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Abstract

Background: Pyroptosis-related genes (PRG) are closely associated with the progression and metastasis of hepatocellular carcinoma
(HCC). The predictive power of PRGs could be used to assess the clinical outcomes of HCC. Methods: The Cancer Genome Atlas
(TCGA) RNA-seq data and clinical information from patients with liver hepatocellular carcinoma (LIHC) were used to identify PRG
with differentially expressed between HCC and normal samples. Univariate Cox regression, least absolute shrinkage and selection
operator (LASSO) Cox method, and multivariate Cox regression analysis were used to develop a prognostic model that included three
PRGs. Gene set enrichment analysis (GSEA) was performed to identify differential immune cells and their associated pathways. The
expression of Gasdermin C (GSDMC) in the HCC samples was detected by western blotting, and the function of GSDMC in HCC
proliferation and metastasis was detected by the Cell Counting Kit-8 (CCK-8), colony formation, cell invasion, and wound healing
assays. Results: Of 52 PRGs, GSDMC, Bcl-2 homologusantagonist/ killer 1 (BAK1), and NOD-like receptor thermal protein domain
associated protein 6 (NLRP6) were selected to establish a prognostic model. The model successfully differentiated HCC patients with
varied survival in the TCGA training and test cohorts, as well as the International Cancer Genome Consortium (ICGC) validation cohorts.
The risk score was proven to be an independent prognostic factor. In addition, we also reported a marked upregulation of GSDMC in
HCC tissues, which could be induced by CD274 (PD-L1). Overexpression of GSDMC contributes to HCC cells invasion, proliferation,
and migration. Conclusions: The three PRGs signatures containing GSDMC independently predicted HCC prognosis. As a new driver
molecule, GSDMC could play a tumor-promoting role by facilitating HCC growth and metastasis.
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1. Introduction
Hepatocellular carcinoma (HCC) has a poor prognosis

throughout world [1]. Patients with Hepatocellular carci-
noma (HCC) often lose the opportunity for surgery because
of the advanced-stage disease diagnosis. Even in patients
undergoing radical surgery, metastasis and relapse still pose
a threat to survival. Therefore, useful biomarkers are indis-
pensable for predicting the prognosis and guiding therapy
[2].

Immune checkpoint inhibitors (ICI) offers a new per-
spective for the treatment of HCC. Since HCC cells can
evade immune surveillance and induce immune tolerance to
facilitate the development of cancer, immunotherapy such
as ICI can reprogram the immunosuppressive tumor mi-
croenvironment (TME) to enhance anti-tumor immunity
[3]. The response to immunotherapy is highly variable
among individuals. Therefore, there is an urgent need for
new combination therapeutic strategies to activate tumor
immunity. Pyroptosis has gradually entered the public eye
as one of many targets.

Pyroptosis was initially found to participate in the de-
fense against infection. It is a unique form of cytolytic cell
death that is triggered by the activation of inflammatory
caspases. The GSDM family consists of Gasdermin A-E
(GSDMA-GSDME), and Pejvakin (PJVK) in humans [4–
8]. All GSDMs contain two arrangements: a N-terminal
domain and a C-terminal domain. The GSDM full-length
protein does not generally induce cell death because the ex-
isting inhibitory C-terminal domain is connected to the N-
terminal, which protects the N-terminal domain from being
overactivated. GSDM can be cleaved by activated caspases
to release the GSDM-N fragment that associates with the
plasma membrane. The cells then swell and form vesicles
originating from the plasma membrane [9]. Consequently,
cytolysis leads to the release of cellular contents, trigger-
ing strong inflammation [10]. The hallmark of pyropto-
sis, distinct from apoptosis, is the activation and secretion
of a variety of signaling molecules and cytokines associ-
ated with danger, leading to robust inflammation and im-
mune system remodeling [10–14]. Given its proinflamma-
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tory effect, it is reasonable that pyroptosis can modulate the
TME, thereby contributing to tumor growth and progres-
sion. Numerous studies have revealed that key components
of pyroptosis, including inflammatory vesicles, gasdermin
proteins, and cytokines, are involved in tumorigenesis, in-
vasion, and metastasis. Zhang et al. [15] revealed that
GSDME may serve as a tumor suppressor through activa-
tion of pyroptosis. Enhancing the function and increasing
the frequency of tumor-infiltrating NK and CD8+ T cells
may promote the phagocytic function of tumor-associated
macrophages [15]. Indeed, the pyroptosis-related pathway
may be a promising target in the management of HCC,
which is supported by the finding that the antitumor activ-
ity of sorafenib was partly attributed to pyroptosis [16]. It
has been demonstrated that pyroptosis of macrophages trig-
gered by sorafenib could contribute to NK cell-mediated
cytotoxicity, which may be beneficial in combating HCC
[16]. However, the relationship between HCC prognosis
and pyroptosis has not been fully understood.

This study systematically analyzed 42 PRGs with dif-
ferential expression between HCC and normal samples. A
PRG-related model was established based on mRNA ex-
pression and clinical information obtained from patients
with HCC. We validated the model in the The Cancer
Genome Atlas (TCGA) and International Cancer Genome
Consortium (ICGC) test cohorts. The risk score in the
model was an independent prognostic factor in univariate
and multivariate Cox regression analyses. Kaplan-Meier
survival curves revealed a notably different Overall Sur-
vival (OS) between the two groups. In addition, a new
driver molecule GSDMC was proposed for the first time,
which could be a promising target in HCC therapy.

