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Abstract

At present, there are seven known types of human coronaviruses (HCoVs), which can be further divided into two categories: low
pathogenic and highly pathogenic. The low pathogenic HCoVs infect the upper respiratory tract, mainly causing mild, cold-like respira-
tory diseases. By contrast, highly pathogenic HCoVs mainly infect the lower respiratory tract and cause fatal types of pneumonia, which
include severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS), as well as the recent outbreak of
coronavirus disease 2019 (COVID-19). Highly pathogenic HCoV infection has a high morbidity and mortality, which is usually related
to the strong immune response induced by highly proinflammatory cytokines, which is also known as “cytokine storm”. Therefore, it is
particularly important to explore the role of cytokine storm in the process of highly pathogenic HCoV infection. We review the epidemi-
ological and clinical manifestations of highly pathogenic HCoV infection, and reveal the pathology of cytokine storm and its role in the
process of highly pathogenic HCoV infection.
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1. Introduction
Coronavirus is an enveloped virus; with a single-

strand, positive-sense RNA genome size of about 26–32
kb, it is the largest known RNA virus [1]. At present,
there are seven known types of human coronaviruses
(HCoVs): severe acute respiratory syndrome coronavirus
(SARS-CoV); Middle East respiratory syndrome CoV
(MERS-CoV); SARS-CoV2; and HCoV-229E, HCoV-
OC43, HCoV-NL63, and HCoV-HKU1, which cause only
mild upper respiratory diseases [2–5].

In recent years, novel coronaviruses have been de-
tected periodically around the world. For example, SARS
was caused by a SARS-CoV outbreak in Guangdong
Province in South China from 2002 to 2003 [6]. A sus-
tainable severe respiratory disease with MERS-CoV as the
pathogen broke out in theMiddle East in 2012 [7], andmore
recently, an outbreak of COVID-19 occurred in Wuhan,
China, from the end of 2019 to the beginning of 2020 [5].
All three highly pathogenic HCoV infections caused se-
vere pneumonia, which can further develop into fatal acute
lung injury (ALI) and acute respiratory distress syndrome
(ARDS) with high morbidity and mortality [6,8–10]. How-
ever, the specific mechanism of serious diseases caused by
highly pathogenic HCoV infection remains unclear. It is
noteworthy that excessive inflammatory response—that is,
cytokine storm—is considered to play a vital role in fa-
tal pneumonia caused by highly pathogenic HCoV infec-

tion [11]. Therefore, in this review, we summarize the epi-
demiology and clinical manifestations of highly pathogenic
HCoV infections, and describe the pathology of cytokine
storms and their role in the course of highly pathogenic
HCoV infection.

2. Epidemiology and clinical manifestations
of highly pathogenic HCoVs infection
2.1 SARS

SARS was first diagnosed in Guangdong, China, and
quickly spread around the world in 2002–2003 [12,13]. In
March 2003, a new HCoV was identified as the pathogen
of SARS and was promptly named SARS-CoV [14,15].
By the end of the epidemic in July 2003, SARS-CoV had
spread to 29 countries and regions; a total of 8098 patients
were infected and 744 died (case fatality rate, 9.6%) [16].
At the beginning of the SARS epidemic, almost all diag-
nosed patients had been exposed to animals before the on-
set of the disease. After the SARS pathogen had been
identified, SARS-CoV was found in palm civets on the
market [17,18]. However, new studies have shown that
palm civets are only intermediate hosts, and the SARS-
CoV found in them is actually transmitted by other ani-
mals [18,19]. Moreover, multiple studies have reported the
discovery of a novel coronavirus associated with human
SARS-CoV in horseshoe bats [20,21]. These lines of ev-
idence suggest that horseshoe bats may be the natural hosts
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of SARS-CoV, whereas palm civets are the intermediate
hosts.

SARS-CoV infection may exhibit a variety of clinical
characteristics, ranging from asymptomatic or mild fever to
acute respiratory tract infections, and even ARDS or death
[12]. In addition to respiratorymanifestations, such as fever
and cough, SARS can also present nonpulmonary features
such as myalgia and diarrhea [22]. In general, SARS-CoV
replicates quickly after infecting the host. At this stage, pa-
tients with SARS will develop fever and cough, then de-
velop high fever, hypoxemia, and pneumonia-like symp-
toms; eventually, about 20% of the patients will develop
ARDS, and some of them may even die [11].

