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Abstract

Genomic mutations are the driving force of biological diversity but they are also the cause of a plethora of human diseases ranging from
heritable disorders to neurological pathologies and cancer. For most genetic disorders, there is no curative treatment available to date.
The demand for precise, preferably patient-specific, treatment regimen offering cure is naturally high. Genome editing by Zinc Finger
Nucleases (ZFNs), Transcription Activator-Like Effector Nucleases (TALENS), and Clustered Regularly Interspaced Short Palindromic
Repeats (CRISPR)/Cas enables targeted manipulation of genomes, thereby offering the opportunity to treat such diseases. While ethical
and regulatory guidelines need to be developed and considered, the prospect of genome editing for curative treatment is certainly exciting.
Here, we review the current state of therapeutics based on genome editing techniques. We highlight recent breakthroughs, describe clinical

trials employing genome editing-based medicine, discuss the benefits and pitfalls, and take a look into the future of genome editing.
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1. Introduction

The term genomic mutation denotes an alteration in
the nucleic acid sequence of an organism’s genome [1].
Irrespective of whether changes occur in coding or non-
coding regions, mutagenesis can lead to silent/synonymous,
loss-of-function, or gain-of-function mutations [2—4]. The
latter two are the actual main generators of functional di-
versity, and they will be sampled by natural selection, the
driving force of evolution [2—6]. Thus, nature has a forward
genetic screening strategy.

On the other hand, and from a human-centric point
of view, these mutations can lead to genetic disorders [7].
Hitherto, up to 8000 monogenic diseases [8], i.e., diseases
that arise due to mutations in a single gene, and several ge-
netic mutations associated with cancer [9] have been clas-
sified. In order to offer a permanent cure to such disorders,
targeting and/or replacing mutated genes using reverse ge-
netics constitutes an attractive therapeutic approach. Con-
ventional gene therapy involves the complete replacement
of defective genes or gene products with a wild type gene
using viral vectors [10,11]. Initial attempts employing ex
vivo retrovirally modified cells were met with limited suc-
cess, were accompanied by severe side effects, and resulted
in death of one patient due to a strong immune response
[12-15]. Currently, about 20 conventional gene therapy
products are approved by the US Food and Drug Admin-
istration (FDA) [11]. Major points of concern include po-
tential severe immune reactions in response to treatment,
insufficient clarification of long-term adverse side effects,
and potential risk of oncogenesis, mainly due to virus-
dependent gene transfer [14,16,17]. Targeting the mutated

part of a gene directly and specifically could avoid the risk
of insertional oncogenesis associated with traditional gene
therapy. A targeted approach would allow more precise
treatment and potentially result in a lower rate of adverse
events.

Exploiting genetic alterations has a long history in hu-
mankind, but the development of modern genetics by Gre-
gor Mendel and others in the 19th and 20th century marked
a major step in this regard [18-20]. The discovery of re-
striction enzymes during the 1970s and the discovery of
meganucleases, which induce DNA double strand breaks
(DSBs) at specific genomic sites, opened the doors to tar-
geted DNA modifications in test tubes and cells [21-23].

Such targeted DNA modifications were, and still are,
mainly based on the induction of DSBs by endonuclease ac-
tivity followed by their resolution through cellular DNA re-
pair [24]. DNA repair events are mainly controlled by two
different pathways: non-homologous end joining (NHEJ)
or homology-directed repair (HDR) [25]. NHE] is an error-
prone pathway that results in the generation of small nu-
cleotide insertion and deletion (indel) mutations (indels),
and it is widely exploited to generate gene knockout (KO)
models [26]. The HDR pathway is largely restricted to the
G2/S phase of the cell cycle and it is employed for the gen-
eration of knock-in (KI) models through the co-delivery of
a donor template [27,28].

Currently, three major methods make use of genomic
targeting combined with endonuclease activity to mediate
gene KOs and KIs:

(1) Zinc Finger Nucleases (ZFNs) represent the first
developed modular genome editing technique. ZFNs are
engineered by fusing a DNA-binding domain of zinc finger
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proteins with a non-specific catalytic domain of the FokI
endonuclease [29,30];

(2) The DNA-binding protein Transcription Activator-
Like (TAL) Effector, combined with FoklI termed TAL ef-
fector nuclease (TALEN) represented a huge leap following
ZFNs [31-33];

(3) The discovery of Clustered Regularly Interspaced
Short Palindromic Repeats (CRISPR) paved the way to the
development of the most widely applied genome editing
method [34-37]. Thanks to the simultaneous effort of sev-
eral groups, the CRISPR/Cas system has been developed
and is since employed by myriads of researchers to gener-
ate gene KO and KI models [38—45]. Here, the bacterial
endonuclease Cas9 is combined with a short guide RNA
(sgRNA) to mediate its guidance to a specific genomic re-
gion [38—45].

