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Abstract

Background: The Coronavirus Disease 2019 (COVID-19) pandemic continues to have a devastating effect on the health and well-being
of the global population. Apart from the global health crises, the pandemic has also caused significant economic and financial difficulties
and socio-physiological implications. Effective screening, triage, treatment planning, and prognostication of outcome play a key role
in controlling the pandemic. Recent studies have highlighted the role of point-of-care ultrasound imaging for COVID-19 screening and
prognosis, particularly given that it is non-invasive, globally available, and easy-to-sanitize. COVIDx-US Dataset: Motivated by these
attributes and the promise of artificial intelligence tools to aid clinicians, we introduce COVIDx-US, an open-access benchmark dataset
of COVID-19 related ultrasound imaging data. The COVIDx-US dataset was curated from multiple data sources and its current version,
i.e., v1.5., consists of 173 ultrasound videos and 21,570 processed images across 147 patients with COVID-19 infection, non-COVID-19
infection, other lung diseases/conditions, as well as normal control cases. Conclusions: The COVIDx-US dataset was released as part of
a large open-source initiative, the COVID-Net initiative, and will be continuously growing, as more data sources become available. To
the best of the authors’ knowledge, COVIDx-US is the first and largest open-access fully-curated benchmark lung ultrasound imaging
dataset that contains a standardized and unified lung ultrasound score per video file, providing better interpretation while enabling other
research avenues such as severity assessment. In addition, the dataset is reproducible, easy-to-use, and easy-to-scale thanks to the well-
documented modular design.
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1. Introduction

The novel Coronavirus Disease 2019 (COVID-19),
which appeared first in December 2019 and was caused by
severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2), led to a pandemic of severe and deadly respira-
tory illness, affecting human lives and well-being. The
SARS-CoV-2 virus, now observed in different variants, can
emerge in various forms and levels of severity, ranging
from asymptomatic infection to an acute illness with or-
gan failure risk and death [1]. Despite the rapid evolution
and emergence, the scientific community has dynamically
and actively responded to the disease spread, changing re-
search priorities according to the needs [2]. However, the
rapid growth of confirmed cases over several waves of a
pandemic highlights the importance of effective screening
and risk stratification of infected patients as a means to min-
imize spread and identify those that need a higher level of
care [3]. The reliable and effective identification of infected
patients with a low rate of false negatives contributes to

controlling the disease transmission rate and mitigating the
spread of the virus. A low false-positive rate is also desir-
able to not quarantine and treat people unnecessarily, re-
moving burdens from the healthcare system as well as the
society [4].

The reverse transcription-polymerase chain reaction
(RT-PCR) test, performed on biological samples taken from
the patient, is the main screening method used for COVID-
19 detection [5]. Although RT-PCR is used in many coun-
tries, it requires a long complicated manual processing [3]
which is a huge disadvantage for an effective fight against
the pandemic. Moreover, there is no consensus about the
sensitivity of RT-PCR testing, with highly variable rates
reported in the literature [6–8]. These obstacles are com-
pounded by a lack of necessary equipment and expertise
to perform this test in many countries, an issue that also
leads to improper management of infected patients [9]. Fi-
nally, RT-PCR tests do not provide additional information
that supports clinical decision-making with respect to the
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triage of infected patients, treatment options, and predic-
tions of patient outcomes that may assist in resource al-
location. Therefore, finding complementary solutions for
COVID-19 screening and alternative solutions for risk strat-
ification and treatment planning has attracted the attention
of the scientific community.

Radiography is an alternative imaging method uti-
lized for COVID-19 screening and risk stratification. This
modality entails an acute care physician and a radiologist
visually inspecting radiographic images, e.g., chest X-ray
(CXR) or computed tomography (CT) scans, to find indi-
cators that are associated with SARS-CoV-2 viral infection,
and that may assess the severity of infection. Biomedical
imaging can accelerate diagnostic and prognostic decision-
making processes by facilitating rapid assessment of patient
condition and severity, as well as guiding the ordering of
subsequent tests, if necessary [10]. It was reported in recent
studies that patients infected with COVID-19 present ab-
normalities in their chest radiography images [11,12]. Ad-
ditionally, some studies observed a higher sensitivity of
CT scans for COVID-19 detection in their examined cohort
compared to RT-PCR [7,13].

Although radiography examination is confirmed as a
potential complementary method for conventional diagnos-
tic techniques such as RT-PCR [10], some studies even sug-
gest that it could be used as a primary COVID-19 screen-
ing tool in epidemic areas [13]. To this end, CT imaging
is known to provide greater image detail and is considered
the gold standard for pneumonia detection [14]. It has also
been shown to be effective for screening [7,13,15]. How-
ever, CXR imaging remains the first-line examination [10],
especially in resource-limited and heavily-infected areas,
mainly due to its lower cost, high availability, accessibility,
and potential for rapid triaging of patients suspected of the
infection [3]. Furthermore, CXR imaging has been demon-
strated to be effective for both screening [3] and risk strati-
fication [16].

As an establishedmethod formonitoring and detecting
pneumonia [17], lung point-of-care ultrasound (POCUS)
is an emerging imaging modality that is receiving grow-
ing attention from the scientific community in recent years
[18]. Due to its many desirable properties, i.e., high porta-
bility, non-ionizing radiation nature, and being used as the
preferred lung infection diagnosis and prognosis method in
resource-limited settings/environments, e.g., in emergency
rooms or developing countries [19], POCUS is showing
considerable promise as an alternative imaging solution to
CXR as the first-line screening approach [20,21], and tool
that aids in prognostication [22].

Unfortunately, the literature on the applicability of
POCUS for COVID-19 screening and prognosis assess-
ment remains scarce. However, it is suggested that lung
ultrasound (LUS) can play a key role in the context of the
COVID-19 epidemic [10,23,24]. Changes in lung struc-
ture, such as pleural and interstitial thickening, are iden-

tifiable on LUS and help to detect viral pulmonary infec-
tion in the early stages [25]. For COVID-19 screening,
recent studies reported identifiable lesions in the bilateral
lower lobes and abnormalities in bilateral B-lines on LUS
as the main attributes of the disease [26,27]. The LUS
findings in other diseases, e.g., influenza virus pneumo-
nia, together with current clinical evidence, suggest that
pneumonia patterns of consolidation in viral diseases are
characteristic, and LUS has a high potential for evaluating
early lung-infected patients in various settings, including at
home, patient triage, the intensive care unit, and for mon-
itoring treatment effects [23]. Furthermore, studies have
also found POCUS to be applicable for predicting mortality
and whether a patient is in need of intensive care admission
[22].