2. Materials and Methods
2.1 Data Acquisition

The Cancer Genome Atlas (TCGA) website (https:
//portal.gdc.cancer.gov/repository) was used to gather RNA
sequencing data and associated clinical information for 374
patients with HCC and 50 normal samples. We excluded
4 patients who did not have complete follow-up informa-
tion. In addition, transcriptomic counts and FPKM data
with clinical features from 231 patients with HCC were ob-
tained from the ICGC database (https://dcc.icgc.org/proje
cts/LIRI-JP). Standardization for gene expression was per-
formed using the “limma” tool.

2.2 Mutation Analysis
Mutation data corresponding to 370 patients with

HCC were from TCGA, and four incomplete information
patients were excluded. The remaining patients were di-
vided into two risk groups and the mutational spectrum was
analyzed using theMAftools package, withmeasurement of
tumor mutational burden (TMB) [17].

2.3 Copy Number Variation (CNV) Analysis
Data for CNV corresponding to 370 HCC patients also

were from TCGA. The lolipop plot was generated to show
the gain and loss function of genes in the HCC database.

2.4 PPI Analysis of PRGs
The STRING database (http://string-db.org) provides

the integration of protein interactions, including direct and
indirect associations. The STRING database was used to
show the correlation between the PRGs.

2.5 Differential PRG Analysis
There were 52 PRGs identified in the earlier litera-

ture. 42 PRGs showed differential expression between tu-
mors and normal tissues. The “limma” R package was used
to analyze the differentially expressed genes (DEGs) in the
TCGA cohort and a p value of 0.05 was used to construct a
heatmap or volcano plot paragraph. In addition, a network
of protein-protein interactions was also created by the tool
GENEMANIA (http://genemania.org/) for the PRGs.

2.6 Consensus Clustering
TCGA-LIHC were divided into two groups of the

42 DEGs by using the “ConsensusClusterPlus” R program
[18].

2.7 Developing and Validating a Prognostic Model
A Univariate Cox analysis was performed to elimi-

nate nine survival related PRGs for further investigation.
The prognostic model was constructed using the LASSO-
Cox method and multivariate Cox analysis to reduce over-
fitting. Three genes were ultimately retained with their
coefficients, and the penalty parameter was calculated us-
ing the minimum criteria. The Equation 1: risk score
= (0.311×BAK1 exp.) + (1.143×GSDMC exp.) +
(−0.402 × NLRP6 exp.) was used to calculate the risk
score.

The prognostic model was based on dividing patients
with HCC into two risk clusters according to their median
risk score. We then used the “limma” and “scatterplot3d”
packages in R to generate a principal component analysis
(PCA) for both risk groups on the basis of gene expressions.
The R package “survminer” was used for survival analy-
sis comparing the prognosis between the two risk groups,
and the R packages “survival” and “timeROC” were used
to construct the ROC curve. A signature of three genes was
constructed using the LASSO-Cox method and the multi-
variate Cox regression analysis, and then to assess efficacy
in the patients from the TCGA test or ICGC external vali-
dation cohort. The pyroptosis-related gene (PRG) mRNA
level and the risk score was normalized using the “scale”
function. Using the risk score, patients in the TCGA test or
ICGC cohorts could be divided into two risk groups.
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2.8 Analysis of Function Enrichment
The GSEA 4.0.1 (Broad institute, Boston, MA, USA)

was utilized to carry out GSEA analysis between two risk
groups to determine the differential and enrichment studies
performed in the “clusterProfiler” R package [19].

2.9 Comprehensive Analysis of Tumor Immune Cell
Infiltration Characteristics in Different PRG Subgroups

To examine the correlation between immune cell infil-
tration and PRG scores, 28 infiltrating immune cells in each
case of HCC were calculated using the ssGSEA algorithm
[20]. In addition, the “GSVA” R package was also used
to perform a ssGSEA using gene-specific markers from the
TCGA cohort in order to determine immune function be-
tween the PRG subsets. The Spearman correlation test was
conducted to determine whether the PRG score was signifi-
cantly correlatedwith immunosuppressivemolecules or im-
mune scores.

2.10 Clinical HCC Tissues
The tissue samples were approved by the Zhongshan

Hospital. The patients signed an informed consent form be-
fore undergoing surgical resection. Protein was extracted
from cancer and adjacent tissues from 12 patients with HCC
for validation by western blotting.

2.11 Cell Lines
Huh7 and Hep3B cells were cultured in complete

DMEM medium (D5796, sigma) containing 10% FBS
(16140071, Gibco) and 1% penicillin/streptomycin (3810-
74, Sigma) and used in the present study. IFN-γ (CST,
13684S) was used for PD-L1stimulation. All the cell lines
used in our study is negative for mycoplasma (detected by
Betotime, C0296). The Hep3B and Huh7 cell lines were
purchased from American type culture collection (ATCC,
Manzas, Virginia,US), which was already authenticated by
Short Tandem Repeat (STR) profiling for excluding cell
cross contamination. And these cell lines have not been re-
ported to be contaminated or misidentified in ExPASy Cel-
losaurus databases.

