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Abstract

Background: N1-methyladenosine (m1A) is a reversible post-transcriptional modification in mRNA, which has been proved to play
critical roles in various biological processes through interaction with different m1A regulators. There are several m1A regulators existing
in the human genome, including YTHDF1-3 and YTHDC1. Methods: Several techniques have been developed to identify the substrates
of m1A regulators, but their binding specificity and biological functions are not yet fully understood due to the limitations of wet-
lab approaches. Here, we submitted the framework m1ARegpred (m1A regulators substrate prediction), which is based on machine
learning and the combination of sequence-derived and genome-derived features. Results: Our framework achieved area under the
receiver operating characteristic (AUROC) scores of 0.92 in the full transcript model and 0.857 in the mature mRNA model, showing
an improvement compared to the existing sequence-derived methods. In addition, motif search and gene ontology enrichment analysis
were performed to explore the biological functions of each m1A regulator. Conclusions: Our work may facilitate the discovery of m1A
regulators substrates of interest, and thereby provide new opportunities to understand their roles in human bodies.
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1. Introduction
RNA epigenetics has been an emerging field in the

past ten years, with more than 170 types of RNA mod-
ifications identified in the human epitranscriptome [1].
Apart from the well-studied N6-methyladenosine (m6A),
N1-methyladenosine (m1A) is recognized as a reversible
RNAmodification of increasing interest present on eukary-
otic messenger RNA (mRNA) and transfer RNA (tRNA)
[2]. It was found that m1A occurs on tRNA at positions 9,
14, and 58 [3], with the m1A58 serving a pivotal role in the
tRNA stability [4]. Transcriptome-wide mapping of m1A
confirmed that m1A modification occurs in thousands of
different eukaryotic mRNAs, and it is estimated that more
than 20% of transcript mRNAs in humans contain m1A
modifications [5].

Similar to the other epigenetic modifications studied,
m1A on the mRNA can bind with regulator proteins to play
critical biological functions in humans. It is installed by the
methyltransferases, TRMT6/61A and TRMT61B, and re-
moved by the demethylases, ALKBH3 and ALKBH1 [2].
In addition, four m1A readers, YTHDF1-3 and YTHDC1,

were identified to interact directly with m1A to serve crit-
ical roles in the regulation of m1A-carrying RNAs [6].
YTHDF1-3 are three paralogs of the YTHDF family and
share high identity with sequence similarity of about 85%
[7]. YTHDC1 is significantly different from the YTHDF
family proteins in terms of amino acid sequence and pro-
tein size [8]. The common characteristic of YTHDF1-3 and
YTHDC1 is that they all have a YTH domain to serve vari-
ous biological functions. The domain has 100–150 residues
and is characterized by a curved six-strand beta sheet sur-
rounded by 4–5 alpha helices [9].

It has been shown that m1A regulators appear to
interact with mRNA m1A modifications through post-
transcriptional control mechanisms to perform a series of
biological functions. YTHDF1 can facilitate efficient pro-
tein translation [6,10], while YTHDF2 can lead to the in-
creased mRNA instability and control its lifetime [6,11].
YTHDF3 was considered to share some common binding
sites with both YTHDF1 and YTHDF2 [12], which sug-
gested that it may play a synergistic function with YTHDF1
and YTHDF2. It facilitates the gene translation by interact-
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ing with some ribosomal proteins to help YTHDF1 and par-
ticipates in the decay of mRNA to assist YTHDF2 [12]. In
addition to the YTHDF protein family, the role of YTHDC1
in regulating RNA is also pivotal. It was demonstrated to be
involved in pre-mRNA splicing by recruiting its associated
protein serine/arginine splicing factor SRSF3, which partic-
ipates in exclusion splicing and exon inclusion [13,14].