We envision the following aspects to be carefully con-
sidered when planning to use genome editing for therapeu-
tic purposes (e.g., correction of a deleterious mutant):

(1) it needs to be efficient to reliably result in genome
editing;

(2) it needs to be specific, because any undesired edit-
ing (i.e., off-target effect [46]) in the genome increases the
risk of side effects;

(3) it needs to be feasible, i.c., target selection and
manufacturing process need to be straight-forward and easy
to apply;

(4) it needs to be affordable to enable accessibility to
every patient, at least for the foreseeable future.

Taking all these aspects into account, a comparison of
the three tools as potential therapeutic options can be made.

ZFNs resulted from basic research on zinc finger pro-
teins [29,47-50]. Three zinc fingers, each recognizing 3
bp of DNA sequence on each strand, must bind to facili-
tate FokI dimerization to enable DNA cleavage [29,47-50].
The main caveats of ZFNs are low specificity, low effi-
ciency, high time- and labor-intensity regarding target se-
lection and manufacturing process, and low selectivity due
to the high sequence prerequisites [51,52]. It has to be men-
tioned, however, that ZFN target range, specificity and ef-
ficiency can be increased, e.g., by altering their structural
properties [53].

TALENSs are derived from TAL effectors, secreted
virulence factors of the plant pathogen Xanthomonas [31].
As ZFNs, TALENs are fused to Fokl, thus requiring a
pair of TALENS facilitating Fokl dimerization and DNA
cleavage [31-33]. Compared to ZFNs, TALENSs offer in-
creased efficiency, easier design, higher selectivity because
DNA recognition relies on single bases instead of triplets,
and offer lower risk of off-target effects as well as re-
duced cytotoxicity [31,54,55]. Although some studies re-
port CRISPR/Cas- or ZFN-mediated editing of mitochon-
drial DNA, TALENS are currently the only reliably demon-
strated tool to target and manipulate mitochondrial genomes
[56-59]. A clear disadvantage of TALENS is their consid-

erably larger size (3 kb) compared to ZFNs (1 kb), because
larger plasmids can be challenging to assemble, clone and
deliver into cells [60].

CRISPR/Cas-mediated genome editing is by far the
most prominent and promising technique. It offers high
editing efficiency and although risk of off-target effects
in theory was initially higher compared to ZFNs and es-
pecially TALENS, sophisticated stringent guide selection
algorithms have rendered it presumably the most specific
of the three techniques to date [61,62]. Combining these
features with exceptional ease-of design and ease-of-use,
CRISPR/Cas-mediated genome editing has made its way
rapidly into everyday laboratory work [40]. Continuous im-
provements, especially regarding efficiency, target selec-
tion, off-target avoidance, and delivery (the latter is, e.g.,
reviewed here: [63]), have been implemented rapidly and
are still ongoing.

In order to introduce a DSB, the Cas9 protein from
Streptococcus pyogenes requires the binding of a sgRNA
sequence termed protospacer to a matching genomic DNA
sequence that is followed by a three nucleotide (NGG)
protospacer-adjacent motif (PAM) [64]. CRISPR/Cas9 has
been widely exploited as a versatile tool for genome editing
and, with the above constraints, allows targeting of nearly
any genomic region of interest. However, for those DNA
regions that cannot be targeted with CRISPR/Cas9, other
Cas variants (e.g., Casl2a) or engineered Cas that rely on
different PAMs can be harnessed to overcome the described
target restriction [65—67].