2.12 Western Blotting
Cells were lysed for extract total protein extraction and

pelleted at 95 °C for 8 min. Electrophoretic separation was
performed by 10% sodium dodecyl sulfate - polyacrylamide
gel electrophoresis (SDS-PAGE) at a 100 V constant volt-
age, and at 330 mA, protein was transferred to polyvinyli-
dene difluoride (PVDF) membrane and then incubated with
1:2000 diluted GSDMC (ab225635, Abcam, Cambridge,
UK), PD-L1 (CST, 13684S, Boston, MA, USA), caspase-
8 (ab119809, Abcam, Cambridge, UK) and Actin (AA128,
Beyotime, Shanghai, China) antibodies for 12 h at 4 °C.
The PVDFmembrane was incubated with a 1:10000 diluted
secondary antibody. Finally, chemiluminescence was per-
formed.

2.13 Stable Cell Line Construction

The cDNA or shRNA (Genepharma, Shanghai,
China) targeting CD274 or GSDMC was recombined into
lentiviral vectors to overexpress or knockdown GSDMC.
The recombinant plasmid was transfected into 293T cells,
and themature infectious lentivirus was collected after three
days. Stable CD274 or GSDMC-overexpressing Hep3B
and CD274 or GSDMC-knockdown Huh7 cell lines were
constructed and verified by western blotting.

2.14 Cell Counting Kit-8 (CCK-8) Assay

Cells were seeded in 96-well plates (103 cells/well).
After 8 h, CCK-8 (C0037, Beyotime, Shanghai, China) was
added to the wells on day 1. Plates were placed in an incu-
bator at 37 °C for 30min, and cell absorbancewasmeasured
using a microplate readout reader, measurements were per-
formed for 6 consecutive days.

2.15 Colony Formation Assay

The 6-well plates were used to seed the HCC cells
(800 cells/well), and then were placed at 37 °C incubator
for 2 weeks. After the culture medium was discarded, the
cells were fixed with 4% paraformaldehyde, then the cells
were stained using crystal violet (C0121, Beyotime, Shang-
hai, China), washed with phosphate buffered saline (PBS)
(P1020, Solarbio, Beijing, China), and dried.

2.16 Wound-Healing Assay

After 10 h, HCC cells were seeded in 6-well plates to
form a dense monolayer. Lines were drawn with the tip of
a pipette size 20 µL pipette perpendicular to the cell layer
to form straight cell wounds. The width of the cell wound
width was then washed with PBS and recorded under a mi-
croscope (Olympus, Japan) by taking photograph. Plates
were placed at 37 °C incubator for 48 h, then the wound
width was recorded again.

2.17 Cell-Invasion Assay

About 100 µL BD Matrigel mixture (diluted 1:5 with
DMEM) was pre-coated in a chamber (3513, Corning,
Corning, NY, USA) at 37 °C incubator for 5 h. DMEM
without serum was used to dilute the HCC cells and 4 ×
104 cells were plated in the upper chamber. Then, 600 µL
complete DMEM was added to the bottom chamber. Cells
from the lower chamber were then incubated for 48 h at 37
°C, fixed, stained with crystal violet, washed with PBS, and
photographed.

2.18 Analytical Statistics

The DEGs between HCC and normal liver tissue were
analyzed by a one-way ANOVA. The Mann-Whitney test
was used to calculate the ssGSEA scores using the adjusted
p-value from the BH method. The whole statistical inves-
tigations were performed using R 4.0.1 (Auckland, New
Zealand). A p < 0.05 was used to define statistical sig-
nificance.

3

https://www.imrpress.com


3. Results
3.1 The Genetic Diversity of Pyroptosis-Related Genes in
HCC.

Fig. 1 shows the detailed protocol. A total of 52
PRGs selected from the KEGG database were included in
this study. To find gene alterations of PRGs in patients
with HCC, we downloaded data from the TCGA-LIHC
databases. At the genetic level, 157 of the 364 samples
(43.13%) showed mutations in regulatory genes linked to
pyroptosis. Of these, TP53 had the highest mutation fre-
quency (30%) followed by NLRP2 (2%). No mutations
were found in other PRGs such as BAK1, CASP1, CASP5,
CHMP2A, CHMP3, CHMP4A, CHMP4B, CYCS,GSDME,
IL1A, CASP6, CASP9, GPX4, GSDMA, PJVK as well as
SCAF11 (Fig. 2a). Our results indicated that most PRGs,
except TP53, have no significant changes in gene variation.

Fig. 1. Flow chart of the whole study. LIHC, liver hepatocel-
lular carcinoma; TCGA, The Cancer Genome Atlas; ICGC, Inter-
national Cancer Genome Consortium; GSEA, gene set enrichment
analysis; GSDMC, Gasdermin C.

We also found copy number variation (CNV) alter-
ation in 7 of the 52 PRGs, which showed that CASP9,
HMGB1, and TP53 had a significant frequency of CNV
deletions (Fig. 2b), whereas GSDMC, AIM2, GSDMD, and
CHMP6 had a significant frequency of CNV amplifications
(Fig. 2b). Fig. 2c showed the CNV alterations location on
the chromosomes.