It is critical to understand the binding tendencies of
YTHDF1, YTHDF2, YTHDF3, and YTHDC1 and the rel-
ative downstream biological processes they regulate. Many
database websites of post-transcriptional modification sites
such as MeT-DB and RMBase [15,16] have been con-
structed, and different kinds of known human RNA mod-
ification sites are well-deposited in the websites such as
WHISTLE [17–19] or m6A-ATLAS [20], etc. [21–23]. Se-
quencing techniques such as iCLIP [24] or Par-CLIP [25]
have been developed, which are effective in identifying the
substrates of RNA binding proteins (RBPs), including m1A
regulators. However, there are usually two limitations of
these approaches. Firstly, the implementation of the wet-
lab experiment is time-consuming and laborious. Secondly,
the coverage is limited, with restricted identified sites on the
transcripts with low expression rates. Nevertheless, these
wet-lab experiments provide enough data for the computa-
tional methods to predict the future sites of interest, sav-
ing the laborious process of the wet-lab experiments. So
far, there have been many sequence-based prediction works
conducted, including iRNA-PseDNC [26], iRNA-Methyl
[27], m6A prediction [28], MutilRM [29] and RAM-ESVM
[30]. In addition to sequence features, genome-derived fea-
tures have been additionally incorporated in some recent
prediction works [17,31], showing a better prediction per-
formance compared to the convention methods.

YTHDF1-3 and YTHDC1 were often studied as m6A
regulators. However, how they interact with m1A to per-
form biological functions is poorly investigated. In this
work, we submitted the framework m1ARegpred (m1A
regulators substrate prediction), based on machine learn-
ing and the combination of both sequence- and genome-
derived features. Firstly, the site information was collected
from the wet-lab experiment data. Then, using eight se-
quence encoding methods and 56 genome features, the se-
quence information was converted to a format compati-
ble with the machine learning tasks. Support vector ma-
chine was selected as the machine learning algorithm in
the framework. Finally, the performance of the prediction
was evaluated using different metrics. The m1ARegpred
framework is expected to help identify the substrates of
m1A regulators, thereby providing a foundation for future
related research. In addition, we also analyzed the biolog-
ical characteristics of these regulators, including perform-
ing motif analysis of the substrates of each regulator and
exploring their biological functions through gene ontology
enrichment analysis (GO enrichment analysis). We hope
this bioinformatics framework may provide new opportu-

nities for future studies to understand the roles of m1A reg-
ulators in human bodies. The project code is available at
https://github.com/SXWuFJMU/m1ARegpred.

2. Methods and Materials
2.1 Data Collection

The transcriptome-wide m1A sites used in this study
were retrieved from the m6A-Atlas database [20], which
contains the wet-lab experiments data collected from four
different techniques including m1A-seq, RBS-seq, mi-
CLIP, and m1A-MAP. In the model construction, we used
the m1A regulators substrates collected from 11 datasets
obtained from three cell types. The target sites of four
RBPswere identified by either Par-CLIP [25] or iCLIP [24].
The data were all downloaded from Gene Expression Om-
nibus (GEO) repository. The detailed information on the
m1A regulator binding sites is summarized in Table 1 (Ref.
[10,12,14,32–36]).

The substrates of m1A regulators were considered as
positive sites by searching for the overlaps of m1A sites
and m1A regulators peaks. The negative sites were selected
randomly from the non-positive adenine sites in the same
m1A regulators peaks on the same transcript of the positive
sites. The ratio of positive sites and negative sites was kept
as 1:1.

Considering that the polyA selection may cause bias
in the experiment in the library preparation, we respectively
built the full transcript model and mature mRNA model
based on the datasets. In the prediction model of full tran-
script, both exon and intron binding sites were included,
while only exon binding sites were considered in the ma-
ture mRNA model.

2.2 Sequence-Derived Features
Eight sequence encoding methods were used, includ-

ing Kmer, ENAC, PS2, NCP, ANF, EIIP, PSTNP, and cor-
relation factor. In this study, the sequences with 41 base
pairs (bp) length flanking the target sites were used for en-
coding.