2.2 MERS
Since MERS-CoV was first isolated from the spu-

tum of a 60-year-old man in Saudi Arabia in September
2012 [9], the number of MERS cases reported to the World
Health Organization (WHO) has increased steadily. By De-
cember 2019, there have been a total of 2468 laboratory-
confirmed cases of MERS-CoV infection, of whom 851
died, which translates to a mortality rate of about 34.5%.
Of these, approximately 82% occurred in Saudi Arabia, and
most of these cases resulted from outbreaks in hospitals and
families [23]. In addition, similar to SARS-CoV, MERS-
CoV spreads to humans across species. Increasing evidence
has shown that the main intermediate hosts of MERS-CoV
are camels, and its natural hosts are bats [24–26].

MERS-CoV can cause acute respiratory infection, but
its severity ranges from asymptomatic to mild respiratory
symptoms to life-threatening ARDS with high mortality
[27]. The most common clinical manifestations are fever,
sore throat, cough, myalgia, hard breathing, and other
influenza-like symptoms, which rapidly develop into pneu-
monia [28]. In addition, MERS-CoV can also cause gas-
trointestinal symptoms, such as abdominal pain, vomiting,
and diarrhea [29]. Most healthy individuals show mild to
moderate respiratory diseases, but individuals with dysreg-
ulated immune response and severe respiratory diseases of-
ten develop ARDS [30].

2.3 COVID-19
In December 2019, a highly transmissible pneumonia,

caused by a novel coronavirus SARS-CoV2, broke out in
Wuhan, China [31,32]. On February 11, 2020, the WHO
named this novel coronavirus disease as COVID-19. Thus
far, the virus has spread rapidly more than 200 countries
and regions around the world. As of October 31, 2021,
there have been a total of over 246 million confirmed cases
of COVID-19, of whom nearly 5 million have died, and
the number continues to rise [33]. Studies have shown
that SARS-CoV2 can spread mainly from person-to-person
through respiratory droplets or aerosol particles produced
when infected people cough, sneeze, or talk [34]. Based on
the analysis of the current epidemiological data, the basic

reproductive number of SARS-CoV2 was estimated at 2.19
(95% confidence interval, 2.08 to 2.36), andmedian incuba-
tion period was estimated to be 5.1 days (95% confidence
interval, 4.5 to 5.8 days), and it was confirmed that case
and close contact isolation are effective in reducing trans-
mission of SARS-CoV2 [35,36]. It is worth noting that the
genetic similarity between SARS-CoV2 and SARS-CoV is
79.6%, and the similarity with bat coronavirus is as high as
96% [37,38]. Although the origin of SARS-CoV2 is un-
clear, current evidence points to bats as the likely natural
host of SARS-CoV2 [39].

Available evidence suggests that the clinical setting of
COVID-19 is complex. A series of studies have found that
the most common symptoms of COVID-19 are fever, fa-
tigue and dry cough [10,40–42]. Meanwhile, the digestive
symptoms, such as diarrhea, vomiting and abdominal pain,
and neurological symptoms, such as olfactory and taste dis-
orders, language disturbances, cerebellar ataxia and delir-
ium, are also common in COVID-19 patients [43–46]. In
addition, ground-glass opacity and subpleural lesions were
found to be common CT signs of SARS-COV2 infection
[47]. Of note, a study has shown that more than half of
the patients with severe COVID-19 have chronic diseases
such as cardiovascular diseases, endocrine system disease
and respiratory system disease, among whom 17% devel-
oped ARDS, and 11% deteriorated with multiple organ fail-
ure within a short period [40]. In a summary of a report of
72,314 cases from China, 81% were mild and 19% were
severe and critical requiring mechanical ventilation [48].
Similar results were seen in amulticenter study in Germany,
in which 17% of patients received mechanical ventilation
and found that common comorbidities of COVID-19 were
hypertension, diabetic, arrhythmias and kidney failure [49].
A cohort study conducted in the US showed that 20.3% of
hospitalized COVID-19 patients died and 19.4% were ad-
mitted to ICU [50]. In addition, COVID-19 can produce
a series of mental health challenges such as anxiety, de-
pression, traumatic stress reactions and suicide [51]. Fur-
thermore, a study has confirmed a significantly higher inci-
dence of heart failure, stroke, chronic kidney disease stages
3–5 and chronic liver disease in COVID-19 patients after
discharge from hospital than in the general population [52].

