (MIC) = 8) and sensitive strains, and Staphylococcus
aureus was a sensitive strain.

2.1.1 Microbial Cultivation
Configure Luria-Bertani (LB) liquid medium with

a 30% concentration of heavy water (Sigma-Aldrich).
The Klebsiella pneumoniae resistant strains and Klebsiella
pneumoniae sensitive strains were cultured in a 30% heavy
water medium, in which the antibiotic meropenem was
added at a concentration of 8 µg/µL and cultured overnight
at 37 °C. Staphylococcus aureus was cultured using LB
medium and culture at 37 °C overnight.

2.1.2 Sample Handling
¬ Take 1 mL each of Klebsiella pneumoniae and

Staphylococcus aureus cultured overnight, and centrifuge
at 9000 rpm for 2 min to collect the bacterial sediment, and
then use sterile water to wash the bacterial sediment three
times, each time at 9000 rpm for 2 min, and finally dis-
solve the bacterial sediment in 1 mL of sterile water, shake
and mix well. Take 100 µL of two groups of samples and
shake and mix to prepare a mixed sample. 2 µL of the pure
samples of Klebsiella pneumoniae and Staphylococcus au-
reus and the mixed samples of the two groups were spotted
on the Raman chip (Champion Optics, Changchun, Jilin,
China), respectively, and air-dried for Raman detection.

 Take 1 mL each of Klebsiella pneumoniae resistant
strains andKlebsiella pneumoniae sensitive strains cultured
overnight, the treatment conditions are the same as above,
and the mixed sample is prepared. 2 µL of the pure sam-
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Fig. 1. Multiple fields of view image stitching flowchart.

ples of Klebsiella pneumoniae resistant strains and Kleb-
siella pneumoniae sensitive strains and the mixed samples
of the two groups were spotted on the Raman chip, respec-
tively, and air-dried for Raman detection.

2.2 Image Stitching
The purpose of image stitching is to automatically cal-

culate the number of fields of view needed by scanning
small fields of view with the number of bacteria entered
by the user, and to stitch these overlapping small field of
view images into one multiple fields of view image to ob-
tain a panoramic image with enough bacteria. Image stitch-
ing mainly includes four stages: image identification, im-
age registration, global optimization, and image blending.
To realize the automatic calculation of the number of vi-
sual fields to be spliced to improve efficiency, the method
adopted in this paper is to calculate the final number of vi-
sual fields to be spliced by the number of bacteria to be
tested input by the user. The flow chart of image stitching
is shown in Fig. 1.

2.2.1 Image Identification
In order to automatically calculate the number of

stitched images, image recognition is performed at the same
time as the acquisition of small field of view images. The
number of identified bacteria in the unoverlapped area of
the acquired image is accumulated and compared with the
number of bacteria that the user has set to be detected to de-
termine whether to continue acquiring images. To ensure
the number of bacteria after splicing, if the accumulated
bacteria do not reach the user-set number after scanning
a certain line, all bacteria in the next line will be directly
scanned.

Filtering and binarization of the acquired small-field
images, use the FindContours() function of the OpenCV
library to roughly calculate the number of single cells based
on the size of the contours found. nidenotes the number of
single cells identified in the unoverlapped area of the i-th
small-field image acquired, ndenotes the number of single
cells that the user wants to detect. Stop capturing images
when

∑
ni ≥ n.

2.2.2 Image Registration
Finding the spatial mapping link between the pixels

of one picture and the pixels of another image and aligning
them spatially with the least amount of error is known as im-
age registration. To determine the offset between each field
of view, a phase-correlation method is used. The phase cor-
relation technology is based on the Fourier transform search
concept. The offset is determined using the cross-power
spectrum when there is just a translation between the two
pictures. The position of the largest peak in the cross-power
spectrum is the relative translation of the two images [20–
23].