Kmer, enhanced nucleic acid composition (ENAC),
and position-specific of two nucleotides (PS2) are three
simple and effective methods. Kmer [37] provides 4K
features for each sequence, with each feature calculating
the frequency of each Kmer character occurring in the se-
quence. In this study, the dinucleotide was considered,
which means k equaled two. Therefore, each sequence was
encoded as 16 features representing the frequency of din-
ucleotides from “AA” to “UU”. ENAC [37] calculates the
nucleotide frequency in each k nucleotides. Therefore, a se-
quence of 41 bp length can be divided into (41- k) fragments
with base-pair length of k. Then four features representing
the nucleotide frequency (A, G, C, U) were encoded in each
fragment. In this study k equaled 3, therefore 152 features
were encoded for each sequence. PS2 [38] uses the one-hot
method to describe the dinucleotide in each position on the
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Table 1. Data source of m1A regulators identified by iCLIP or Par-CLIP.
Dataset Reader Site Cell line Technique Source

1
YTHDF1

762 Hela PAR-CLIP GSE63591 [10]
2 12906 HEK293T iCLP GSE78030 [32]

3
YTHDF2

820 Hela PAR-CLIP GSE49339 [33]
4 6784 HEK293T

iCLP
GSE78030 [32]

5 528 HNP1 GSE158020 [34]

6
YTHDF3

57 Hela PAR-CLIP GSE86214 [12]
7 6857 HEK293T iCLP GSE78030 [32]

8

YTHDC1

1258
Hela PAR-CLIP

GSE74397 [35]
9 453 GSE58352 [36]
10 1302 GSE71096 [14]
11 13845 HEK293T iCLP GSE78030 [32]

sequences. Every dinucleotide from the 1st position to the
40th position was represented by 16 dummy features.

The chemical properties of nucleotides (NCP) and
EIIP values of trinucleotides (EIIP) encode the sequences
considering their chemical characters. For NCP [28], the
nucleotide on each position on a sequence was encoded to
three dummy variables, respectively referring to whether
the nucleotide has the ring structures, hydrogen bonds, and
functional groups (amino group equals one and keto group
equals zero). Therefore, the i-th nucleotide on the sequence
were encoded as (1,1,1)/(0,1,0)/(1,0,0), or (0,0,1) respec-
tively for A, C, G, U. EIIP [39] describes the distribution of
electron-ion energies of a sequence. In this study, the dis-
tribution of electron-ion energies of trinucleotides was con-
sidered. For each sequence, 64 features representing differ-
ent trinucleotides (from AAA to UUU) were respectively
calculated as the product of the trinucleotide frequency and
the EIIP value, while the EIIP value of a trinucleotide is the
sum of the EIIP value of all three nucleotides (A, C, G, U
equals to 0.126, 0.134, 0.08 and 0.134).

For accumulated nucleotide frequency (ANF) [28],
41 features were generated from each position on the se-
quence. The feature of the i-th nucleotide is defined as
the frequency of that nucleotide in the first i nucleotides
in the sequence. For position-specific trinucleotide propen-
sity (PSTNP) [39], 39 features were generated to represent
the trinucleotides from the 1st to the 39th position on the se-
quence. The feature of the i-th trinucleotides was calculated
as Zplus minus Zminus, where Zplus refers to the frequency of
that trinucleotide on the i-th position in all positive data and
Zminue is the frequency of that nucleotide on the i-th position
in all negative data.

The Sequence-order-correlated factor [40] is an en-
coding method to incorporate the global sequence-order in-
formation. In this study the correlation factors considered
were from 1-tir to 5-tir, therefore there are five features
generated from each sequence. The λ-tier correlation fac-
tor was calculated as the average of the θ values of all the
λ-space contiguous dinucleotides in the sequence. For ex-

ample, for a sequence N1N2N3N4N5N6N7N8N9, there are
five pairs of 3-space contiguous dinucleotides from (N1N2,
N4N5)to (N5N6, N8N9). For each pair of λ-space contigu-
ous dinucleotides (NiNi+1 and Ni+λNi+λ+1), the θ value
was calculated as the mean of θ1 to θ6, that are respectively
the squre of the difference of six structural property val-
ues (twist, tilt, roll, shift, slide, and rise [41]) between two
dinucleotides. The structural property values were listed in
Supplementary Table 1.