Artificial-intelligence (AI) powered decision support
systems, mostly based on deep neural network architec-
tures, have shown exemplary performance in many com-
puter vision problems in healthcare [28,29]. By extract-
ing complex hidden patterns in images, deep learning (DL)
techniques may find relationships/patterns that are not in-
stantly available to human analysis [30]. Although the
number of scientific papers about using AI on POCUS for
COVID-19 screening/severity assessment/analysis is con-
tinuously growing (e.g., [31–34]), compared to CXR and
CT, lung ultrasound deep learning studies are compara-
bly limited due to the lack of well-established, organized,
carefully labelled LUS datasets [35]. Motivated by recent
open-source efforts of the research community in the fight
against COVID-19 and to support alternative screening,
risk stratification, and treatment planning solutions pow-
ered by AI and advanced analytics, we introduce COVIDx-
US, an open-access benchmark dataset of ultrasound imag-
ing data that was carefully curated from multiple sources
and integrated systematically specifically for facilitating the
building and evaluation of AI-driven analytics algorithms
and models. Another publicly available LUS dataset com-
prising 200+ videos and ~60 images (as of November 2021
on their GitHub repository) built for classifying COVID-19
cases is the work of Born and his colleagues [10]. As one
of the main contributions of our work, in COVIDx-US we
offer a systematic framework for data curation, data pro-
cessing, and data validation to dataset creation for creating
a unified, standardized POCUS dataset. We also tried our
best to design our systematic framework to be very easy-to-
use and easy-to-scale, even for users without deep computer
science/programming knowledge. The current version of
the COVIDx-US dataset comprises 173 ultrasound videos,
all verified and graded by our clinician, and 21,570 pro-
cessed ultrasound images, extracted from the videos of 147
patients diagnosed with COVID-19 infection, non-COVID-
19 infection, other lung diseases/conditions, as well as nor-
mal control patients. We would like to highlight that the
labels/diagnoses were retrieved from the nine original data
sources, using all the data available to them at the time of
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Fig. 1. The conceptual flow of COVIDx-US dataset integration. The current version of COVIDx-US contains 173 ultrasound videos
and 21,570 processed ultrasound images, extracted from the video files, from the following nine data sources: (1) Butterfly Network,
(2) GrepMed, (3) The POCUS Atlas, (4) LITFL, (5) Radiopaedia, (6) Core Ultrasound, (7) University of Florida, (8) Clarius, and (9)
scientific publications. No original data from the mentioned data sources are hosted on the COVIDx-US repository. Using the COVIDx-
US scripts, original ultrasound videos are extracted from these data sources, are stored on the user’s local device, and are then curated
and integrated systematically in a unified and organized structure.

diagnosis, and we did not label the files ourselves solely
based on the observation in the US files. The “non-COVID-
19” class contains videos/images of patients with lung in-
fections caused by bacteria, fungi, or viruses other than
the SARS-CoV-2 virus. The most representative infection
in the “non-COVID-19” category in our dataset is pneu-
monia. The “Other” category, on the other hand, con-
tains ultrasound videos/images of patients with other lung
diseases and conditions such as chronic obstructive pul-
monary disease (COPD), pneumothorax, and hemothorax.
The COVIDx-US dataset was released as part of a large
open-source initiative, the COVID-Net initiative [15,16],
and will be continuously growing, as more data sources
become available. To the best of the authors’ knowledge,
in addition to being reproducible, easy-to-use, and easy-
to-scale thanks to the modular well-documented design of
COVID-US, it is the largest publicly available LUS dataset
to date that provides a standardized human “gold standard”
lung ultrasound score per video file, on an ordinal scale of
0–3, that could be used in research projects for severity as-
sessment/classification. The score with the lowest value (0)
represents normal lung while higher values represent wors-
ening pathology.

2. Construction and Content
The COVIDx-US dataset continues to grow as new

POCUS imaging data is continuously curated and added as
part of the broader initiative. All versions of the dataset
will be made publicly available. Although this study rep-
resents the current snapshot of the dataset in terms of cov-
erage, all the steps, including the data collection and pro-
cessing pipeline that are introduced in this section in detail,
will remain similar in the upcoming versions. Fig. 1 shows
the flow of processes and the steps taken to generate the
COVIDx-US dataset.

2.1 Data Sources
The COVIDx-US dataset is heterogeneous in nature,

containing ultrasound imaging data of various character-
istics, e.g., convex and linear US probes, from multiple
sources. The current version, i.e., COVIDx-US v1.5., cu-
rates ultrasound video data of four categories, i.e., COVID-
19 infection, non-COVID-19 infection (e.g., bacterial in-
fection, non-SARS-CoV-2 viral infection), other lung dis-
eases/conditions (e.g., chronic obstructive pulmonary dis-
ease (COPD), pneumothorax, hemothorax, bad nasogastric
tube placement, collapsed lung, congenital lobar overin-
flation, pulmonary contusion, subcutaneous emphysema),
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Table 1. Distribution of the collected ultrasound video files per source and class in COVIDx-US v1.5.
Data source License COVID-19 Non-COVID-19 Normal Other Total

TPA CC BY-NC 4.0 17 (26%) 6 (19%) 5 (18%) 0 (0%) 28 (16%)
GM — 8 (12%) 8 (26%) 3 (11%) 0 (0%) 19 (11%)
BN — 30 (45%) 0 (0%) 2 (7%) 0 (0%) 32 (18%)
LITFL CC BY-NC-SA 4.0 0 (0%) 11 (35%) 3 (11%) 17 (35%) 31 (18%)
RP CC BY-NC-SA 3.0 0 (0%) 1 (3%) 1 (4%) 0 (0%) 5 (3%)
CU — 1 (1%) 3 (10%) 1 (4%) 12 (25%) 17 (10%)
UF — 0 (0%) 0 (0%) 6 (21%) 7 (15%) 13 (8%)
CL — 3 (5%) 2 (6%) 3 (11%) 7 (15%) 15 (9%)
Paper CC BY 4.0 7 (11%) 0 (0%) 4 (14%) 5 (10%) 16 (9%)
Numbers in parentheses represent percentages per column, rounded up without a decimal. The sum of the
percentages may not add up to 100 due to rounding.

and normal control, from nine different sources: (1) The
POCUSAtlas (TPA), (2) GrepMed (GM), (3) Butterfly Net-
work (BN), (4) Life in the Fast Lane (LITFL), (5) Ra-
diopaedia (RP), (6) Core Ultrasound (CU), (7) University
of Florida (UF), (8) Clarius (CL), and (9) data collected
from scientific publications that had lung ultrasound videos
available and distributed as part of the publications. The
POCUSAtlas is a collaborative education platform for shar-
ing ultrasound education. GrepMed is an open-access med-
ical image and video repository. Butterfly Network is a
health-tech company that developed a technology to minia-
turize ultrasounds and launched a portable ultrasound de-
vice. LITFL is a repository of emergency and critical care
education materials. Radiopaedia is an open-edit educa-
tional platform that contains a radiology encyclopedia and
imaging case repository. Core Ultrasound also contains ul-
trasound education materials including courses, clip banks,
and podcasts. The University of Florida is a public uni-
versity in the United States that has a teaching hospital,
i.e., UF Health Shands Hospital. For UF videos, we col-
lected lung ultrasound training videos that were publicly
available on UF’s Department of Anesthesiology webpage.
Clarius company is a provider of portable ultrasound ma-
chines and scanners. Table 1 shows the distribution of the
LUS video files per data source in the current version of
the dataset, i.e., COVIDx-US v1.5. The COVID-19 US
video files account for 38% of the data. No original data
are hosted on the COVIDx-US repository andwe rather pro-
vide scripts to collect, process, and integrate data from the
above-mentioned data sources on end users’ devices. As
seen in Table 1, TPA, LITFL, and RP provide data via a
Creative Commons license. Data collected from scientific
publications are provided via a Creative Commons license
as well. For GM, BN, CU, UF, and CL we could not find
licensing information on their websites. However, all those
video files have been publicly made available on the respec-
tive websites. For example, video files collected from Clar-
ius, as announced on their website (please see this link), are
public resources shared by their users who are medical doc-
tors. Users are recommended to verify with the mentioned

data sources whether their desired usage is permitted. Also,
users may refer to the provided metadata on the COVIDx-
US repository for more details about the video files includ-
ing the license. We would like to highlight again that no
original data from the nine targeted data sources are hosted
on the COVIDx-US repository.