Regarding the economical aspect, it has to be noted
that any therapeutic intervention based on genome edit-
ing is currently associated with tremendous cost. The con-
ventional gene therapy product Zolgensma currently costs
approximately 1.9 mio € per treatment course and can
thus serve as an estimate for one-time administration of
genome editing-based treatment [68]. In general, patent
fees, the need of dedicated teams of scientists and physi-
cians working together to treat single patients, and need
for hospitalization and treatment of the patients strongly
contribute to the high costs [69,70]. In addition, manufac-
turing of genome-edited cells ex vivo, e.g., hematopoietic
stem and progenitor cells (HSPCs), on a treatment scale re-
quires large amounts of expensive reagents with good man-
ufacturing practice grade as well as careful monitoring of
cell quality prior reinfusion into patients [71]. Although
this is certainly irrespective of the actual method applied,
CRISPR/Cas has a huge edge here, not least because it is
widely used, thus enabling tremendous progress in short
time.

Choice of delivery is another important aspect with re-
spect to genome editing-based medicine and a variety of
methods including viral and non-viral vectors can be po-
tentially used [72,73]. Discussion of advantages and pit-
falls of delivery for genome editing approaches is an exten-
sively complex topic on its own and beyond the scope of
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Table 1. Comparison of genome editing methods.

Genome editing method ZFN TALEN CRISPR/Cas9
Average editing efficiency ! Low Mid-High High
Editing specificity High High High 2

Target design

target, requires optimization

Cost (including labor) High
Prerequisites of guide selection High

Protein engineering for every

Protein engineering for Short guide sequence of

every target around 20 nt length
Medium Low

Low—Very low Low

Based on information from [61,62,75-84].

L Average editing efficiency refers to the editing efficiency which can be routinely achieved with any of the methods

independent of individual targets. In general, both ZFNs and TALEN can also achieve high editing efficiency.

2 Due to sophisticated algorithms drastically reducing off-target effects.

this review. For a detailed overview, the interested reader
is referred to a review addressing this aspect [74].

A summary of the properties of the three main es-
tablished genome editing methods described here with re-
spect to clinical applicability can be found in Table 1 (Ref.
[61,62,75-84])).

2. CRISPR/Cas-Mediated Genome
Editing-Based Therapy: A Success Story

CRISPR/Cas-mediated genome editing and its poten-
tial application in human patients has made a lasting im-
pact also in the public perception [85]. Remarkably, and
in contrast to other prominent examples of “gene technol-
ogy” such as human cloning [86], CRISPR/Cas has come
to clinical application in record-breaking speed. And it
has done so with great success. The individual stories
of Victoria Gray and Jimi Olaghere, two patients suffer-
ing from sickle cell disease (SCD) who have recovered
tremendously in response to treatment with CRISPR/Cas-
mediated genome editing, are proof of that [87,88]. Much
hope thus lies in currently ongoing clinical trials. In addi-
tion, ZFN- and TALEN-based therapies are also under in-
vestigation and envisioned as potential therapeutic regimen
in clinical trials. Although they are less popular compared
to CRISPR/Cas because of the limitations listed above, the
theoretically higher specificity due to more restricted target
recognition could render them safer for clinical application.
The current status of clinical trials employing either of the
aforementioned genome editing methods is described in the
next section.

3. Current Status of Clinical Trials

To analyze the current status of clinical trials, we ac-
cessed the National Institute of Health (NIH) ClinicalTri-
als.gov study database. Although we cannot rule out to
miss single studies by using this approach (e.g., not all stud-
ies need to be registered), the database includes worldwide
studies, and thus provides a comprehensive, easily accessi-
ble, and publicly available overview. As of 2022-06-01, the
NIH study database returns a list of 88 hits when queried for
the search terms “CRISPR OR TALEN OR ZFN OR ‘zinc
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finger nuclease’ OR ‘genome editing”’. Manual correction
for long-term follow-up studies of already completed stud-
ies (8), studies withdrawn before initiation (5), or purposes
unrelated to treatment (21), such as the use of genome edit-
ing for diagnostic test development or disease modelling,
yields 54 hits.

The majority of these studies is associated to CRISPR
(37), followed by ZFN (12), and TALEN (5) (Fig. 1A). For
the sake of simplicity, we assigned the one study planning
to evaluate both CRISPR and TALEN to both CRISPR and
TALEN, whereas we assigned the single study planning to
employ CRISPR base editing to CRISPR.