Let f1 (x, y) and f2 (x, y) be two images, they have
offsets in both the x- and y-axes, as shown in Fig. 2A. f1and
f2 are related by the following transformation:

f2(x, y) = f1 (x− x0, y − y0) (1)

Taking the Fourier transform of both yields the follow-
ing connection, according to the shift theorem:

F2(u, v) = F1(u, v) ∗ e−i∗2π∗(u∗x0+v∗y0) (2)

The following is the definition of the cross-power
spectrum between f1 and f2:

R =
F1(u, v) ∗ F∗2(u, v)
|F1(u, v) ∗ F∗2(u, v)|

= e−i∗2π∗(u∗x0+v∗y0) (3)

* Denotes complicated conjugation. Applying the in-
verse Fourier transform to formula (3) yields the Dirac
function (impulse function) r = F−1{R}, as illustrated in
Fig. 2B. This function has a clear, sharp peak at the offset
point. This function has a clear, sharp peak at the offset
point, while the value at other locations is very near zero.
By checking for the pulse function’s peak coordinates, the
offset may be discovered:
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Fig. 2. Schematic diagram of fusion of two images. (A) Input two images with overlapping areas. (B) The impulse function picture
was computed from the two photographs. (C) Direct stitching. Stitching seams frequently show up in panoramic stitched photos because
of the associated changes in ambient light and cameras. (D) Pixel-level blending. Following pixel-level fusion processing, the stitching
seams can be efficiently eliminated.

(∆x,∆y) =

(
1

2

)
center(x, y)− argmax

(x,y)

{r} (4)

2.2.3 Global Optimization
Global optimization is necessary to filter out any

paired registrations that do not fit into the remainder of
the connection network, identify the consistency across all
pairs, and decrease errors since there are inconsistencies be-
tween the computed image offsets [24]. Fit the displace-
ment connection of the other fields of view concerning the
reference field of view using the least squares approach
[25]. There is a set of transformations P = (P⃗MN: M, N∈ V)
where V is the set of all tiles, and each tile P⃗MN translates
tile M to overlapping tile N, increasing pairwise alignment
quality to the greatest extent possible. Given that F∈ V is
the defined public reference horizon, the optimal configu-
ration is defined as QVF = {q⃗MF : M, F ∈ V }, which
satisfies the following conditions:

arg min
QV F

∑
M∈V \{F}

(∑
N∈V \{M}

∥∥∥q⃗NF − q⃗MF − P⃗MN

∥∥∥2
)

(5)

2.2.4 Image Blending
In general, the overlapping portions will exhibit vari-

ances in light and dark intensity and degree of distortion
due to the difference in sample time and sampling angle be-
tween the two pictures, and there will unavoidably be seams

along the edge of the stitching. Therefore, it is necessary to
add an illumination compensation algorithm to remove dark
corners from the image: divide an image into M × N small
blocks, calculate the average gray level of each small block,
obtain the brightness matrix A of the small block, subtract
the average gray level of the image from A, and obtain the
average gray level of the small block Brightness difference
matrix B. Through interpolation, matrix B is interpolated to
matrix C with the same size as the original image, and the
corrected image is obtained after subtracting matrix C from
the gray value of the original image [26].

Above all, it is required to apply a smooth transition
fusion procedure to the image to make the spliced image
appear to have no seams [24,27–29]. Linear fusion of the
pixels in the overlapped area is the fusion technique em-
ployed in this work (Fig. 2C). By using linear blending, the
weight of the pixels in the overlapped region is determined
using the contribution block Ti’s weighting factor at each
point [30]. The closer the pixel li in the overlapping region
is to the image boundary, the less it contributes to the over-
all intensity, dim refers to the dimension, representing the
horizontal direction and the vertical direction. li,dimmeans
that the coordinates of the pixel are extracted into two com-
ponents in the horizontal direction and the vertical direc-
tion. Similarly, Ti,dimrepresents the length and width of
the image block as two components in the horizontal di-
rection and vertical direction, so that the shortest distance
between li and the horizontal boundary and vertical bound-
ary of the image can be calculated respectively. The final
fusion effect is shown in Fig. 2D.
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The following formula defines the separation between
each pixel and the picture border:

dmini,dim = min (li,dim, size (Ti,dim − li,dim)) (6)