Fig. 2 shows sample ultrasound frames captured from
the ultrasound video recordings in the COVIDx-US dataset.
The examples are processed by the COVIDx-US scripts.
These few examples illustrate the diversity of ultrasound
imaging data in the dataset. The choice of the nine different
data sources and the heterogeneity in the structure and for-
mat of their hosted videos resulted in a highly diverse set of
videos and images in the COVIDx-US dataset that is key to
the generalizability of the AI-driven solutions/models that
are built/trained on the COVIDx-US dataset. Additionally,
this non-homogeneous set of data points could provide re-
searchers with more flexibility in their research projects via
filtering in/out data points based on their research objec-
tives. We will continuously grow the dataset by adding
more data points and/or data sources.

2.2 Data Characteristics

COVIDx-US v1.5. provides 173 ultrasound videos
and 21,570 processed images of 147 patients categorized
into (1) COVID-19 infection, (2) non-COVID-19 infection,
(3) patients suffering from other lung diseases/conditions
such as pneumothorax and lung collapse, and (4) normal
control cases. The dataset comes with a diverse set of meta-
data from ultrasound video file properties to patient demo-
graphics and symptoms. In this section, we review a few of
them that are related to patients/diseases/conditions. Please
refer to the “Data Records” section or COVIDx-US GitHub
repository for more information on data records and meta-
data. Fig. 3 shows the gender distribution per curated ultra-
sound video. Out of 173 US video files collected, the pa-
tient’s gender is available for 47 (27%) ultrasound videos.
Among all the categories, the least information about pa-
tients’ gender is available for the COVID-19 infection cat-
egory.
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Fig. 2. Sample ultrasound frames captured from the curated ultrasound video recordings in the COVIDx-US dataset. (a), (b),
and (c) COVID-19 positive cases, (d) and (e) non-COVID-19 infection cases, (f) a normal control case. The dataset comprises 173
ultrasound videos, collected and curated systematically from nine different data sources, and 21,570 carefully curated ultrasound images
in the current version.

Fig. 3. Gender distribution per curated ultrasound video (n = 173). The numbers in parentheses under each category represent the
number of video files in that category. Values on the bar show proportion of video files for that specific gender in the given category.
The sum of the percentages for the normal and other lung diseases categories exceeds 100 due to rounding.

Fig. 4 shows the distribution of LUS artifacts, i.e.,
the existence of A- and B-lines, as well as other lung fea-
tures/clinical signs such as consolidations, irregular pleu-
ral line, air bronchograms, and (sub)pleural effusion, in
COVIDx-US. Numbers in parentheses under each category

represent the total number of US video files under the given
category for which at least one of the above-mentioned
metadata is available.

Fig. 5 shows the distribution of five symptoms, i.e.,
fever, cough, pain, respiratory problems, and asymp-
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Fig. 4. Distribution of lung ultrasound artifacts, i.e., A- and B-lines, as well as other lung features/clinical signs in COVIDx-
US. The numbers in parentheses under each category represent the total number of US video files under the given category for which
information about the listed artifacts and clinical signs is available.

Fig. 5. Distribution of symptoms per category in COVIDx-US. The numbers in parentheses under each category represent the number
of US video files under the given category for which symptom information is available.

tomatic, observed in the patients in COVIDx-US. Numbers
in parentheses under each category represent the total num-
ber of US video files under the given category for which
symptoms information is available.

2.3 Data Curation
The data were curated from nine data sources, each

with a different structure. To support reproducibility and
ease of use, we developed data curation engines, personal-
ized for each of the target data sources, to automatically
curate lung POCUS video recordings as well as associ-
ated metadata from the target data sources and to integrate
them locally in a unified, organized structure. No origi-
nal data is hosted in the COVIDx-US repository and the
data is rather curated and integrated locally via our pub-
licly released COVIDx-US scripts and the parameters set
by the user. The metadata provides information on the
video files, e.g., dimension and framerate, along with their

category, i.e., COVID-19, non-COVID-19, other lung dis-
eases/conditions, or normal control. The scripts are de-
signed to be highly extensible such that more data sources
can be added to the pipeline, supporting the scalability of
the dataset. The scripts are made available to the general
public as part of each release of the dataset.

2.4 Data Cropping
The curated data contains video recordings captured

with linear or convex US probes (n = 39 and 134, respec-
tively) that are the most common probes used in medical
settings. This provides users with higher flexibility to filter
in the video files based on the probe types, if required. It
also enables higher generalizability of the models that are
trained on the COVIDx-US dataset by covering data of dif-
ferent types. Fig. 6 shows examples of linear and convex
US images, i.e., single snapshots of the respective video
recordings. The linear probe has a flat array and appear-
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ance and provides images of higher resolution but with less
tissue penetration. Convex probes, also called curved linear
probes, provide a deeper and a wider view and are mostly
used for abdominal scans [36]. The original data, collected
frommultiple sources, were noisy in some cases, containing
additional information embedded in the ultrasound videos,
such as measure bars, symbols, or text (Fig. 6a). We ini-
tially processed the collected videos and cropped them to
remove these (often peripheral) noises from the data.

Fig. 6. Sample frame of an ultrasound video. (a) Captured with
a convex. (b) Captured with a linear probe.

To do data cropping, we treated convex and linear US
video files separately. For the convex and linear US video
files, we used square and rectangular windows to crop the
frames, respectively. We used rectangular windows for lin-
ear US video files to include a larger portion of the original
file in the processed video file. Publicly available process-
ing scripts are released as part of COVIDx-US to automati-
cally perform data cropping on the benchmark dataset. The
parameters of the square and rectangular windows can be
modified by the end-user, if desired. However, using the
default parameters for the defined windows will remove ar-
tifacts such as bars and texts visible on the side or top of
the collected US video files. The output of this step is a
video file containing frames that were processed using the
above-mentioned cropping process, along with a metadata
file that includes information about the video file properties
such as dimension and framerate, as well as the type of arti-
facts observed, e.g., static symbols or moving pointers. The
cropped files are stored locally by the provided processing
scripts.

2.5 Ultrasound Image Extraction
Asmentioned in the previous sections, the videoswere

curated from multiple data sources, hence, their properties
differ. To ensure maximum flexibility of the COVIDx-US
dataset and as part of each release, we provide end users
with highly flexible data processing scripts, allowing them
to extract frames from the initially processed video files
based on their research objectives and requirements, using
a set of parameters as follows:

• Themaximumnumber of frames to extract from each
video.

• Extract frames from either all classes or a subset of

classes from the set of [‘COVID-19’, ‘Non-COVID-19’,
‘Other’, ‘Normal’].