Most of the studies (Fig. 1B), however, have not yet
started and are in the phase of planning or recruiting pa-
tients (34). Eight studies are listed as completed, the ma-
jority investigating ZFNs for a potential cure of human im-
munodeficiency virus (HIV) infection (6), and two stud-
ies investigating CRISPR/Cas-mediated genome editing for
treatment of solid cancer. Eight studies are listed as ac-
tive, half of them employing ZFNs and the other half em-
ploying CRISPR-based treatment. The ZFN-based stud-
ies aim at treatment of HIV infection (3), and Transfusion-
Dependent Beta-thalassemia (TDT, 1). The CRISPR/Cas-
based studies aim at treatment of TDT (2), SCD (1), and
refractory viral keratitis (1). Five studies planning to treat
cancer were withdrawn before initiation, the majority of
them CRISPR/Cas-based (4) and one based on TALENS.

Three studies employing ZFNs to treat Mucopolysac-
charidosis I, Mucopolysaccharidosis 11, and Hemophilia B
were listed as terminated with the subjects being treated
moved to long-term follow-up studies. Additionally, one
study employing CRISPR/Cas-mediated genome editing
for the treatment of advanced cancer was listed as termi-
nated, although results of this study are actually published
[89]. The eight studies with unknown status are comprised
of CRISPR/Cas- (6), TALEN- (1), and ZFN-based (1)
genome editing. The 29 studies listed as planned/recruiting
are mainly comprised of CRISPR/Cas-mediated genome
editing approaches (24), with the vast majority (14) of them
employed to treat hematologic malignancies (9), solid tu-
mors (5), and SCD/TDT (4). The remaining studies listed as
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No. of registered Studies

Study Status

C

Targeted Disease

Planned/Recruiting |
Completed/Terminated{ .
Unknown+ |

Active

Hematologic Cancer+{
Solid Tumor I
CRISPR CRISPR
W ZFN HIV infection W zFN
TALEN TALEN
SCD/TDT- l

Other

0 10
O CRISPR M zFN E TALEN

No. of Studies

30 0 5 10 15
No. of Studies

Fig. 1. Studies enlisted in the clinical trials database. Details are shown for distribution of genome editing methods by total number

of studies (A), by study status (B), and by targeted disease (C).

planned/recruiting include one application of ZFNss to treat
SCD and four studies employing TALENS to treat hemato-
logic malignancies (3) and solid tumors (1).

In terms of disease (Fig. 1C), the majority of regis-
tered CRISPR/Cas-based studies targets cancer (total: 23,
hematologic: 13, solid: 8, both hematologic and solid:
2), followed by SCD (4), TDT (3), and HIV infection (2).
Nine out of 17 studies listed for ZFN target HIV infection,
whereas the five studies employing TALENSs aim at curing
cancer (3) or treat precancerous lesions (2).

4. Published Study Results

In contrast to the many studies listed in the clini-
cal trials database of the NIH, only few (7) are associated
with peer-reviewed publications describing their results or
at least partial results thereof. To provide the most reliable
overview of the current state of genome editing-based trials,
we focused on these studies. There are certainly many inter-
esting approaches in the pipeline or already applied in clini-
cal studies, but the outcome cannot be certain and available
data are limited. Results of four further studies are either
submitted (2) or already available (2) in the clinical trials
database. Whether this implies failure of the majority of
studies supposed to be already completed or whether their
outcomes simply have not been reported yet, remains to be
seen. Nonetheless, the results that are published are promis-
ing, especially regarding the safety of the approaches. A
summary of the study results described in the following sec-
tions can be found in Table 2 (Ref. [89-95]).

4.1 Treatment of HIV Infection

The first published results involving genome editing
for the treatment of HIV infection aimed at disrupting the
C-C motif chemokine receptor 5 (CCR5) gene encoding for
an important viral co-entry receptor by adeno-associated
virus (AAV)-mediated transfer of a CCRS5-targeting ZFN
[90]. The reinfusion of edited autologous CD4™ T-cells
was demonstrated to be safe and feasible, with editing ef-
ficiencies ranging from 11-28% [90]. Because AAV-based
delivery is associated with immune complex formation po-

tentially beneficial for viral replication [96], the same group
later employed mRNA-based delivery of a CCR5-targeting
ZNF, reaching similar overall editing efficiencies of 10—
34% [91]. The infusions of genome-edited autologous
CD47 T cells were again generally well-tolerated, but re-
sulted in only delay of viral rebound after removal of an-
tiretroviral therapy (ART) without achieving HIV clear-
ance, probably due to the relatively low editing efficiency
[91].