Ti is a block of images. This pixel is simultaneously
located in the region where n fields of view overlap. Initial
weighting factor v(T i) =

∏
dim dmin

i,dim/
∑n

i

∏
dim dmin

i,dim,
the following is the final weight w(Ti)formula, the param-
eter αcontrols how the overlapping sections are blended:

w (Ti) =
(∑

j
v
(
Tj
)
−

∑
k ̸=i

v (Tk)
)α

and
∑

i
w (Ti) = 1 (7)

2.3 Identification and Localization of Bacteria

There are 6 steps to identify and locate single cells and
excluded the impurities and cluster phenomena. Fig. 3E, F
in the image after stitching scanning areas: (1) Preprocess
the input image: The colorful image should be transformed
into a gray image; use a filter to reduce noise on the gray
image (Fig. 3A). (2) The gray image reduced noise should
be transformed into multiple binary images by increasing
from the minimum threshold to the maximum threshold by
threshold step. Fig. 3B shows one of the binary images.
(3) Use the FindContours() function of the OpenCV library
(Open Source Computer Vision Library) [31] to detect the
blobs of the binary images (Fig. 3C) [32]. (4) The blob cen-
ter coordinates of binary images are grouped by the mini-
mum distance between connected components. From each
group, estimate the final center of the blobs and their radius,
and return the location and area of the points (Fig. 3D). (5)
Filter the returned blobs with the following characteristics:
Area; roundness calculated by C = 4ΠS

P 2 (C approaches 1,
the blob is perfectly circular; C approaches 0, the blob is
a polygon close to a straight line; C is between 0.75~0.85,
the blob is an equilateral polygon); eccentricity calculated
by E2 + I2 = 1 (I approaches 1, the blob is perfectly
circular; I approaches 0, the blob is a polygon close to a
straight line; I is between 0~1, the blob is an ellipse); con-
vexity indicates whether the geometry is a convex polygon
or a concave polygon calculated by V = S

H (V is between
0~1; V >0.5, blob approaches a circular). We number the
identified bacteria to quickly and accurately locate them and
provide assistance in verifying their Raman spectra if nec-
essary. Fig. 3E,F shows the screening of single cells in a
small field of viewwith excessive cluster phenomena and in
a small field of view with too few single cells, respectively.
Impurities and cluster phenomena are excluded. Due to the
obvious difference between the peak position of the Raman
spectrum of the biological sample and the peak position of
the cluster phenomenon, therefore, impurities and cluster
phenomena are excluded (Supplementary Figs. 1,2).

By analyzing the antibiotic resistance of 2530 sensi-

tive bacteria (Staphylococcus aureus) and 2224 resistant
bacteria (Klebsiella pneumoniae) in experiment 1, respec-
tively (Table 1), we evaluated the accuracy of identifying
bacterial resistance (in%) derived from the ratio of the num-
ber of bacteria with correct identification of resistance to the
total number of bacteria detected.

2.4 Automatic Collection of Raman Spectrum
Raman Spectra from microorganisms were acquired

with the confocal Raman spectrometer HOOKE R300
(Hooke Instrument Ltd., Changchun, Jilin, China) and
HOOKE P300 (Hooke Instrument Ltd., Changchun, Jilin,
China) for experiment 1 and experiment 2, respectively.
Diffraction gratings with groove densities of 600 g/mm
(spectral resolutions of 3–4 cm−1) and a charge coupled
device (CCD) camera (1340 × 100 pixel, PIXIS 100B,
Princeton Instrument (PI)) are used for the field-by-field
automatic scanning. The 100× objective lenses generate a
diffraction-limited spot size, ~1 µm in diameter. The scan-
ning wave number range is 340–3750 cm− 1 (600 g/mm
diffraction grating).