• Extract frames from either all data sources, i.e.,
[‘BN’, ‘GM’, ‘LITFL’, ‘TPA’, ‘RP’, ‘CU’, ‘UF’, ‘CL’, ‘Pa-
per’] or a subset of them.

• Extract frames from all videos or those captured with
a specific probe, i.e., convex or linear.

We set the default parameters to extract all frames
from all videos. Using the defined parameters, the frames
are extracted from the videos and stored locally.

2.6 Data Processing

After extracting frames from the videos and using the
metadata file from the data cropping stage, the frames are
further processed as follows:

(1) Videos with moving pointers are identified.
(2) If the video contains a moving pointer:
(a) Delete frames with a moving pointer on the lung

region.
(b) For the remaining frames, generate and store a

frame-specific mask.
(3) If the video does not contain a moving pointer:
(a) Make a generic mask (suitable for all the extracted

frames) and store it.
(4) Use the generated masks to process the frames, re-

moving the remaining artifacts.
The generated masks are provided as part of the

COVIDx-US release. Using the generated masks, we lever-
aged the in-painting technique introduced by Bertalmio and
colleagues [37] to remove the remaining peripheral artifacts
from the frames by replacing bad marks, i.e., pixels in the
masked regions, with their neighbouring pixels. The clean
frames as well as the clean video file, generated by append-
ing the clean frames, are stored locally on the user’s device.
Fig. 7 shows an example of a US frame, the mask generated
for this specific frame, and the final clean frame obtained
by applying the mask to the original frame.

Fig. 7. Examples of an ultrasound original frame, a mask, and
the clean processed frame in the COVIDx-US dataset. (a) A
sample frame with a blue symbol on the top-left of the image. (b)
The generated mask for the frame. (c) The clean frame resulted
from applying the generated mask to the original frame.
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2.7 Data Records
The COVIDx-US benchmark dataset is available to

the general public at the NRC COVIDx-US GitHub repos-
itory. The repository also includes the generated masks
and metadata. The dataset has been constantly growing,
releasing five versions of the dataset to date (May 2022).
The current version of the dataset contains 173 processed
and clean ultrasound videos, divided into 66 videos of
COVID-19 infected patients, 31 videos of non-COVID-19
infected patients, 48 videos of patients with other lung dis-
eases/conditions, and 28 videos of normal patients, along
with 21,570 ultrasound images extracted from the clean
video files (using default parameters), divided into 8312 im-
ages of COVID-19, 4142 images of non-COVID-19, 6235
images of patients with other diseases/conditions, and 2881
images of normal patients. As mentioned in the ultra-
sound image extraction section, users can extract frames
from the US videos according to their projects’ objectives
and requirements, using the codes provided and by setting
their own parameters. This makes the COVIDx-US dataset
highly flexible for various research objectives. Meanwhile,
the modular design of the scripts allows adding/removing
data sources, if required.

Running the scripts provided in COVIDx-US will
extract original videos from BN, GM, TPA, LITFL,
RP, CU, UF, CL, and a set of scientific publications,
and will store them locally on the user’s device in the
“/data/video/original” folder. The cropped videos are
stored locally in the “/data/video/cropped” folder, the clean
videos in the “/data/video/clean” folder, and the clean im-
ages in the “/data/image/clean” folder. Please see the Ap-
pendix for a detailed list of video files included in COVIDx-
US v1.5. along with their properties and the number of
frames extracted using the default parameters. Comple-
mentary information about the file properties can be found
in the metadata files located in the “/utils” folder in the
COVIDx-US GitHub repository. Users may refer to the
data dictionary file located in the “/utils” folder for detailed
information/description of all the metadata files. The orig-
inal video files extracted from the nine above-mentioned
data sources are named such that the filename contains in-
formation on the source and class of the video file. This
naming convention was respected for all the other gener-
ated data such as clean videos and images.

2.8 Lung Ultrasound Score
COVIDx-US collects, curates, and integrates ultra-

sound video files from various data sources, labelled by
different labellers. This might have an impact on the in-
tegrity of COVIDx-US data. To mitigate this risk, en-
sure reproducibility, and provide researchers with a stan-
dardized severity score, our contributing clinician (A.F.) re-
viewed, classified, and graded all the ultrasound video files
in COVIDx-US v1.5. (n = 173). We based our scoring sys-
tem on the approach proposed by Soldati et al. [38] but

modified certain criteria within each score. The number
of B-lines to consider a lung area as containing interstitial
syndrome which is an alteration in the lung parenchyma be-
tween air and fluid filled areas that are not normally present
without pathology, has been established as 3 or more by
international consensus [39]. Furthermore, several stud-
ies looking to assess the use of the lung ultrasound score
(LUSS) for predicting disease severity in COVID-19 pa-
tients have used the criterion of 3 B-lines or more as well
as a cut-off for the consolidation size [40,41]. Therefore,
the score by Soldati et al. [38] was modified to reflect evi-
dence appearing recently in the literature that assesses dis-
ease severity both in hospitalized and intensive care unit
(ICU) patients as suggested by the mentioned studies. Also,
we have eliminated from score 2, “more than 3 B-lines” as
coalescing B-lines assumes the presence of multiple B-lines
altogether.

Our contributing clinician (A.F.) is an Assistant Pro-
fessor in the Department of Emergency Medicine and
the ultrasound co-director for undergraduate medical stu-
dents at McGill University. He is practicing Emergency
Medicine full-time at Saint Mary’s Hospital in Montreal.
For 173 ultrasound video files in COVIDx-US v1.5., a score
was assigned that classifies findings on an ordinal scale of
0–3 as follows:

• Score 0: Normal pleura with A-lines.
• Score 1: (1) More than 2 B-lines are visible, and (2)

irregular thick pleura is seen.
• Score 2: Coalescing B lines, white lung, small sub-

pleural consolidations (<15 mm).
• Score 3: White lung more than 50% of pleural

length, subpleural consolidations (>15 mm).
Fig. 8 shows the distribution of lung ultrasound scores

in COVIDx-US v1.5.

Fig. 8. Distribution of the lung ultrasound score in COVIDx-
US, graded by our contributing clinician.
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Although ultrasound findings such as B-lines, con-
fluent B-lines, consolidations, and pleural irregularity are
easily identifiable in COVID-19 patients, the interpretation
of their clinical significance poses a challenge at the bed-
side. In order to produce a more systematic recording and
interpretation of these findings, the LUSS was described
and suggested as a potential standardization tool [38]. The
LUSS has been demonstrated to correlate with the need for
ICU [22,41] or hospital admission [42] and an increased
hospital length of stay [43]. These indicators could assist
hospital or government managers in the planning and allo-
cation of scarce medical resources. Moreover, the LUSS
has been used to identify the development of ventilator-
associated pneumonia in ICU patients [40] and thus had a
direct impact on their medical management. Although stud-
ies assessing the LUSS in the prediction of mortality have
been mixed [22,40,43], the potential to incorporate this new
quantified assessment into more complex prediction mod-
els would be a promising avenue for further research.