In another published case report, the authors described
CRISPR/Cas-based treatment of a patient with acute lym-
pathic leukemia (ALL) and a coexisting HIV infection
[95]. Transplantation of healthy donor cells with a genome-
edited CCRS locus into the patient led to full leukemia re-
mission [95]. Unfortunately, however, cure of HIV infec-
tion was not achieved, presumably because of low gene
editing efficiency (18%), requiring continuation of ART
[95].

4.2 Treatment of Cancer

Most of the currently active and recruiting studies aim
at treating a variety of hematologic cancers and solid tu-
mors. Chimeric antigen receptor (CAR) T (CAR-T) cell
therapy already provides a means for treatment of certain
large B cell lymphoma after failed systemic treatment regi-
men [97], and several promising reports show how genome
editing may aid in improving efficiency of these therapies.
Particularly, targeting the checkpoint gene programmed
cell death 1 (PDCDI) is the focus of current research in
this context. One study reported electroporation of CAR-T
cells with plasmids encoding for Cas9 and sgRNAs target-
ing PDCD] resulting in editing efficiencies of 0.4-24.9%
[92]. The infusion of autologous genome-edited T cells was
well tolerated, but in terms of therapeutic potential only
a small impact could be observed in the respective study
group [92].

Improving T cell receptor (TCR)-based therapy [98]
by CRISPR/Cas-mediated genome editing is another major
research target. A report from a terminated study including
three patients with refractory cancer, described the
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Table 2. Clinical trials with published results.

Study- n  Method Disease Cell Type Target gene Outcome Delivery of genome editing Editing efficiency NCT Number (Status)

associated (gene symbol) components

publication

[89] 3 CRISPR refractory advanced myeloma (2), T cells TRAC/TRBC/PDCD1  safe & feasible RNP by electroporation 45/15/20% NCT03399448 (T)

refractory metastatic sarcoma (1)
[90] 12 ZFN HIV CD4+ T cells CCR5 safe & feasible adenovirus 11-28% NCT00842634 (C)
[91] 14 ZFN HIV CD4+ T cells CCR5 Delay in viral rebound after ART mRNA by electroporation 10-34% NCT02388594 (C)
withdrawal; safe & feasible
[92] 12 CRISPR NSCLC T cells PDCDI safe & feasible; low response rate plasmid DNA by 0.4-24.9% NCT02793856 (C)
electroporation
[93] 45 (2*) CRISPR TDT, SCD HSPCs BCL11A4 Strong improvement of health RNP by electroporation 69/78-83% NCTO03655678/NCT03745287
status (0/0)
[94] 74 (6*%) CRISPR TTRA Hepatocytes TTR Strong reduction of protein sgRNA and Cas9 mRNA by  73% (whole liver of NCT04601051 (O)
serum concentration, safe ApoE-coated lipoparticles ~ cynomolgus monkeys)

[95] 5(1*) CRISPR HIV + ALL HSPCs CCR5 Remission of ALL, no cure of Plasmid DNA by 18% NCT03164135 (U)

HIV infection electroporation

*: Number of patients described in the associated study. Table is ordered by study status. Study status abbreviations: T, Terminated; C, Completed; O, Ongoing; U, Unknown.
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electroporation of ribonucleoprotein (RNP) complexes con-
sisting of Cas9 and sgRNAs targeting T cell receptor alpha
constant, T cell receptor beta constant and PDCD1, achiev-
ing editing efficiencies of 45, 15 and 20%, respectively
[89]. This is inasmuch remarkable as three genes were tar-
geted simultaneously and still moderate editing efficiencies
were achieved. The infusion of autologous T cells was re-
ported to be safe and one patient showed signs of tumor
remission [89].