3.2 Identification of DEGs and the Interactions between
Them

The expression levels of 52 PRGs were compared
based on 50 normal samples and 374 HCC samples in
TCGA data. Forty-two DEGs were identified (all p< 0.05,
Table 1), among which 39 genes were enriched in the tumor
cluster, while three genes (IL-6, IL-1B and NLRP3) were
down-regulated. Fig. 2d showed the heatmaps of RNA lev-
els (blue: low expression; red: high expression) and the
histograms in Fig. 2e.

3.3 The Interactions among PRGs

We then utilized the STRING platform to analyze the
network of protein-protein interactions of 52 PRGs’ regu-
lators (Fig. 2f). The PRGs correlation network is shown in
Fig. 2g (blue: negative correlations; red: positive correla-
tions).

3.4 Tumor Classification Based on Pyroptosis Regulators
of Prognosis

Our next step was to use consensus cluster analysis
to explore the association of all 370 HCC subtypes in the
TCGAcohort with these prognostic genes (Supplementary
Fig. 1a). When κ = 2, the intragroup correlation was the
smallest (Supplementary Fig. 1b,c), indicating that it was
appropriate to split 370 patients into two clusters on the
basis of 42 DEGs obtained previously (Cluster 1 = 160,
Cluster 2 = 210). Then we found that patients in cluster
1 survived for a shorter period than those in cluster 2 (p <

0.05, Supplementary Fig. 1d), indicating that these DEGs
may indicate a prognosis. The baseline clinical features
and gene expression profile of the two clusters are shown
as a heatmap. However, no notable baseline differences
were observed between the two groups (Supplementary
Fig. 1e).

3.5 Establishment and Validation of the Prognostic Risk
Model

Through univariate Cox regression analysis, we iden-
tified nine genes (BAK1, BAX,CHMP4B,CASP8,GSDMC,
NLRP6, NOD1, NOD2, and PLCG1). The curves in Fig. 3b
represent the trajectories of each independent variable coef-
ficient. The two dashed lines in Fig. 3c indicate two special
λ values: lambda. min and lambda.1se. Based on LAS-
SON Cox analysis (Fig. 3b,c), lambda. min was chosen
to construct a nine genes PRGs model. Finally, we ob-
tained three key prognosis-related PRGs (BAK1, GSDMC,
and NLRP6) by multivariate regression analysis with a cut-
off of 0.1, and the other six genes were narrowed with a
p-value > 0.1. A total of 370 HCC specimens were ran-
domly separated into two cohorts (training cohort, n = 186;
test cohort, n = 184). In the training set, we found that three
genes (BAK1, GSDMC, and NLRP6) were closely associ-
ated with HCC occurrence after performing a multivariate
Cox regression analysis of PRGs (Table 2). We classified

4

https://www.imrpress.com


Fig. 2. Pyroptosis-related genes (PRGs) Screening of patients with hepatocellular carcinoma (HCC). (a) The mutation frequency
of PRGs in 370 HCC patients. Each column represented a patient. The proportion of each variant type was showed by right-hand bar
plots, while stacked bar plots show the conversion fractions in each sample. (b) TCGA-LIHC cohort’s CNV variation frequency for
pyroptosis-related genes. A column’s height represents the frequency of alteration. Green dot: deletion frequency; red dot: amplification
frequency. (c) Based on the LIHC cohort, the Copy Number Variation (CNV) alteration location of PRGs is shown. (d) The differential
expression of PRGs were showed by heatmap. (e) The differential PRGs expressed showed by box plot. (f) Protein-protein interaction
network. (g) Gene association network (Blueline: negative correlations; Redline: positive correlations. The depth of color reflects the
relevance’s strength).
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Table 1. 42 differentially expressed genes (DEGs) in 370 HCC and 50 normal tissue.
Gene Con mean Treat mean Log FC p-value

BAK1 2.43296064 7.45717126 1.61591549 1.55 × 10−17

BAX 7.3216181 21.1009946 1.52707658 7.52 × 10−23

CASP3 4.1860116 8.44081184 1.01180546 1.98 × 10−17

CASP4 4.20085128 5.10681863 0.28174311 0.03286059
CHMP2A 33.2191982 65.2138897 0.97316202 9.02 × 10−22

CHMP2B 7.37121326 9.87610132 0.42203954 1.91 × 10−5

CHMP3 2.05397496 4.19803902 1.03129698 4.04 × 10−17

CHMP4A 0.44395801 0.76114955 0.77775671 4.87 × 10−6

CHMP4B 32.0528566 59.5627723 0.89395797 6.59 × 10−18

CHMP4C 2.54545884 6.03191047 1.24468928 2.37 × 10−14

CHMP6 7.38079992 13.8223234 0.90515105 7.64 × 10−20

CHMP7 4.30753654 5.45855639 0.34165642 0.00610607
CYCS 12.623064 25.3375992 1.0052177 1.71 × 10−15

ELANE 0.08227496 0.08760968 0.09063689 0.03218088
GSDMD 12.9530553 31.0751544 1.26246913 2.96 × 10−22

GSDME 0.42152436 1.12730849 1.41919444 0.00054835
HMGB1 11.3255013 15.9875838 0.49737702 2.20 × 10−9

IL1A 0.01072757 0.02485794 1.21238333 0.00735294
IL1B 0.87439016 0.41835073 –1.0635642 2.07 × 10−10

IRF2 7.4236917 8.64728488 0.22011042 0.02426076
TP53 4.95454942 8.22316697 0.73094026 5.80 × 10−6

TP63 0.03249136 0.12194168 1.90806327 0.00237048
AIM2 0.25001586 0.37839679 0.59788023 0.00972577
CASP6 5.03020808 6.86427733 0.44848976 3.49 × 10−5