2.9 Technical Validation and Quality Control

The current version of COVIDx-US is curated from
nine data sources and contains data of different types and
characteristics. The scripts provided will perform the pro-
cesses necessary to clean the collected POCUS videos, ex-
tract frames, and store them locally on the user’s device.
But, they do not validate the analyses performed and pub-
lished by the research community using COVIDx-US data.
As COVIDx-US will be continuously growing, feedback
provided by researchers will be used in the next versions
of COVIDx-US to perform additional processes/reviews.
Such feedback may be addressed to ashkan.ebadi@nrc-
cnrc.gc.ca.

In order to validate the quality of images in the
COVIDx-US dataset and ensure the existence of markers in
the processed ultrasound images, our contributing clinician
(S.K.) reviewed a randomly selected set of images and re-
ported his findings and observations. Our contributing clin-
ician (S.K.) is a practicing Internal Medicine and ICU spe-
cialist, certified in both specialties by the Royal College of
Physicians of Canada. Fig. 9 shows three select images of
COVID-19 positive cases, as examples, that were reviewed.
The summary of our expert clinician’s report is as follows.

Fig. 9. Sample processed ultrasound images, reviewed and re-
ported on by our contributing clinician. (a), (b) and (c) are all
confirmed COVID-19 positive cases.

Case 1 (Fig. 9a). Our contributing clinician observed
multiple pleural irregularities, including pleural thickening
and the presence of sub-pleural consolidations which have
been previously described as markers of COVID-19 disease
severity [44]. These findings, together with the observed
B-line profile, are indicative of a moderate to severe pul-
monary disease.

Case 2 (Fig. 9b). This is an image of lung pleura in
short depth. Our clinical expert observed abnormalities and
irregularities in the pleura as it is thickened and “shredded”
with hypoechoic signals suggesting consolidations and air
bronchograms. Although a deeper view to assess for B-
lines would be more optimal, these findings together sug-
gest moderate airspace disease, most commonly on the ba-
sis of pneumonia.

Case 3 (Fig. 9c). This appears to be an image of lung
pleura at depth of ~5 ± 2 cm. According to our contribut-
ing clinician, the pleura and underlying lung are abnormal.
There is the presence of a “waterfall sign”, i.e., subpleural
consolidation with a B-line. The pleura is thickened and ir-
regular. Despite the observed abnormalities, more imaging
data is needed to inform on differential diagnosis. In addi-
tion, it is not possible to comment on lung sliding as this is
a static image.

Our expert clinician findings and observations con-
firmed the existence of identifiers and indicators of disease
in the COVIDx-US dataset. AI-powered analytics solutions
can exploit such indicators and patterns to monitor and clas-
sify COVID-19 cases. Based on our contributing clinician’s
evolving experience, LUS has significant utility in the man-
agement of COVID-19 patients with respiratory symptoms.
As a safe, rapid, reproducible, low-cost, and highly infor-
mative tool for assessing the severity of lung involvement,
early studies suggest that it can be used to inform triage
and treatment decisions [45]. To this end, several pub-
lished LUS-based protocols are now undergoing validation
in prospective clinical trials [46,47]. Furthermore, several
groups are now evaluating the potential utility of LUS in
other settings, including the ICU where it could be used
to track disease progression, and to evaluate patient candi-
dacy and clinical response to various interventions includ-
ing ventilator weaning, prone positioning, and lung recruit-
ment maneuvers in patients with acute respiratory distress
syndrome (ARDS) [40].

The known limitations of this modality include the ob-
servation that LUS findings are not necessarily specific to
COVID-19. Moreover, they have yet to be proven as re-
liable markers of clinical outcome in appropriately sized
clinical studies. The deployment of LUS in COVID-19 also
requires strict infection control measures. Lastly, LUS re-
quires significant operator training and experience before
it can be used in the management of potentially unstable
patients, or in those with suspected infectious syndromes.
AI-driven solutions can aid clinicians with the screening
process of COVID-19 patients, reducing the pressure on
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healthcare systems and healthcare providers.

3. Utility and Discussion
We are constantly searching for more data, therefore,

the COVIDx-US will be growing over time as more data
sources become available. Since the initial release of the
COVIDx-US dataset in January 2021 we have released five
versions, regularly increasing the size of the dataset, adding
more metadata, and collecting data from more publicly
available data sources, going from 93 ultrasound videos col-
lected from 4 sources in the first version to 173 videos col-
lected from 9 data sources in the latest version, all verified
and graded by our contributing clinician (A.F.). We rec-
ommend that users check the COVIDx-US repository fre-
quently, for the latest version of data and scripts. The data
collection and processing pipeline is coded in Python (ver-
sion 3.6.12). Users are provided with a Python notebook
including all the steps required to collect, process, and in-
tegrate data, as described in the manuscript. The provided
scripts are well-documented allowing users to modify pa-
rameters for frame extraction from ultrasound videos, based
on their research objectives and requirements, if required.

3.1 Code Availability and Requirements
Our goal is to encourage broad adoption and contri-

bution to this initiative. The COVIDx-US dataset is an
open-source open-access initiative under the terms of the
GNU Affero General Public License 3.0. All the codes
and materials, e.g., metadata and masks, necessary to re-
produce the COVIDx-US dataset, as described and ex-
plained in this manuscript, are available to the general pub-
lic at https://github.com/nrc-cnrc/COVID-US/, accessible
with no restrictions. The scripts were coded in Python pro-
gramming language (version 3.6.12), using pandas 1.1.3,
selenium 3.141.0, and requests 2.24.0 libraries.

3.2 Envisioned Benefits
To the best of the authors’ knowledge, COVIDx-US is

the first and largest open-access “fully-curated” benchmark
LUS imaging dataset that contains a unified and standard-
ized human lung ultrasound score. The dataset can be used
in AI research for use cases such as classifying COVID-19
cases and assessing the severity of the disease. We would
like to highlight that the dataset is not envisioned to be used
to build fully-automated AI-enabled diagnostic solutions.
This reproducible, easy-to-use, and easy-to-scale dataset
benefits from a well-documented modular design, created
specifically for tackling AI challenges and facilitating the
building and evaluation of AI-driven analytics solutions to
help clinicians with the screening process of COVID-19
patients, reducing the pressure on healthcare systems and
healthcare providers.

One of the main contributions of our work is a sys-
tematic framework for data curation, data processing, and
data validation to dataset creation for creating a unified,

standardized POCUS dataset. We also tried our best to de-
sign our systematic framework to be very easy-to-use and
easy-to-scale, even for users without deep computer sci-
ence/programming knowledge, and hope the availability of
this framework will contribute to the community by mak-
ing it easier to scale and expand such datasets in a semi-
automated manner. Finally, the COVIDx-US contains a
unified and standardized human lung ultrasound score that
could not only be used for further validation/evaluation of
the algorithms/models trained on the dataset but also en-
ables more AI-driven analytics research directions.

4. Conclusions
Motivated by recent open-source research efforts in

the fight against COVID-19 and to support alternative
screening, risk stratification, and treatment planning so-
lutions powered by AI and advanced analytics, in this
manuscript, we introduced COVIDx-US, an open-access
benchmark dataset of ultrasound imaging data that was
carefully curated from nine data sources and integrated
systematically specifically for facilitating the building and
evaluation of AI-driven analytics algorithms and models.
One may note that the LUS patterns are unspecific and are
not able to differentiate COVID-19 pneumonia with other
pathologies and diagnosis of COVID-19 may not be pos-
sible by only exploiting LUS data. Therefore, users are
encouraged to use the COVIDx-US dataset to build AI-
powered solutions able to estimate lung conditions based
on LUS patterns. The COVIDx-US comes with a wide
range of metadata per video file, from patient demograph-
ics and symptoms to a standardized and unified lung ultra-
sound score. The dataset will grow regularly as more data
sources become available. Users are encouraged to check
the COVIDx-US repository frequently, for the latest ver-
sion of the dataset.