4.3 Treatment of Monogenic Diseases

Another group of diseases targeted by genome edit-
ing enlisted in the NIH study database are monogenic dis-
eases which offer the potential for cure if the respective re-
sponsible gene can be repaired or knocked out. One of the
most prominent examples includes two patients, one suf-
fering from TDT and the other from SCD. Both diseases
are caused by mutations in the S-globin (HBB) gene result-
ing in dysfunctional erythrocytes [99—101]. While adult
hemoglobin consists of o and 5 chains, fetal hemoglobin
consists of a and y chains [99-101]. During the course
of development, y-globin (HBG) gene expression declines,
thus fetal hemoglobin levels are reduced [99-101]. Sup-
pression of HBG expression is mediated by the transcrip-
tion factor BCL11A [102,103]. Intriguingly, it has been ob-
served that patients with single nucleotide variants (SNVs)
in BCL114 display a less severe phenotype, because main-
tained levels of fetal hemoglobin can compensate for the
malfunctioning adult form [102,103]. In particular, these
SNVs were found to be present in an erythroid-specific
enhancer site causing increase in fetal hemoglobin levels
by suppression of BCL1IA expression in erythroid cells
[104,105]. To suppress BCL11A expression, the authors of
the described study delivered RNPs targeting the erythroid-
specific enhancer region of BCL11A by electroporation into
HSPCs, yielding high editing efficiencies of 69%, and 78—
83%, respectively [93]. Following chemotherapeutic abla-
tion of bone-marrow cells, reinfusion of autologous stem
cells dramatically improved the health status of both pa-
tients [93]. Although this approach combines invasive
procedures and chemotherapy, all with their own harm-
ful side effects [106], it clearly marks a highlight of mod-
ern translational medicine. Because the approach aims at
reducing BCL11A expression by targeting the erythroid-
specific enhancer rather than the coding region, other phys-
iological functions are unaffected [107]. Additionally, in-
terim results published from a study aiming at treatment
of transthyretin (TTR) amyloidosis (TTRA) are promising:
here, the disease-causing T7R gene is targeted in vivo by
a sgRNA which is delivered specifically to liver cells by
lipoparticles or lipid nanoparticles [94]. Since liver cells
are responsible for 99% of this protein’s production and
genome editing resulted in up to 96% reduction of circulat-
ing protein, these results are very promising [94]. The study
is still ongoing and it will be crucial to obtain a long-term

safety and efficacy profile in a larger number of patients.

Taken together, the listed studies show promising
initial results and will further accelerate application of
CRISPR-based therapeutic cures for a variety of diseases.
Additional clinical trials conducted by pharmaceutical com-
panies are also in different stages of development, but the
data thereof are most often based on company press releases
and are thus either limited or inaccessible.

5. To Break or not to Break: The Future of
Translational Genome Editing

5.1 To Break: Improving Conventional
CRISPR/Cas-Mediated Genome Editing

Although the potential of CRISPR/Cas-based thera-
peutics appear to be limitless, failures of previous gene
therapy-based clinical trials [108] demand caution for a
treatment option. Two major issues are important in this re-
gard: (1) off-target cleavage caused by unspecific sgRNA
binding [109—113], and (2) predominant activation of error-
prone NHEJ repair following the induction of genomic
DSBs [114,115]. Although there is currently no consen-
sus about an off-target edit threshold and this is likely cell
type-dependent, testing the sgRNA in patient-derived cells
followed by targeted deep sequencing [116] is most likely
necessary since human lives are at stake.

Stringent bioinformatics-based sgRNA selection, us-
age of Fokl fused to catalytically dead Cas9 (dCas9), us-
age of naturally occurring or designed Cas variants, as
well as structural optimization of sgRNAs, e.g., by vary-
ing length or chemical modification, have shown to result
in greatly enhanced on- vs off-target binding and cleav-
age [117-122]. In addition, the presence of SNVs for a
given target complicates allele-specific target design and
can decrease or even abolish CRISPR efficiency if not
considered [123—-125]. Patient-specific sequencing of the
genomic region surrounding the sgRNA target sequence
should thus be standard practice to optimize sgRNA tar-
get selection. Another way of reducing off-target edits is
the Cas9 nickase approach, which makes use of engineered
Cas9 producing genomic single strand breaks (nicks) by
mutating one of the two catalytically active endonuclease
domains of Cas9, each of which targets only one DNA
strand [126]. Therefore, DSBs and thus NHEJ/HDR are
only activated if both strands are nicked in close proxim-
ity, otherwise non-mutagenic high-fidelity base excision re-
pair (BER) prevents genomic mutations [126,127]. This ap-
proach, however, requires target-restricting selection of two
sgRNAs and transfection of two considerably-sized plas-
mids or RNPs [128,129].