CASP8 1.37688528 2.83142406 1.04011948 1.52 × 10−15

CASP9 1.78856694 2.52060221 0.49496435 3.54 × 10−5

GPX4 118.53575 188.693886 0.67072544 1.28 × 10−10

GSDMB 1.34402605 3.63674743 1.43608764 1.66 × 10−13

GSDMC 0.00830341 0.2340813 4.81716107 8.32 × 10−19

IL6 0.86703163 0.3207223 –1.43476 3.10 × 10−5

NLRP1 0.40595995 1.07178314 1.40060373 1.31 × 10−9

NLRP3 0.35190932 0.27927313 –0.333527 0.00231316
NLRP6 1.07212382 1.19241641 0.15341661 0.00113618
NLRP7 0.01351051 0.0204933 0.60106999 0.00202789
NOD1 0.3254706 0.66369271 1.02798821 4.82 × 10−14

NOD2 0.19403987 0.34029517 0.81043355 0.0077925
PJVK 0.24180884 0.4645166 0.94186313 1.21 × 10−9

PLCG1 1.26078037 3.99551069 1.66406294 1.77 × 10−21

PRKACA 14.1108017 18.2172065 0.36850179 0.00340267
PYCARD 3.24194386 9.79743175 1.59554451 7.65 × 10−6

SCAF11 3.499931 4.37598781 0.32228224 0.00655423

TCGA training cohort patients into two clusters (high- or
low-risk clusters) according to the median risk score calcu-
lated by Equation 1 (Fig. 4a). The PCA demonstrated that
patients in the different risk groups were well separated into
two clusters (Fig. 4b). Patients in the high-risk clusters had
a worse prognosis than those in low-risk clusters (Fig. 4c).
TheKaplan–Meier curve (KM) curve also showed a notable
difference in OS between the two risk groups (p = 0.002,
Fig. 4d). Receiver operating characteristic (ROC) analy-
sis was performed to evaluate the specificity and sensitivity

of the prognostic model. We demonstrated that the 3-gene
risk model could correctly indicate the clinical outcomes of
HCC patients (AUC 0.58 for 1-year, 0.658 for 3-year, and
0.656 for 5-year survival) (Fig. 4e).

3.6 Validation in both the TCGA Test Cohort as well as
ICGC Cohort

We then assessed the predictive power of the risk sig-
nature in both the TCGA test cohort (n = 184) and the
external cohort (ICGC, n = 231). In the TCGA test co-
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Table 2. Multivariate Cox regression analysis of risk genes.
ID Coef HR HR.95L HR.95H p value

BAK1 0.3112626 1.36514766 0.95773656 1.94586717 0.08521836
GSDMC 1.14322035 3.13685387 1.18639121 8.29393552 0.02119485
NLRP6 –0.4026137 0.66857032 0.41686883 1.07224681 0.09481449
HR, Hazard Ratio

Fig. 3. TCGA-LIHC risk signature construction. (a) Univariate analysis showed nine DEGs (p < 0.05). (b) LASSO analyses of all
nine genes. (c) LASSO regression parameter selection by cross-validation. (d) Three DEGs with p< 0.1 based on multivariate analysis.

hort, the high-risk (n = 83) and low-risk (n = 101) sub-
groups were well differentiated into two clusters using PCA
(Supplementary Fig. 2a–c). A notably different OS was
demonstrated by the KM survival curves of the two groups
(p = 0.022) (Supplementary Fig. 2d). Based on the
risk score, the ICGC cohort was classified into high-risk
(n = 115) and low-risk (n = 116) subgroups using PCA
(Supplementary Fig. 3a–c). There was a marked differ-
ence in the OS between the two groups, as represented by
the KM survival curves (p < 0.01) (Supplementary Fig.
3d). The AUC values for survival at 1-year, 3-year, and
5-year survival were 0.725, 0.745, and 0.580, respectively
(Supplementary Fig. 3e). Taken together, these data re-
vealed that this risk model consisting of three genes could
predict the prognosis of HCC patients well, whether in the
TCGA training cohort, the test cohort, or the ICGC cohort.

3.7 Independent Evaluation of the Risk Model’s Prognostic
Value

Cox regression analysis was used to assess whether
the risk score could independently predict OS. The find-
ings suggested that the risk score may be a promising haz-
ard factor both in the univariate Cox regression analysis (p
< 0.001, HR = 2.280, 95 percent CI: 1.572–3.307, Fig. 5a)
and in the multivariate analysis (p< 0.001, HR = 2.171, 95
percent CI: 1.389–3.396, Fig. 5b).