Although the COVIDx-US has created a rich archive
of clinically relevant imaging for AI applications by includ-
ing collected and integrated data from multiple sources that
were publicly available on different platforms/portals, this
imaging dataset does not include the original DICOM files.
This is an important limitation, as DICOM (Digital Imaging
and Communications in Medicine) is an established stan-
dard used by most clinical institutions [48], and is superior
to other types of digital images, e.g., JPEG, that are com-
monly used by the computer science research/community.
We believe that clinical data such as hospital admission or
the need for invasive ventilation could be used to validate
the correlation between the LUSS classification and clin-
ical outcomes. In addition, one may note that pneumonia
patterns of consolidation in viral diseases are characteris-
tic; however, US alone cannot distinguish between differ-
ent pathogens at this stage. Each single lung zone analyzed
independently is not specific enough for a COVID-19 diag-
nosis and clinical elements are still necessary to confirm the
presence of the disease. Since COVIDx-US integrates mul-
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tiple publicly available data sources, there is no guarantee
that all the collected data followed the same capturing pro-
cedure as we did not have access to such information. Ob-
taining a complete 12 lung zone ultrasound for each patient
would permit to calculate a total LUSS which is a better
reflection of an individual’s clinical state and possible out-
comes compared to the clinical information obtained from
the scanning of a single lung zone. Our data set does not
allow us at the current time to carry out such comparisons.
As a future direction, the team is now working on a proto-
col for a new study to capture ultrasound images/videos in
a standardized manner from a set of consented participants.
This would minimize the possible impact of different LUS
imaging protocols on the built AI models [49]. To this end,
we welcome all researchers, institutes, and hospitals who
would like to contribute data, in any format. Please contact
the corresponding author in this regard.

Clinical phenotypes of disease presentation have
changed with the appearance of multiple SARS COV-2
variants as well as with the massive vaccine uptake into the
population. It is possible that lung involvement in COVID-
19 disease could change to a milder spectrum in this popu-
lation and as such the use of lung ultrasound would be less
relevant in prioritizing the need for admission. The distri-
bution of LUSS would also likely skew to scores of 0 or 1
as milder disease would be present. However, LUS could
still be used to monitor for worsening disease in those pa-
tients who are admitted based on local medical protocols.
Despite all the advantages of POCUS devices, e.g., high
portability, accessibility, and ease-of-use, interpreting ul-
trasound images and videos is a challenging task (even for
radiologists) that requires well-defined instructions to stan-
dardize the interpretation [38]. Given the need for expert
radiologists for interpreting POCUS examinations and the
scarcity of them, especially in resource-limited regions, AI-
powered solutions can accelerate the screening process. We
believe accurate AI-driven solutions can be built on the dig-
ital images provided in the COVIDx-US dataset. In our
very recent study [50], we built and introduced a highly
efficient, self-attention deep convolutional neural network
model using COVIDx-US v1.3. The model that is highly
tailored for COVID-19 screening achieved an AUC of over
0.98 while achieving 353× lower architectural complexity,
62× lower computational complexity, and 14.3× faster in-
ference times on a Raspberry Pi. We hope the COVIDx-US
dataset enables AI researchers to build innovative and ac-
curate decision support systems, helping clinicians who are
in the front line of the fight against the disease.
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Appendix
Table 2 shows the list of ultrasound video files in-

cluded in COVIDx-US v1.5. as well as their properties and
the number of frames extracted using the default parame-
ters. You may find below the description of the abbrevia-
tions used in the table header:

• Src: Data source.
• Prb: Probe type.
• Org. dimension: Dimension of the original file.
• Fnl. dimension: Dimension of the final processed

file.
• #Fr: Number of frames.
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Table 2. Ultrasound video files included in COVIDx-US v1.5. (n = 173).
No Filename Type Src Prb Class Org. dimension Fnl. dimension #Fr

1 1_butterfly_covid Mp4 BN Con COVID-19 880 × 1080 820 × 820 64
2 2_butterfly_covid Mp4 BN Con COVID-19 720 × 1236 624 × 624 158
3 3_butterfly_covid Mp4 BN Con COVID-19 1928 × 1080 1055 × 1055 90
4 4_butterfly_covid Mp4 BN Con COVID-19 880 × 1080 820 × 820 108
5 6_butterfly_covid Mp4 BN Con COVID-19 720 × 1236 642 × 642 169
6 7_butterfly_covid Mp4 BN Con COVID-19 880 × 1080 820 × 820 125
7 8_butterfly_covid Mp4 BN Con COVID-19 880 × 1080 820 × 820 109
8 9_butterfly_covid Mp4 BN Con COVID-19 1928 × 1080 1055 × 1055 80
9 10_butterfly_covid Mp4 BN Con COVID-19 736 × 1080 640 × 640 147
10 11_butterfly_covid Mp4 BN Con COVID-19 624 × 1080 544 × 544 114
11 12_butterfly_covid Mp4 BN Con COVID-19 880 × 1080 820 × 820 111
12 13_butterfly_covid Mp4 BN Con COVID-19 880 × 1080 820 × 820 91
13 14_butterfly_covid Mp4 BN Con COVID-19 880 × 1080 820 × 820 103
14 15_butterfly_covid Mp4 BN Con COVID-19 1928 × 1080 1055 × 1055 87
15 16_butterfly_covid Mp4 BN Con COVID-19 720 × 1236 634 × 634 202
16 17_butterfly_covid Mp4 BN Con COVID-19 1928 × 1080 1055 × 1055 76
17 18_butterfly_covid Mp4 BN Con COVID-19 880 × 1080 820 × 820 101
18 19_butterfly_covid Mp4 BN Con COVID-19 880 × 1080 820 × 820 81
19 20_butterfly_normal Mp4 BN Con Normal 720 × 1236 594 × 594 142
20 21_butterfly_normal Mp4 BN Con Normal 880 × 1080 820 × 820 99
21 23_grepmed_pneumonia Mp4 GM Lin Non-COVID-19 816 × 540 408 × 408 252
22 24_grepmed_covid Mp4 GM Con COVID-19 960 × 720 500 × 500 225
23 25_grepmed_pneumonia Mp4 GM Con Non-COVID-19 1280 × 720 665 × 665 300
24 26_grepmed_covid Mp4 GM Con COVID-19 720 × 720 382 × 382 70
25 27_grepmed_pneumonia Mp4 GM Con Non-COVID-19 480 × 360 345 × 345 91
26 28_grepmed_normal Mp4 GM Lin Normal 302 × 336 302 × 302 39
27 29_grepmed_covid Mp4 GM Lin COVID-19 600 × 436 315 × 410 75
28 30_grepmed_covid Mp4 GM Con COVID-19 800 × 652 625 × 465 69
29 31_grepmed_covid Mp4 GM Con COVID-19 720 × 1076 608 × 608 365
30 32_grepmed_pneumonia Mp4 GM Lin Non-COVID-19 816 × 540 300 × 410 302
31 33_grepmed_covid Mp4 GM Lin COVID-19 960 × 720 435 × 500 116
32 34_grepmed_pneumonia Mp4 GM Con Non-COVID-19 800 × 600 550 × 550 458
33 35_grepmed_covid Mp4 GM Con COVID-19 720 × 720 595 × 595 361
34 36_grepmed_normal Mp4 GM Con Normal 720 × 540 540 × 540 85
35 37_grepmed_pneumonia Mp4 GM Con Non-COVID-19 962 × 720 653 × 653 187
36 38_grepmed_pneumonia Mp4 GM Con Non-COVID-19 800 × 600 540 × 540 300
37 39_grepmed_normal Mp4 GM Lin Normal 1280 × 720 600 × 685 157
38 41_grepmed_pneumonia Mp4 GM Con Non-COVID-19 600 × 406 386 × 386 151
39 42_grepmed_covid Mp4 GM Con COVID-19 640 × 480 435 × 435 159
40 43_litfl_pneumonia Mp4 LITFL Con Non-COVID-19 720 × 540 540 × 540 115
41 49_pocusatlas_covid Gif TPA Con COVID-19 600 × 600 282 × 282 76
42 50_pocusatlas_covid Gif TPA Con COVID-19 600 × 600 282 × 282 83
43 51_pocusatlas_covid Gif TPA Con COVID-19 600 × 1025 528 × 528 40
44 52_pocusatlas_covid Gif TPA Con COVID-19 600 × 1025 528 × 528 40
45 53_pocusatlas_covid Gif TPA Con COVID-19 598 × 430 400 × 320 41
46 54_pocusatlas_covid Gif TPA Con COVID-19 590 × 423 420 × 415 39
47 55_pocusatlas_covid Gif TPA Lin COVID-19 600 × 436 315 × 410 75
48 56_pocusatlas_covid Gif TPA Con COVID-19 600 × 410 410 × 410 30
49 57_pocusatlas_covid Gif TPA Lin COVID-19 493 × 368 265 × 300 32
50 58_pocusatlas_covid Gif TPA Con COVID-19 600 × 450 450 × 450 30
51 60_pocusatlas_covid Gif TPA Con COVID-19 600 × 384 384 × 384 30
52 61_pocusatlas_covid Gif TPA Con COVID-19 600 × 492 472 × 472 21
53 62_pocusatlas_normal Gif TPA Con Normal 492 × 376 376 × 376 60
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Table 2. Continued.
No Filename Type Src Prb Class Org. dimension Fnl. dimension #Fr