Identify and locate single cells on multiple fields of
view image after stitching 9 × 11 and 11 × 11 scanning
areas for experiment 1 and experiment 2, respectively, the
coordinates of center points of the single cells were com-
municated to the motorized stage, then, laser emitted from
a solid-state laser (08-DPL, Cobolt, Sweden) with a wave-
length of 532 nm was focused on the bacterial centroid at 5
mw/3 s by moving the motorized stage to excite the Raman
signal. Finally, the Raman Spectra of bacteria are obtained.
We collected 2706 and 2048 Raman Spectra for experiment
1 and experiment 2, respectively.

2.5 Raman Spectra Processing and Peak Searching
In order to reduce the initial Raman Spectrum burr

caused by signal jitter and other factors, the Savitzky-Golay
(SG) filtering method [33,34] is used to wight filter the Ra-
man Spectrum to obtain smooth signal change information
(Fig. 4A).

To eliminate the background noise, we calibrate the
baseline of the smoothed Raman Spectrum using an adap-
tive iteratively reweighted Penalized Least Squares (air-
PLS) algorithm [35,36] (Fig. 4A). Adaptive iteratively
reweighted Penalized Least Squares (airPLS) algorithm
doesn’t require any user intervention and prior information,
such as detected peaks. It iteratively changes weights of
sum squares errors (SSE) between the fitted baseline and
original signals, and the weights of SSE are obtained adap-
tively using previously fitted baseline and original signals.
This baseline estimator is fast and flexible in fitting the
baseline [37].

Automatic peaking of Raman spectra using Persis-
tence1D to extract [38], pair, and sorted local minima and
local maxima according to their persistence (Fig. 4B). Scan
and save the Raman spectrum of each bacterium in the sam-
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Fig. 3. Schematic diagram of image recognition. (A) Pre-processed gray image. (B) One of the binary images. (C) Use the Find-
Contours() function to detect the contours of (B). (D) The contours detected in multiple binary images are grouped according to the
coordinates of their center points. (E) Screening single cells in a small field of view with excessive cluster phenomena. (F) Screening
single cells in a small field of view with too few single cells.

ple, then analyze antibiotic resistance by Automatic peak-
ing Raman Spectroscopy. Therefore, a completely auto-
mated process is realized.

3. Results and Discussion
3.1 Stitching Small Field of View Images

For experiment 1, the number of bacteria set by the
user is 2500, and the actual number of collected bacteria is
2706. 9 × 11 scanning areas of 118.5 × 79 µm under 100
× objective lenses (Nikon, Tokyo, Japan) collected by Ra-

man spectrometer HOOKE R300 (Hooke Instrument Ltd.,
China) were stitched. Each 118.5 × 79 µm scanning area
overlaps its adjacent scanning areas by 20%. Fig. 5A shows
the 880.6 × 711.9 µm (22,826 × 18,453 pixels) multiple
fields of view image after stitching 9 × 11 scanning areas
of 118.5 × 79 µm (3072 × 2048 pixels).

For experiment 2, the number of bacteria set by the
user is 2000, and the actual number of collected bacteria is
2048. 11 × 11 scanning areas of 88.5 × 70.8 µm (1280
× 1024 pixels) under 100 × objective lenses (Olympus,

6
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Table 1. The number of antibiotic-resistant bacteria and antibiotic-sensitive bacteria were identified and the calculation of
accuracy, precision, and recall.