To assess the predictive power of the risk score in
HCC, we performed univariate and multivariate Cox re-
gression analyses in the TCGA test cohort of 184 patients
(Fig. 5c,d). Similar to the results in previous cohorts, the
risk score was proved to be a strong prognostic predictor (p
< 0.001, HR = 3.892, 95 percent CI: 2.097–7.226 for uni-
variate analysis, Fig. 5c; p< 0.001, HR = 3.496, 95 percent
CI:1.878–6.508 for multivariate, Fig. 5d). Individuals in
the high-risk group tended to have higher levels of BAK1
and GSDMC but lower level of NLRP6, as shown in the
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Fig. 4. Validation in TCGA training cohort. (a–c) Patients were classified as baseline on the basis of their risk scores in the training
cohort. (d) The Kaplan–Meier curve (KM) survival curve. (e) Analysis of time-dependent Receiver operating characteristic (ROC)
scores.

heatmap (Fig. 5e).

3.8 Functional Analyses of the PRGs
GSEA was used to explore the role of PRGs in HCC.

Most of the genes were enriched in the apoptosis, IL-
6-JAK-STAT3, P53, and TGF-β signaling pathways, etc.
(Supplementary Fig. 4a), suggesting that genes related to
pyroptosis may participate in the oncogenesis and develop-
ment of HCC through these pathways.

3.9 Evaluation of Tumor Immune Infiltration
On the basis of the functional analyses, GSEA anal-

ysis was performed to compare 16 enriched immune cell
types between the two risk clusters in the TCGA cohorts.
In the TCGA cohort, CD56 bright cells, CD4 T cells, den-
dritic cells (DC), NK cells, Plasmacyloid DC, CD56 dim
cells, and Memory CD4 T cells showed a positive correla-
tion, while eosinophils, neutrophils, T helper (Th)1 cells,
macrophages, mast cells, memory B cells, activated CD8
T cells, Th17, activated B cells and monocytes were neg-
atively correlated with the risk signature (Supplementary
Fig. 4b).

3.10 The Validation of Independent Prognostic Genes
Differential Expression

We explored changes in the protein levels of three
PRGs using the Human Protein Atlas (HPA) database. The
results indicated that BAK1 and GSDMCwere upregulated
in tumor tissues, whereas NLRP6 expression was lower
level in HCC than in normal tissues (Supplementary Fig.
5).

3.11 PD-L1 Upregulates GSDMC in HCC
PD-L1 is an immune inhibitor, that can upregulates

GSDMC expression to transform apoptosis to pyroptosis in
breast cancer [21]. Using the TCGA-LIHC database, we
found that PD-L1 and GSDMC were positively correlated
(Cor = 0.3, p< 0.001) at the mRNA level in HCC (Fig. 6a).
Since PD-L1 protein is seldom expressed in Huh7 or Hep3B
cells without IFN-γ stimulation, we detected GSDMC ex-
pression in IFN-γ-treated hepatoma cells. Immunoblotting
assays showed that PD-L1 knockdown decreased GSDMC
levels in Huh7 cells (Fig. 6b, left panel). In contrast, PD-
L1 overexpression enhancedGSDMC levels in Hep3B cells
(Fig. 6b, right panel).
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Fig. 5. Independent prognostic value assessment of risk scores. (a,b) Univariate and multivariate analysis in training cohorts. (c,d)
Test cohorts by univariate and multivariate analysis. (e) The correlation of gene heatmap with between the different risk groups.

Fig. 6. GSDMC is upregulated byCD274 (PD-L1). (a) CD274 showed positive correlation with GSDMC (Cor = 0.3, p< 0.01). (b) The
full length of GSDMC, GSDMC-N and caspase-8 expression levels in PD-L1- knockdown Huh7 (sh1 and sh2) or PD-L1-overexpressing
Hep3B cell (OE) lines, representative results of 3 experiments. To induce PD-L1 expression, we used IFN-γ as a stimulator.

3.12 GSDMC Promotes the Invasion, Migration and
Proliferation of HCC Cells

A previous study has reported that GSDMC was in-
creased in lung adenocarcinoma, colon adenocarcinoma
and breast cancer and correlated with reduced overall sur-

vival [22,23]. However, the role of GSDMC in HCC has
not yet been investigated. We wondered whether GSDMC
is upregulated in HCC and contributes to the malignant bio-
logical behaviors of tumors. Twelve pairs of HCC samples
and adjacent tissues were collected for western blot analy-
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Fig. 7. Overexpression of GSDMC significantly promotes the proliferation and invasion of HCC cell. (a) The full length GSDMC,
GSDMC-N, and caspase-8 expression levels in HCC and adjacent hepatic tissues. n = 12. (b) Validation of GSDMC-overexpressing
Hep3B cell lines, n = 3. (c) Effects of overexpression of GSDMC on the proliferation of HCC cells, n = 3. (d) Representative plot and
quantitation of colony formation assay in HCC cells overexpressing GSDMC, n = 3. (e,f) Effects of GSDMC overexpression on HCC
cell motility (e) and invasion (f), n = 3. **p < 0.01, ***p < 0.001, unpaired two-tailed t test or one way ANOVA.

sis. Comparedwith adjacent liver tissues, GSDMCwas sig-
nificantly upregulated in HCC tissues (Fig. 7a). Then sta-
ble GSDMC-overexpressing Hep3B (Fig. 7b) cell line was
successfully constructed. The proliferation ability was en-
hanced in GSDMC-overexpressing Hep3B cells, as shown
by the CCK-8 proliferation assay and colony formation as-
say (Fig. 7c,d). Wound healing and invasion experiments
demonstrated that the cell motility and invasion ability were
substantially enhanced in GSDMC-overexpressing Hep3B
cells (Fig. 7e,f).