Although HDR does not strictly rely on DSBs [130],
they strongly increase its efficiency [131]. A certain degree
of risk due to random integration of donor templates should
be considered in addition [132]. The delivery of single-
stranded DNA oligonucleotides can solve this risk, but is
only feasible for the correction of few nucleotides [133].
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5.2 Not to Break: Base and Prime Editing

The more pressing problem especially when precise
editing is required, however, is related to the induction
of DSBs and consequent activation of the NHEJ pathway
in general [114,134,135]. Although repair is not literally
random [136], indels are always distributed along patterns
[137]. One individual desired specific indel cannot be
reliably predicted and thus the repair is, in the practical
sense of the word, random after all. This is inherent to
any DSB-based genome editing method. While certainly
tolerable in a research laboratory setting or even in case
of gene KO-based treatment, NHEJ precludes precise and
predictable repair, e.g., tailored repair of disease-causing
SNVs [138,139].

CRISPR/Cas-mediated genome editing options inde-
pendent of DSBs can circumvent this issue. The concept
of base editing (BE) relies on deamination of either deoxy-
cytidine (cytosine base editors: CBE) or deoxyadenosine
(adenosine base editors: ABE) in the sgRNA-defined tar-
get region [140—-142]. The resulting “mutagenic interme-
diates” deoxyuridine (in case of CBE) or deoxyinosine (in
case of ABE) are repaired mainly by cellular BER, result-
ing in C/G -> T/A (CBE) and A/T -> G/C (ABE) base
pair conversion [140—142]. Combinatorial use of CBE and
ABE as well as targeting of mitochondrial DNA have also
been reported [143,144]. Because single nucleotides can
be edited specifically, BE-based treatment of monogenic
diseases caused by distinct SNVs seems feasible. Indeed,
promising results from preclinical models targeting disease-
causing SNVs have been reported [ 145—150]. Intriguingly,
the most recent study registered in the NIH clinical trials
database (NCT05397184) plans to use CAR-T cells mod-
ified by BE. Several pharmaceutical companies have also
developed drug candidates based on BE and will probably
start to test them in clinical trials in the near future. It has to
be noted, however, that it is difficult to evaluate the progress
reported by companies from an outside point of view as
no peer-reviewed published data is currently publicly avail-
able.

Because BE-mediated genome editing does not in-
duce DSBs, the prevalence of indels is negligible [140].
The main disadvantages of BE-based genome editing are
in consequence unintentional deamination due to unspe-
cific sgRNA targeting or unspecific deaminase activity,
and introduction of bystander mutations by potential con-
version of any mutable nucleotide in the editing window
[141,151-154]. Efficiency of CBE has been improved by
fusing an uracil glycosylase inhibitor to dCas9, while gen-
eral BE efficiency is elevated by employing Cas9 nickase
thereby favoring mutagenic intermediates as repair tem-
plates [142,155]. Usage of deaminase variants, e.g., with
narrower editing windows, or employment of Cas variants
to extend the target potential limited by genomic PAMs,
also aim at improving editing efficiency [150,152,156—
161]. However, they are not able to overcome the reliance
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on C and/or A to initiate editing events which drastically
limits target selection.

The development of prime editing (PE) by David Liu
and colleagues thus represents a major step towards seam-
less genome editing: here, the Cas9 nickase H840A is fused
to a reverse transcriptase (RT) [162]. The equivalent to
the sgRNA termed PE guide RNA (pegRNA) additionally
contains a 3’ extension consisting of a primer binding site
and a RT template containing the desired edit [162,163].
Upon binding, the non-complementary strand is nicked, the
primer binds the exposed strand and the RT introduces the
template in 3 direction [162]. The newly synthesized 3’
flap does not allow complementary binding to the unedited
5’ flap which is removed by endonuclease activity result-
ing in edit of both strands [162]. Third generation PE in-
troduces an additional nick in the unedited strand ensuring
that the edited strand is used as a repair template thereby
increasing efficiency and specificity [162,164—166]. PE
was already applied to correct mutations in patient-derived
organoids, induced pluripotent stem cells, and in mice
[167-169].

Taken together, PE is not only an alternative to BE
when there is a risk of bystander mutations, but greatly en-
hances the target spectrum as it can make use of the full se-
lectivity of CRISPR/Cas-based genome editing. For a more
detailed overview on CRISPR/Cas genome editing tools in-
cluding development of PE leading to the current generation
of PE3 the reader is referred to the comprehensive review
of Anzalone, Koblan, and Liu [170].