Predicted Actual
Total

Bacteria with a heavy water
(antibiotic-resistant bacteria)

Bacteria without a heavy water
(antibiotic-sensitive bacteria)

Bacteria with a heavy water
(antibiotic-resistant bacteria)

TP (2216) FP (8) 2224

Bacteria without a heavy water
(antibiotic-sensitive bacteria)

FN (2) TN (2528) 2530

Total 2218 2536 4754

Accuracy = (TP + TN) / (TP + TN + FP + FN) = 0.998
Precision = TP / (TP + FP) = 0.996
Recall = TP / (TP + FN) = 0.999

TP, it is predicted that bacteria with C-D peak have a C-D peak; FP, the bacteria predicted to have a C-D peak have no C-D peak;
FN, it is predicted that bacteria without C-D peak have a C-D peak; TN, it is predicted that bacteria with no C-D peak have no C-D
peak.

Fig. 4. Raman Spectrum pretreatment and peak searching.
(A) Raman Spectrum pretreatment with SG filter and adaptive iter-
atively reweighted Penalized Least Squares (airPLS). (B) Raman
Spectrum peak searching.

Tokyo, Japan) collected by Raman spectrometer HOOKE
P300 (Hooke Instrument Ltd., China) were stitched to a
799.8× 637.5 µm (11,565× 9218 pixels) multiple fields of
view image (Fig. 5B). Each 88.5 × 70.8 µm scanning area
overlaps its adjacent scanning areas by 20%.

For both multiple fields of view images, the illumi-
nation compensation algorithm is used to reduce the dark
corners around the image. In image registration, the error
caused by redundant information was reduced because only
phase correlation is used for overlapping areas. Stitching

accomplished without losing information based on the prior
knowledge of the offset of the shift table.

3.2 Differences in Raman Spectra between Sensitive and
Resistant Bacteria

Numerous studies have reported that there are dif-
ferences in molecular structure between antibiotic-resistant
bacteria and sensitive bacteria [39,40]. By collecting Ra-
man Spectra of bacteria and determining whether there is
a C-D peak, antibiotic-resistant bacteria and sensitive bac-
teria can be quickly distinguished. In this study, we ana-
lyze whether the Raman Spectra of bacteria have a peak in
the wave number range of 2040–2300 cm−1 to distinguish
whether they are antibiotic-resistant bacteria.

Fig. 5C,D shows the Raman Spectra images of
antibiotic-resistant bacteria and sensitive bacteria from ex-
periment 1 and experiment 2, respectively. The compari-
son shows that the C-D characteristic peak appeared in the
range of Raman Spectra wave number 2040–2300 cm−1

for antibiotic-resistant bacteria. It shows that the H+/D+
exchange reaction based on nicotinamide adenine dinu-
cleotide phosphate (NADPH) is carried out synchronously
in the denitrification process [41–43], and doped with deu-
terium from D2O, it is related to the metabolic activity of
bacteria. The sensitive bacteria have lost their activity due
to soaking by antibiotics, therefore, when sensitive bacteria
were labeled with heavy water, there was no C-D peak in
Raman Spectra because they did not react with deuterium.

3.3 Number of Antibiotic Resistant Bacteria and Sensitive
Bacteria

Whether the bacteria are antibiotic resistant can be
identified by the presence of a C-D peak in the range of
2040–2300 cm−1, when there is a C-D peak, the bacteria
are antibiotic-resistant bacteria, and when there is no C-D
peak, the bacteria are antibiotic-sensitive bacteria [44,45].
After Raman Spectra analysis of the bacteria, the contours
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Fig. 5. The conclusion diagram following data processing. (A) Multiple fields of view image after stitching 9 × 11 scanning areas
in experiment 1. (B) Identifies all single cells in (A). Impurities and cluster phenomena are excluded. (C) Statistical analysis image
of Raman Spectra average of Staphylococcus aureus and Klebsiella pneumoniae in experiment 1. Red represents the Raman spectrum
of Klebsiella pneumoniae in medium with heavy water, there is a C-D peak in the range of 2040–2300 cm−1. For antibiotic-resistant
and sensitive bacteria, 1137 and 1569 Raman spectra were collected for statistical analysis respectively. (D) Statistical analysis image of
Raman Spectra average ofKlebsiella pneumoniae sensitive bacteria andKlebsiella pneumoniae antibiotic-resistant bacteria in experiment
2. Red represents the Raman spectrum of Klebsiella pneumoniae antibiotic-resistant bacteria in medium with heavy water, there is a C-D
peak in the range of 2040–2300 cm−1. For antibiotic-resistant and sensitive bacteria, 1087 and 961 Raman spectra were collected for
statistical analysis respectively. (E,F) Distribution of antibiotic-resistant bacteria and sensitive bacteria in multiple fields of view image
and its partially enlarged detail. Antibiotic-resistant bacteria are drawn in green; Sensitive bacteria are drawn in red.