Next, we constructed a GSDMC knockdown Huh7
cell line (Fig. 8a). The results showed that the prolifera-
tive capacity was decreased (Fig. 8b,c), and cell motility
and invasion ability were impaired in GSDMC-knockdown
Huh7 cells (Fig. 8d,e).

Taken together, these findings revealed a novel tu-
morigenic function of GSDMC in HCC.

3.13 GSDMC Expression Correlates with the Immune Cell
Infiltration and Subcellular Location within the Cell in
HCC

Since GSEA analysis revealed an enrichment of im-
mune cell-related pathways, we hypothesized that infil-
tration of immune cells plays a critical role in the tu-
morigenic effect of GSDMC in HCC. GSDMC expression
showed a positive correlation with immune cells and stro-
mal cells (Fig. 9a). Furthermore, we investigated the asso-
ciation between GSDMC expression and 24 types of tumor-
infiltrating immune cells by using the TIMER database. It
is demonstrated that GSDMC was strongly correlated with
macrophages and Th2 cells (Cor >0.3, p < 0.05) (Fig. 9b).

Next, we explored the correlation between GSDMC
and immunosuppressive checkpoint. As shown in the
heatmap, GSDMC is correlated with various immune in-
hibitor proteins such as CD274 (PD-L1), IL-10, and IDO1
in the TISIDB database (Fig. 9c). We further examined
the expression pattern of GSDMC. It is mainly expressed
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Fig. 8. Knockdown of GSDMC significantly inhibits the proliferative and invasive ability of HCC cell. (a) Validation of GSDMC-
knockdown Huh7 cell lines (sh-GSDMC), n = 3. (b) Effects of knockdown of GSDMC on the proliferation of HCC cells, n = 3. (c)
Representative plot and quantification of colony formation assay in HCC cells knockdown by GSDMC, n = 3. (d,e) Effects of GSDMC
knockdown on HCC cell motility (d) and invasion (e), n = 3. **p < 0.01, ***p < 0.001, unpaired two-tailed t test or one-way ANOVA.

in keratinocytes and epithelial cells (Fig. 9d), according to
the HPA dataset. GSDMC was not expressed in immune
cells in HCC single-cell sequencing datasets (GSE140228
and GSE98638, Fig. 9e) using TISCH database.

4. Discussion
To date, the prognostic evaluation of HCC is mostly

based on the pathology, staging and grading of the Amer-
ican Joint Committee on Cancer (AJCC), Tumor Node
Metastasis (TNM), and Bandwidth Constrained Least Cost
(BCLC), which are not sensitive enough. Improving the
survival of patients with HCC, more accurate and less inva-
sive prognostic models based on novel biomarkers are ur-
gently needed.

As an embodiment of programmed cell death, py-
roptosis can release cellular content and inflammatory
cytokines, which occur in cells infected by pathogens.
Recent studies have suggested that pyroptosis also con-
tributes to oncogenesis and cancer development. Pyrop-
tosis is a double-edged sword, which could be either pro-
tumorigenic or antitumorigenic. On one side, pyroptosis
can promote inflammatory death of tumor cells and release
chemokines that recruit immune cells to the TME, there-
fore suppressing tumor growth [24]. On the other side,
pyroptosis-produced IL-1β and IL-18 can facilitate the ma-
lignant transformation of normal cells and contribute to tu-
mor immune escape by creating a chronic inflammatorymi-
croenvironment [25,26]. However, the function of pyrop-
tosis in HCC is not fully understood. Whether pyroptosis

can activate the TME and synergize with immunotherapy
warrants further investigation. The present study provides a
novel perspective for evaluating HCC prognosis. Notably,
42 DEGswere identified and divided the patients with HCC
into two subtypes using the consensus cluster analysis. In-
terestingly, these two subtypes have different survival rates,
providing a helpful classification for clinical practice. To
assess the prognosis of HCC patients, we constructed an in-
dependent prognostic model in the TCGA training cohort,
which was also validated in ICGC or TCGA test cohort.
A prognostic model consisting of three PRGs (BAK1, GS-
DMC, and NLRP6) was then derived from the LASSO-Cox
method as well as the multivariate Cox analysis with a cut-
off of 0.1. Among 3 PRGs, BAK1 and GSDMC were up-
regulated, while NLRP6 was down-regulated in tumor tis-
sues.