2.3 Genome-Derived Features

56 genome features were applied in this study
to describe the genome information of the target
sites. All the genome features can be found in
the R “m6ALogisticModel” package (version1.0.1)
(http://www.rnamd.com/exomepeak2/). The genome
features can be divided into seven classes. Features 1–16
are dummy variables referring to whether the target sites
fall within a certain region on the transcript. The features
were generated using the GenomicFeatures R package [42]
using transcript annotations hg19 TxDb package. Features
17–20 describe the relative position of the target site on the
transcript, while features 21–29 indicate the length of the
region where the target site is located. Features 30–41 use
dummy variables to indicate whether the target site falls on
a certain motif while features 42–45 provide the conserva-
tion scores of the sites, including the Phast-Cons score [43]
and the fitness consequence scores [44]. Features 46–47
represent the RNA secondary structure around the target
sites using RNAfold from the Vienna RNA package [45].
Finally, features 48–56 describe the characters of the gene
or transcript containing the sites. The detailed information
is summarized in Supplementary Table 2.

2.4 Feature Selection

In machine learning, excess features may lead to over-
fitting, in which the statistical model fits too closely to the
training set, thus decreasing the accuracy of the future pre-
diction. Therefore, the features were selected to identify the
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most effective features for prediction. F-score [46] is an al-
gorithm often used in feature selection [34,47]. A feature
with a higher F-score shows better predictive attribution.
The F-score for the i-th feature is be defined as follows:

F-score i =

(
x
(+)
i − xi

)2
+

(
x
(−)
i − xi

)2
1

n+−1

∑n+
k=1

(
xk,i

(+) − x
(+)
i

)2
+ 1

n−−1

∑n−
k=1

(
xk,i(−) − xi

(−)
)2

where n+ and n− are respectively the number of positive
and negative training samples. xi, xi(+), xi(−) respectively
represent the average values of the i-th feature in whole,
positive and negative datasets. xk,i(+) and xk,i(−) respec-
tively denote the i-th feature of the k-th positive sample and
negative samples.

The incremental feature selection (IFS) method [46]
was used to perform the selection process. Specifically, we
ranked the features according to their F-score from high to
low. For N starting from one, we built the model using top
N features to see the performance. Then we repeated the
above steps, with N plus one each time. Finally, we chose
the feature number when the performance stops increasing.
AUROC and AUPRC were selected as the main metrics in
the evaluation of performance in the selection process.

2.5 Machine Learning and Performance Evaluation
At the beginning of the performance evaluation of the

models for each m1A regulator, the m1A regulator bind-
ing sites identified in the different experiments were mixed.
20% of the total datasets were sampled for independent test-
ing set and the remaining 80% of the sites were used for
model training. A 5-fold cross-validation was conducted
during the model construction.

In a real scenario, the sites of interest may come from a
completely different biological condition from the training
sites, such as different cell lines and techniques. To further
test the capability to predict the targeted sites under vari-
ous biological conditions, we then conducted dataset-level
cross-validation. In each round of the cross-sample test, the
datasets generated from each sample were used as an inde-
pendent testing set, while the remaining were mixed for the
training model.

The support vector machine algorithm (SVM) has
been previously used in mammalian miRNA target pre-
diction [48], pre-miRNA prediction [49], protein kinase-
specific phosphorylation sites prediction [50], and human
RNA methylation sites prediction [51,52]. Therefore, the
SVM with the radial basis function as the kernel function
was chosen to build the predictor in this study. We then
compared it with other machine learning algorithms, in-
cluding random forest, gradient boosting machines (GBM),
the k-nearest neighbors (KNN), and bayesian to ensure the
best performance of the model. The parameters in these
functions were set to default values. When verifying the
performance of the model, five common metrics were con-
sidered, including the area under the receiver operating

characteristic (AUROC) [53], the area under the precision-
recall curve (AUPRC), accuracy (Acc), sensitivity (Sn), and
specificity (Sp), where the receiver operating characteristic
is plotted by true positive rate (TPR) and false positive rate
(FPR), and the precision-recall curve is plotted by recall and
precision:

TPR/Sn/ Recall =
TP

TP + FN

FPR =
FP

FP + TN

Sp =
TN

TN + FP

Acc =
TP + TN

TP + FP + TN + FN

where TP refers to the number of true positives, and TN
refers to the number of true negatives. FP means false pos-
itive while FN means false negative. AUROC was chosen
as the main indicator. The model construction and perfor-
mance evaluation were conducted in R, and the machine
learning algorithm was from the caret package.