Since the efficiency of PE is still rather low compared
to BE [171], research aimed at improving efficiency is
paramount. Usage of engineered, more stable pegRNAS or
interference with the endogenous mismatch repair system
have been reported to increase editing efficiency [172,173].
Increasing the efficiency of such targeted manipulation cou-
pled with low off-target effects will further enable clini-
cal research and application. Once all these limitations are
overcome, PE will likely be the game-changer for precise
correction of disease-causing genomic mutations.

6. Discussion
6.1 Regulatory Aspects

One of the major issues regarding the use of genome
editing in clinical applications is of regulatory nature. Cur-
rently, there seem to be no clearly set standards regard-
ing the evaluation of safety in preclinical animal models
[174,175]. On the other hand, providing data about safety in
a preclinical animal model can take years [176], precluding
fast verification on an organismal level. Genetic variabil-
ity within a population can also affect off-target cleavage
and needs to be considered for a given disease [177]. Since
the technology is rather novel, defining such standards is
an equally laborious and essential task, because guidelines
for development of conventional clinical therapies were de-
veloped far before the technology even existed. The FDA,
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which is the responsible agency in the US, has recently
published a draft, containing recommendations for indus-
try sponsoring clinical trials [178]. In addition, the World
Health Organization (WHO) published recommendations
for human genome editing from an expert advisory commit-
tee [179]. It has to be noted, however, that the WHO as such
cannot set legally binding rules. The nature of these recom-
mendations thus shows the difficulties of advisory commit-
tees and regulatory agencies to set standards. Conceivably,
this has to be an international effort which will be complex
enough a task given already the differences in definition of
gene therapy and genome engineering/editing on different
continents [180].

6.2 Ethical Considerations

A technology as powerful as genome editing, espe-
cially with the advent of CRISPR/Cas-mediated genome
editing, will undoubtedly revolutionize medical therapy.
On the other hand, there is also great potential to abuse it,
e.g., to eradicate unwanted genetic traits or enhance oth-
ers without any medical implication. Therefore, it is abso-
lutely essential to agree on a set of ground rules when ap-
plying genome editing in human beings. Obviously, this is
not the subject of scientific discussion alone, but should in-
volve the public, lawmakers, politicians and philosophers.
The difference in treating manifested diseases in adults ver-
sus the treatment of hereditary diseases prenatally comes to
mind, which will definitely raise very different arguments.
As the infamous “CRISPR-babies” have shown, the discus-
sion needs to happen [181] and it needs to happen now. The
discussion of whether or not to apply genome editing in un-
borns to prevent rather than treat a disease will likely not be
harmonic resulting in a worldwide consensus, but neglect-
ing the necessity of it will certainly be worse.

7. Concluding Remarks

Genome editing is already “business as usual” in
the laboratory setting. Particularly CRISPR/Cas-mediated
gene editing has rapidly and nearly completely replaced
other genome editing techniques. Application in human be-
ings, however, is obviously a different matter with editing
efficiencies being substantially lower and side effects apart
from off-target editing not easy to predict. Therefore, clini-
cal trials are the most important tool to gain further insights
into the behavior of genome-edited patient’s cells. Unfor-
tunately, trials take time, which explains the rather limited
available reliable amount of information with many stud-
ies still ongoing. This also explains why many of the stud-
ies described herein rely on ZFNs which are the somehow
“older” technology compared to CRISPR. As mentioned in
the introduction, high cost is another factor limiting broad
use right now. However, these issues are not unusual for
new treatment options and will benefit from both techno-
logical improvements as well as rise of new competitors
providing materials and methods for genome editing. This

clearly highlights the need for ongoing research dealing
with optimization of editing efficiency especially aiming at
editing in patient-derived primary cells.

As of now, there are no clearly set regulatory guide-
lines specific for these recently developed therapies. Since
most of the trials are in Preclinical or Phase I stage, such
guidelines will likely be introduced based on accumulating
adverse events. This will further delay the entry of these
products into regular use.

As long as a gene target is known which is either
causative or at least the main disease driver, genome editing
is a valid treatment option. Considering that there is, e.g.,
no curative treatment for neurodegenerative disorders such
as Huntington’s or Alzheimer’s disease [182], these patients
might benefit from any improvement.

Especially the results from TDT and SCD ongoing
studies are really intriguing considering the therapeutic po-
tential of genome editing [93]. Taken together, genome
editing will continue its triumphant path from “bench to
bedside”.
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