and centroids were plotted for antibiotic-resistant bacteria
and sensitive bacteria using different colors.

Table 1 shows that the number of bacteria with a C-D
peak detected in 2224 antibiotic-resistant bacteria is 2216;
The number of bacteria without a C-D peak detected in

2224 antibiotic-resistant bacteria is 8; The number of bacte-
ria without a C-D peak detected in 2530 antibiotic-sensitive
bacteria is 2528; The number of bacteria with a C-D peak
detected in 2530 antibiotic-sensitive bacteria is 2. The re-
sults showed that the accuracy of identifying was 99.8%
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which used rapid detection and analysis of Raman Spec-
tra of bacteria in multiple fields of view based on an image
stitching technique. Experiment 1 shows that the number of
antibiotic-resistant bacteria was 1137, accounting for 42%;
The number of sensitive bacteria was 1569, accounting for
58%. Experiment 2 shows that the number of antibiotic-
resistant bacteria was 1087, accounting for 53%; The num-
ber of sensitive bacteria was 961, accounting for 47%.

Fig. 5E,F shows the distribution of antibiotic-resistant
bacteria and sensitive bacteria in experiment 1 and experi-
ment 2, respectively.

4. Conclusions
To achieve high throughput, rapid and accurate detec-

tion of antimicrobial-resistance by Raman spectroscopy, we
have proposed rapid detection and analysis of Raman Spec-
tra of bacteria in multiple fields of view based on an image
stitching technique. Themethod researched in this paper fo-
cuses on single-cell Raman spectra, combined with isotope
labeling, and integrates multiple algorithms for optimiza-
tion to automatically calculate of the number of stitched
small fields of view by the number of bacteria entered by
the user and determine the presence or absence of peaks in
a set peak interval to achieve unattended, automated iden-
tification of bacterial antimicrobial resistance. Currently
available products, such as the ParticleScout program and
Fiji, there is no doubt that they are very mature software
at present. In the part of image stitching, both of them can
perform accurate and seamless stitching according to the set
stitching range, and Particlescout can be used in environ-
mental science, food technology, and other fields. Carry out
localization and classification, and further study the sam-
ples by confocal Raman imaging. The method studied in
this paper is mainly applied to the biomedical field. Ac-
cording to the number of single cells to be identified en-
tered by the user, the range of image stitching is automati-
cally calculated. Combined with heavy water labeling and
Raman spectroscopy, the whole process of automatic and
unsupervised analysis of single-cell antibiotic resistance in
antibiotic sensitivity tests is realized in multiple fields of
view. Then we have calculated the accuracy of this method.
The automatically analyze bacteria Raman spectra method
inmultiple fields of view can accurately identify single cells
and accurately identify bacterial antibiotic resistance (The
accuracy rate is 99.8%). The results indicate that the auto-
matically analyze bacteria Raman spectra method in mul-
tiple fields of view can rapidly and accurately analyze an-
timicrobial resistance. As a result, the automatically ana-
lyze bacteria Raman spectra method in multiple fields of
view can be used as a high-throughput, rapid and accurate
method to detect antimicrobial resistance by Raman spec-
troscopy for researching the persistence and spread of an-
tibiotics in bacterial pathogens, which will benefit the med-
ical field and microbiology field.
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