3. Results
3.1 Feature Selection

Sequence-derived features can reflect the intuitive
characteristic of the sequence flanking the targeted sites,
and genome-derived features show a new perspective in ef-
fectively predicting targeted sites. Previous studies have
shown that the combination of sequence- and genome-
derived features can obtain the optimal performance of the
prediction. Here, eight sequence encoding methods and
a series of genomic features were used to construct the
m1ARegpred model. Feature selection was conducted to
select the features most related to the m1A regulator sub-
strates to avoid over-fitting. The results of feature selec-
tion are shown in Fig. 1. The selected feature numbers
were around twenty. Among them, the YTHDF3 model,
either full transcript or mature mRNA, possessed the least
feature numbers. The full transcript model and mature
mRNAmodel of YTHDC1 requiredmore features, possibly
due to a larger training set. The genomic-derived features,
PSTNP, and correlation factor provided more features with
high predictive ability. The detailed results of feature se-
lection are summarized in Supplementary Fig. 1.

3.2 Performance Compared to Conventional Encoding
Methods

The feature combination obtained through a series of
selections showed high accuracy in prediction (Fig. 2). For
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Fig. 1. The results of feature selection (Detailed in Supplemen-
tary Fig. 1). There were nine types of features to be evaluated,
including eight sequence encoding methods and several genome
features. The features were ranked according to the F-score, and
the optimal feature subsets were selected using IFS method. Dif-
ferent feature combinations were selected for different regulator
predictors. PSTNP, correlation factor, and genome features pro-
vided more features for the final model constructions.

each m1A regulator, 80% of the total sites were used for
training, and five-fold cross-validation was performed on
the training data. For the remaining independent testing
set, AUROC and AUPRC were used to evaluate the perfor-
mance. On average, the m1ARegpred achieved AUROC
scores of 0.92 and 0.857, and AUPRC scores of 0.91 and
0.842 in the independent testing set for the full transcript
model and mature mRNA model respectively. We then
used single sequence-coding methods to build the model,
including Kmer, EIIP, ANP, and PSTNP. As expected, the
m1ARegpred framework of combining and selecting fea-
tures showed high accuracy, exceeding the performance of
using any sequence-derived features alone. The AUROC
score of the models are summarized in Table 2. Other com-
pared metrics, including AUPRC, ACC, Sn, and Sp were
listed in Supplementary Table 3. In the real scenario,
the frequency of the negative sites often overrides that of
the positive sites. Therefore, we then prepared unbalanced
testing sets with positive-to-negative ratio of 1:5 to further
evaluate the models. The m1ARegpred again showed the
highest performance among all the competing methods, as
shown in Supplementary Table 4.

We further evaluated the capability of our framework
to recognize the m1A regulator binding sites under differ-
ent biological conditions (Table 3). In this test, a dataset
level leave-one-out experiment was conducted, in which
the sites from each sample were selected as the testing set,
while the remaining datasets were mixed as the training set
to construct the model. In addition, we also evaluated the
performance of the single sequence encoding methods for
comparison. In the cross-condition test, our framework ob-
tained AUROC scores of 0.817 on the full transcript model
and 0.843 on the mature mRNA model, which again ex-
ceeded the single conventional sequence-derived features
(see Supplementary Table 5 for more details).

Fig. 2. Performance of the predictors. (A) The ROC curve (left)
and AUCPR curve (right) of the full transcript models. (B) The
ROC curve (left) and AUCPR curve (right) of the mature mRNA
models. The area under the receiver operating characteristic curve
(AUC) and the area under the Precision-Recal curve (AUPRC) are
the measures of the ability of the predictor to distinguish between
two classes. Generally, the scores of all the predictors were high
(over 0.8).