54 63_pocusatlas_covid Gif TPA Lin COVID-19 440 × 312 318 × 310 137
55 64_pocusatlas_pneumonia Gif TPA Con Non-COVID-19 394 × 394 348 × 348 59
56 66_pocusatlas_covid Gif TPA Con COVID-19 309 × 299 299 × 299 41
57 67_pocusatlas_covid Gif TPA Lin COVID-19 299 × 303 299 × 299 183
58 68_pocusatlas_pneumonia Gif TPA Con Non-COVID-19 282 × 290 282 × 282 30
59 69_pocusatlas_pneumonia Gif TPA Con Non-COVID-19 600 × 450 440 × 382 40
60 70_pocusatlas_pneumonia Gif TPA Con Non-COVID-19 324 × 249 249 × 249 30
61 71_pocusatlas_normal Gif TPA Con Normal 600 × 450 450 × 450 59
62 73_pocusatlas_covid Gif TPA Con COVID-19 439 × 595 407 × 407 46
63 74_pocusatlas_covid Gif TPA Con COVID-19 463 × 480 463 × 463 46
64 76_pocusatlas_normal Gif TPA Con Normal 600 × 338 338 × 338 60
65 77_pocusatlas_normal Gif TPA Con Normal 237 × 293 237 × 237 60
66 78_pocusatlas_normal Gif TPA Lin Normal 480 × 480 260 × 460 109
67 79_pocusatlas_pneumonia Gif TPA Con Non-COVID-19 442 × 309 309 × 309 31
68 80_pocusatlas_pneumonia Gif TPA Con Non-COVID-19 198 × 197 197 × 197 30
69 81_butterfly_covid Mp4 BN Con COVID-19 760 × 1080 656 × 656 243
70 82_butterfly_covid Mp4 BN Con COVID-19 760 × 1080 656 × 656 52
71 83_butterfly_covid Mp4 BN Con COVID-19 632 × 1080 558 × 558 76
72 84_butterfly_covid Mp4 BN Con COVID-19 624 × 1080 544 × 544 114
73 86_butterfly_covid Mp4 BN Con COVID-19 760 × 1080 656 × 656 287
74 87_butterfly_covid Mp4 BN Con COVID-19 736 × 1080 640 × 640 177
75 88_butterfly_covid Mp4 BN Con COVID-19 760 × 1080 658 × 658 107
76 89_butterfly_covid Mp4 BN Con COVID-19 736 × 1080 640 × 640 179
77 90_butterfly_covid Mp4 BN Con COVID-19 760 × 1080 656 × 656 145
78 92_butterfly_covid Mp4 BN Con COVID-19 736 × 1080 642 × 642 113
79 93_butterfly_covid Mp4 BN Con COVID-19 736 × 1080 642 × 642 109
80 94_butterfly_covid Mp4 BN Con COVID-19 760 × 1080 658 × 658 300
81 95_litfl_other Mp4 LITFL Lin Other 480 × 360 360 × 310 45
82 96_litfl_other Mp4 LITFL Lin Other 480 × 360 360 × 360 42
83 100_litfl_other Mp4 LITFL Con Other 480 × 360 360 × 360 46
84 108_litfl_other Mp4 LITFL Con Other 480 × 360 360 × 360 43
85 114_litfl_other Mp4 LITFL Con Other 480 × 360 360 × 360 46
86 115_litfl_other Mp4 LITFL Con Other 480 × 360 360 × 360 28
87 122_litfl_pneumonia Mp4 LITFL Con Non-COVID-19 480 × 360 360 × 360 42
88 123_litfl_pneumonia Mp4 LITFL Con Non-COVID-19 480 × 360 360 × 360 36
89 124_litfl_pneumonia Mp4 LITFL Lin Non-COVID-19 480 × 360 355 × 420 36
90 127_litfl_pneumonia Mp4 LITFL Con Non-COVID-19 480 × 360 360 × 360 24
91 128_litfl_pneumonia Mp4 LITFL Con Non-COVID-19 480 × 360 360 × 360 32
92 129_litfl_pneumonia Mp4 LITFL Con Non-COVID-19 480 × 360 360 × 360 25
93 130_litfl_pneumonia Mp4 LITFL Con Non-COVID-19 480 × 360 360 × 360 41
94 131_litfl_pneumonia Mp4 LITFL Con Non-COVID-19 480 × 360 360 × 360 26
95 132_litfl_pneumonia Mp4 LITFL Con Non-COVID-19 480 × 360 360 × 360 27
96 133_litfl_other Mp4 LITFL Lin Other 480 × 360 360 × 410 46
97 134_litfl_other Mp4 LITFL Lin Other 480 × 360 355 × 400 46
98 135_litfl_normal Mp4 LITFL Lin Normal 480 × 360 360 × 410 36
99 136_litfl_other Mp4 LITFL Lin Other 480 × 360 360 × 410 36
100 137_litfl_other Mp4 LITFL Lin Other 480 × 360 330 × 470 46
101 138_litfl_normal Mp4 LITFL Lin Normal 480 × 360 360 × 460 46
102 139_litfl_normal Mp4 LITFL Lin Normal 480 × 384 384 × 430 26
103 140_litfl_other Mp4 LITFL Lin Other 480 × 384 365 × 428 27
104 142_litfl_other Mp4 LITFL Lin Other 480 × 360 340 × 430 34
105 143_litfl_other Mp4 LITFL Lin Other 480 × 360 360 × 405 38
106 144_litfl_other Mp4 LITFL Lin Other 480 × 360 360 × 405 46
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Table 2. Continued.
No Filename Type Src Prb Class Org. dimension Fnl. dimension #Fr