Tumor cells can induce a suppressive TME to pro-
mote immune evasion and facilitate HCC progression. ICIs
activate immune attack against tumor cells by specifi-
cally blocking immune checkpoints, such as PD-1/PD-L1
(CD274/CD274L). However, responses to ICIs vary among
individuals. An important reason for this poor response
is the scarcity of immune cells within TME. Pyroptosis-
induced inflammation may increase the number of tumor-
infiltrating immune cells, thereby improving therapeutic
sensitivity [25]. Previous studies have suggested that py-
roptosis is closely related to PD-1/PD-L1 [25]. GSDME
and GSDMD can serve as biomarkers for PD-1 inhibitor
[25]. Moreover, PD-L1 was able to regulate GSDMC tran-
scription and switch apoptosis to pyroptosis induced by
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Fig. 9. The relationship between GSDMC expression and tumor microenvironment (TME) in HCC. (a) GSDMC was positively
correlated with both immune cells and stromal cells. (b) High GSDMC expression had the strongest correlation with macrophages and
Th2 cells (cor > 0.3, p < 0.05). (c) GSDMC was correlated with various immune checkpoints in the TISIDB database. (d) GSDMC
was mainly expressed in keratinocytes and epithelial cells. (e) GSDMC did not express in immune cells in HCC single-cell sequencing
datasets (gSE140228 and GSE98638).

TNFα in breast cancer, leading to tumor regression [21].
A positive correlation between GSDMC expression and
immune cells in HCC were demonstrated in the present
study, as well as immune checkpoint protein including PD-
L1 (CD274), which is consistent with previous findings.
Pyroptosis-related pathways may be a promising targets for
enhancing the sensitivity of HCC to ICIs.

The function ofGSDMC in tumors is less known [27].
In a previous study, GSDMC upregulation was associated
with melanoma metastatic [28], GSDMC overexpression
promoted tumorigenesis and cell proliferation by inhibit-
ing TGFBR activity in colorectal cancer. In addition, it has
been shown to be an indicator of poor prognosis in lung ade-
nocarcinoma patients [23]. In contrast, GSDMC acted as a
tumor suppressor and exerted an inhibitory effect on cell
growth in esophageal and gastric cancer [29]. We found
that GSDMC was upregulated in HCC tissues. Further-
more, overexpression of GSDMC contributed to the prolif-
eration, invasion, and migration of HCC cell lines, whereas
silencing GSDMC showed the opposite effect. These find-
ings revealed the pro-tumorigenic role of GSDMC in HCC.
Determining the function ofGSDMC in HCC will facilitate
its future use as a therapeutic target in clinical practice.

Pyroptosis is a form of cell death that affects the prog-
nosis of cancer patients by modulating tumor cell migra-
tion, proliferation and invasion. Some related studies have

shown that PRGs played important roles in predicting the
prognosis of hepatocellular carcinoma patient [30–38]. Li
et al. [31] constructed a three-PRG prognostic model com-
prising CHMP4A, HMGB1 and PLK1. Further the author
validate the differential expression of the three prognos-
tic genes in HCC model and in vitro. He et al. [35] con-
structed five PRGs (CASP8, GSDMC, NLRP6, NOD2, and
PLCG1) signatures to predict HCC prognosis. It could pre-
cisely predict survival outcomes, reveal the composition of
the immune microenvironment, and strengthen the argu-
ment for more credible clinical and functional research in
HCC patients. In addition, qRT-PCR analysis also demon-
strated that the PRGs in HCC cell lines were differentially
expressed in the prognostic signature. Zhang et al. [36]
identified a 7-PRGs signatures (BAK1, CHMP4B,GSDMC,
NLRP6, NOD2, PLCG1, SCAF11) for predicting the prog-
nosis of HCC. This novel PRGs signature can predict the
prognosis of patients with HCC and provide insight into
new cell death-targeted therapies. The pyroptosis-related
risk model developed by Xing et al. [37] can predict the
prognosis of HCC, evaluate immune cell infiltration status
in the tumor microenvironment and assess the efficacy of
immunotherapy to guide immunotherapy. All these studies
established a strong correlation between pyroptosis and the
clinical risk of HCC patients, however, these studies did not
focus on the genes function in HCC.
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Our study aimed to identify PRGs with differential ex-
pression between HCC and normal samples in order to con-
struct a prognostic model, that can distinguish HCC patients
with varied clinical outcomes. The three PRGs signatures
containing GSDMC could predict HCC prognosis. In ad-
dition, we focused on GSDMC molecules and probed the
GSDMC biology in both patient samples and hepatocellu-
lar carcinoma cell lines, which could demonstrated that in-
creased GSDMC levels contribute to cell proliferation, in-
vasion and migration in HCC. Although we had performed
verifications in multiple databases, our research still has
some limitations. First of all, the validation of prognostic
models was mainly based on public databases. The predic-
tive value needs to be verified using additional clinical data.
Second, this article does not have an in-depth investigation
on the molecular pathway behind these pyroptosis-related
biomarkers. More efforts are needed to determine how py-
roptosis regulates the TME in HCC.

5. Conclusions
Our findings indicated that the 3-PRGs signature

which contained GSDMC could predict the prognosis of
patients with HCC. In addition, GSDMC exerted a pro-
tumorigenic role by promoting the growth and metastasis
in HCC.
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