3.3 Comparison of Different Machine Learning Algorithms

Support vector machine (SVM) is one of the most
widely used algorithms [19,51,54–56], which shows sta-
ble prediction performance. However, to verify the ratio-
nality of choosing SVM as the machine learning algorithm
to build our proposed models, the performances of SVM,
GBM, random forest, KNN, and bayesian were compared
for the prediction of m1A regulator binding sites on the full
transcript model and mature mRNA model respectively.
The metrics used for evaluation include AUROC, AUPRC,
Acc, Sn, and Sp. The average scores of different machine
learning algorithms are shown in Fig. 3 (see detailed pre-
diction results in Supplementary Table 6). Among all the
machine learning algorithms, SVM, random forest and gra-
dient descent machines show the highest performances on
the independent testing set. Finally, SVM was chosen for
our framework to predict target sites. The KNN perfor-
mance is quite competitive, which indicated that the se-
quences are possibly highy homologous. Therefore, a CD-
HIT-EST with cut-off of 0.8 was applied to the datasets to
reduce the redundacy prior to the model constructions. The
results showed that the performances were little affected by
the potential redundancy (Supplementary Table 7).

3.4 Motif Analysis

To better understand the sequence pattern that may
contribute to the prediction, motif analysis was performed
on the m1A regulator substrates using XSTREME with de-
fault parameters from the MEME suit [57]. YTHDF family
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Table 2. Prediction performance on the independent testing set (AUROC).
Full Transcript Model

Method YTHDF1 YTHDF2 YTHDF3 YTHDC1 Average
m1ARegpred 0.935 0.891 0.900 0.952 0.920
Kmer 0.819 0.757 0.771 0.834 0.795
EIIP 0.843 0.830 0.803 0.859 0.834
ANP 0.671 0.661 0.649 0.678 0.665
PSTNP 0.829 0.800 0.809 0.842 0.820

Mature mRNA Model

Method YTHDF1 YTHDF2 YTHDF3 YTHDC1 Average
m1ARegpred 0.863 0.860 0.863 0.843 0.857
Kmer 0.699 0.679 0.697 0.707 0.696
EIIP 0.729 0.710 0.720 0.727 0.722
ANP 0.605 0.624 0.641 0.624 0.624
PSTNP 0.769 0.787 0.802 0.770 0.782

Table 3. Prediction performance on the independent sample testing set (Average AUROC of the independent testing sets).
Full Transcript Model

Method YTHDF1 YTHDF2 YTHDF3 YTHDC1 Average
m1ARegpred 0.740 0.859 0.840 0.828 0.817
Kmer 0.571 0.713 0.575 0.640 0.625
EIIP 0.639 0.762 0.574 0.699 0.669
ANP 0.572 0.617 0.563 0.613 0.591
PSTNP 0.657 0.773 0.672 0.702 0.701

Mature mRNA Model

Method YTHDF1 YTHDF2 YTHDF3 YTHDC1 Average
m1ARegpred 0.868 0.881 0.819 0.831 0.843
Kmer 0.589 0.703 0.593 0.643 0.629
EIIP 0.637 0.757 0.666 0.696 0.673
ANP 0.585 0.660 0.602 0.652 0.619
PSTNP 0.749 0.817 0.699 0.760 0.756

Fig. 3. Comparison of different machine learning algorithms
(Detailed in Supplementary Table 6). The performance of each
algorithm was calculated as the average value of eight models.
AUC, AUPRC, Acc, Sn, Sp were evaluated, and SVMwas finally
chosen for the models.

proteins andYTHDC1were often studied as the regulator of
m6A, thus their biological characteristics asm6A regulators

have been well-addressed. In this study, the proteins were
studied as m1A regulators. The training data were used to
analyze the substrates of m1A regulator binding sites and
explore the regulator function of the YTHDF family pro-
teins and YTHDC1 as m1A regulators. The most enriched
motif of each regulator substrate is shown in Fig. 4. Sim-
ilar to the previous study, m1A sites tend to locate within
a GC-rich context [5]. The result also suggests that some
targeted sites showing a “GGUUCRA” motif in all of the
regulators, including YTHDF1, YTHDF2, YTHDF3, and
YTHDC1. This is consistent with previous studies which
found that a small part of m1Amodifications shows a “GU-
UCRA” motif [58,59].