107 145_litfl_other Mp4 LITFL Con Other 480 × 360 360 × 360 45
108 146_litfl_other Mp4 LITFL Con Other 480 × 360 360 × 360 45
109 150_litfl_other Mp4 LITFL Con Other 480 × 360 360 × 360 28
110 151_litfl_pneumonia Mp4 LITFL Con Non-COVID-19 480 × 360 360 × 360 42
111 152_radio_normal Mp4 RP Con Normal 314 × 270 270 × 270 131
112 153_radio_pneumonia Mp4 RP Con Non-COVID-19 338 × 314 306 × 306 223
113 158_core_pneumonia Mp4 CU Con Non-COVID-19 1920 × 1080 730 × 730 181
114 159_core_other Mp4 CU Con Other 1920 × 840 925 × 840 180
115 160_core_other Mp4 CU Con Other 1920 × 840 995 × 707 180
116 161_core_other Mp4 CU Lin Other 1920 × 1080 1010 × 900 224
117 162_core_other Mp4 CU Lin Other 1920 × 1080 900 × 810 224
118 163_core_other Mp4 CU Con Other 792 × 470 470 × 470 182
119 164_core_normal Mp4 CU Lin Normal 792 × 484 465 × 310 150
120 165_core_other Mp4 CU Lin Other 792 × 470 460 × 325 179
121 166_core_other Mp4 CU Con Other 792 × 470 470 × 470 181
122 167_core_other Mp4 CU Lin Other 792 × 470 460 × 325 121
123 168_core_other Mp4 CU Lin Other 792 × 470 460 × 325 181
124 169_core_other Mp4 CU Con Other 792 × 470 470 × 470 180
125 170_core_pneumonia Mp4 CU Con Non-COVID-19 792 × 470 470 × 470 182
126 171_core_pneumonia Mp4 CU Lin Non-COVID-19 792 × 470 460 × 240 179
127 172_core_other Mp4 CU Con Other 792 × 470 470 × 470 167
128 173_core_other Mp4 CU Lin Other 792 × 470 420 × 370 150
129 174_core_covid Mp4 CU Con COVID-19 1920 × 1080 800 × 730 77
130 175_uf_normal Mp4 UF Con Normal 800 × 600 480 × 480 38
131 176_uf_normal Wmv UF Con Normal 800 × 600 512 × 512 38
132 177_uf_normal Wmv UF Con Normal 800 × 600 528 × 528 38
133 178_uf_other Mp4 UF Con Other 1276 × 856 1276 × 645 407
134 179_uf_other Wmv UF Con Other 800 × 600 528 × 528 407
135 180_uf_normal Wmv UF Con Normal 800 × 600 528 × 528 77
136 181_uf_other Wmv UF Con Other 800 × 600 528 × 528 77
137 185_uf_other Mp4 UF Con Other 800 × 600 528 × 528 48
138 186_uf_other Wmv UF Con Other 800 × 600 528 × 528 48
139 187_uf_other Mp4 UF Lin Other 480 × 320 296 × 310 44
140 190_uf_normal Wmv UF Con Normal 800 × 600 528 × 528 102
141 191_uf_normal Wmv UF Con Normal 800 × 600 543 × 543 102
142 192_uf_other Mp4 UF Lin Other 800 × 600 545 × 510 44
143 199_paper_covid Mp4 Paper Con COVID-19 640 × 480 466 × 466 209
144 200_paper_covid Avi Paper Con COVID-19 640 × 480 466 × 466 65
145 201_paper_covid Mov Paper Con COVID-19 1068 × 800 680 × 680 65
146 202_paper_covid Mov Paper Con COVID-19 1068 × 800 680 × 680 65
147 203_paper_covid Mov Paper Con COVID-19 1068 × 800 680 × 680 65
148 204_paper_covid Mov Paper Con COVID-19 1068 × 800 680 × 680 65
149 205_paper_covid Mov Paper Con COVID-19 1068 × 800 680 × 680 65
150 206_paper_normal Mp4 Paper Con Normal 800 × 600 600 × 600 120
151 207_paper_normal Mp4 Paper Lin Normal 800 × 600 600 × 350 117
152 208_paper_normal Mp4 Paper Lin Normal 428 × 536 418 × 536 90
153 209_paper_other Mp4 Paper Lin Other 800 × 600 250 × 570 117
154 212_paper_other Mp4 Paper Con Other 800 × 600 600 × 600 119
155 213_paper_other Mp4 Paper Con Other 800 × 600 600 × 600 121
156 215_paper_other Mp4 Paper Con Other 800 × 600 600 × 600 120
157 217_clarius_normal Mp4 CL Con Normal 886 × 1350 886 × 886 241
158 218_clarius_covid Gif CL Con COVID-19 600 × 400 400 × 400 104
159 219_clarius_covid Gif CL Lin COVID-19 600 × 400 600 × 400 32
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Table 2. Continued.
No Filename Type Src Prb Class Org. dimension Fnl. dimension #Fr

160 220_clarius_covid Gif CL Con COVID-19 600 × 400 400 × 400 118
161 222_clarius_other Mp4 CL Con Other 436 × 800 436 × 436 74
162 223_clarius_other Mp4 CL Con Other 436 × 800 436 × 436 74
163 224_clarius_normal Mp4 CL Con Normal 436 × 800 436 × 436 74
164 225_clarius_other Mp4 CL Con Other 436 × 800 436 × 436 74
165 226_clarius_other Mp4 CL Con Other 554 × 800 554 × 554 481
166 227_clarius_other Mp4 CL Con Other 554 × 800 554 × 554 481
167 228_clarius_other Mp4 CL Con Other 554 × 800 554 × 554 481
168 229_clarius_pneumonia Mp4 CL Con Non-COVID-19 800 × 458 458 × 458 188
169 231_clarius_pneumonia Mp4 CL Con Non-COVID-19 800 × 458 458 × 458 482
170 236_clarius_normal Mp4 CL Con Normal 800 × 482 482 × 482 365
171 238_clarius_other Mp4 CL Con Other 552 × 800 552 × 552 75
172 239_paper_normal Avi Paper Con Normal 720 × 512 512 × 512 75
173 243_paper_other Avi Paper Con Other 720 × 512 512 × 512 252
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