3.5 GO Enrichment Analysis

To explore the correlation amongm1A regulator, m1A
modification, and biological function, GO enrichment anal-
ysis was performed using DAVID websites [60]. Fig. 5
shows the top five relative GO biological process terms
of each regulator. YTHDF1 substrates are enriched un-
der the GO terms of translational initiation and cytoplas-
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Fig. 4. Motif analysis of the reader substrates using
XSTREME. The positive training data were used for motif dis-
covery. Four regulator substrates showed a similar motif of “GU-
UCRA”.

mic translation, which is supported by the previous stud-
ies that YTHDF1 is involved in mRNA catabolic pro-
cess and translation initiation [6,10]. It was found that
in the YTHDF1 knockdown samples, the ribosome-bound
mRNA reads were significantly lower than that in the con-
trol samples, which results in a decreased translation effi-
ciency [10]. YTHDF2 targets are associated with nonsense-
mediated decay, which corresponds to our knowledge that
it is related to the decrease of the mRNA stability [6,11] and
accelerates the degradation of m1A-carrying transcripts [6].
It was found that the depletion of cellular YTHDF2 led to
the increase of m1A-containing mRNA, while the increase
of m1A levels through depleting the m1A eraser ALKBH3
led to the destabilization of m1A-modified mRNA [61].
YTHDF3 is related to translational initiation and nonsense-
mediated decay, which was reported to coordinate with
YTHDF1 and YTHDF2 respectively in translation initia-
tion and mRNA decay [12]. YTHDC1 is reported to be in-
volved in mRNA splicing according to the GO enrichment
analysis, which is supported by its interactionwith the splic-
ing factor SRSF3 in exon inclusion and exclusion splicing
[13,14]. It recruits SRSF3 and prevents SRSF10 binding to
help exon inclusion [14].

Fig. 5. Gene ontology enrichment analysis of the regulator
substrates. The top 5 GO terms of each regulator are shown.

4. Conclusions
In this study, we report a model based on SVM al-

gorithm to predict the substrates of m1A regulators, in-
cluding YTHDF1-3 and YTHDC1. Due to the bias in the
poly-A selection process in the experiment, full transcript
models and mature mRNAmodels were respectively made.
Eight sequence-encoding methods and a series of genome-
derived features were selected for the most effective feature
combination. Our framework achieved high performance
in both independent testing set and cross-sample testing
set. Then we used different sequence-derived features sub-
sets to perform the same procedure to build the predictor
as comparisons. The result shows that our framework had
higher performance than using the conventional sequence
encoding method. Different machine learning algorithms
were compared, and SVMwas finally chosen for the model.
Subsequently, motif analysis and gene enrichment analysis
were conducted to explore the biological functions medi-
ated by YTHDF1-3 and YTHDC1. The results of motif
analysis show that some substrates of the regulators rep-
resent a “GUUCRA” motif, which is consistent with our
knowledge. Our GO analysis results also provide additional
evidence to the findings in previous wet-lab experiments
studies.

In addition, there are some limitations to be improved
in future studies. Firstly, it is found that the prediction per-
formance on the cross-sample testing set is lower than that
on the independent testing set. It may be due to the subtle
inconsistency between different techniques or the different
modification rates among various cell lines [62,63]. Sec-
ondly, the performance can be further improved. Recent
studies applying the deep learning algorithms showed effec-
tiveness in site predictions [64–66]. Therefore, increasing
the current genome features or applying the deep learning
algorithm may contribute to better performance. Thirdly,
due to different attention paid to various RBPs, there are
not enough data for prediction for some of the RBPs. Cur-
rently, the wet-lab experiments only provide enough data
for four readers, with the m1A methyltransferases (writers)
and m1A demethylases (erasers) to be identified.
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