2.4 Characteristics of highly pathogenic HCoV infection

Here’s what we know, similar to influenza and respi-
ratory syncytial virus (RSV), fever and cough are the most
common symptoms of highly pathogenic HCoVs infection.
In addition, studies have shown that the epidemiology of
COVID-19 is related to temperature, radiation/sunlight and
latitude [53–55]. Meanwhile, a recent study further con-
firmed that the COVID-19 incidence is negatively corre-
lated with temperature and humidity [56]. These evidences
demonstrated the seasonality of COVID-19.

However, highly pathogenic HCoVs are more likely
to cause severe respiratory tract infection, ARDS and
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even multiple organ failure compared with low pathogenic
HCoVs and seasonal influenza [57]. In addition, patients
with COVID-19 frequently present with bilateral pneumo-
nia and multiple ground-glass shadows on lung CT imag-
ing, which provides a reliable detection method for early
diagnosis of COVID-19 [58]. It is worth noting that some
patients with COVID-19 are prone to fatal complications
such as pulmonary embolism, septic shock or hemorrhagic
stroke [59]. Furthermore, Idilman et al. [60] recruited 31
COVID-19 patients with suspected of having pulmonary
thromboembolism who underwent pulmonary dual-energy
computed tomography angiography and found that per-
fusion defects may be a sign of systemic microangiopa-
thy with micro-thrombosis. These findings suggest that
the clinical manifestations of patients infected with highly
pathogenic HCoVs are not limited to severe respiratory
symptoms, but also involve other organs and cause sys-
temic damage. However, the specific mechanism is still
unclear. It is important to note that some SARS patients
with diminishing viral load still develop ARDS, suggesting
that mechanisms other than viral virulence may mediate tis-
sue damage [61]. Moreover, patients infected with highly
pathogenic HCoVs showed significant changes in white
blood cell count and immune biomarkers such as IL-6 [62].
Furthermore, a cohort study has found that hyperinflamma-
tory syndrome, including secondary haemophagocytic lym-
phohistiocytosis, cytokine release syndrome, macrophage
activation syndrome and macrophage activation-like syn-
drome of sepsis, was associated with the prognosis of
COVID-19 [63]. Taken together, these studies substan-
tiated the concept that immune mechanisms are involved
in the occurrence and development of highly pathogenic
HCoVs infection.

3. Cytokine storm in highly pathogenic
HCoV infection
3.1 Mechanisms of cytokine storm

During virus infection, the innate immune response
triggered by the host is the first line of defense against
the virus. However, an overactive immune response may
lead to immunopathology [64]. The innate immune system
of the host recognizes viral pathogen-associated molecu-
lar patterns through pattern recognition receptors, thereby
stimulating the expression of proinflammatory cytokines
[65,66]. These proinflammatory cytokines lead to the ac-
cumulation of inflammatory cells and acute inflammatory
response, often leading to tissue or organ damage [67].
In most cases, the repair process after the beginning of
the inflammatory response can fully restore the function
of the tissue or organ, and some severe inflammatory re-
actions will lead to persistent tissue or organ dysfunction
[68]. In some cases, excessive inflammatory cytokines such
as interferons (IFNs), tumor necrosis factors (TNFs), in-
terleukins (ILs), and chemokines (Table 1, Ref. [10,55–
60,66–71]) are produced and accumulated, causing a cy-

tokine storm and multiple organ dysfunction [68].

3.2 Cytokine storm in SARS-CoV infection
Innate immune response plays a key role in com-

bating SARS-CoV infection. Studies have shown that
macrophages infected with SARS-CoV have low expres-
sion of IFN-α/β, but significantly high expression of mono-
cyte chemoattractant protein-1 (MCP-1) and IFN-gamma
inducible protein 10 (IP10) [69]. In addition, dendritic
cells infected with SARS-CoV had low expression of an-
tiviral cytokines IFN-α/β, moderately up-regulated proin-
flammatory cytokines TNF-α and IL-6, and significantly
up-regulated inflammatory chemokine IP10, macrophage
inflammatory protein 1α (MIP-1α), MCP-1, and regulated
upon activation of normal T-cell expressed and secreted
(RANTES) [70]. In addition, SARS-CoV-infected air-
way epithelial cells expressed a large number of MCP-1,
RANTES, and IP10 [71]. These lines of evidence suggest
that SARS-CoV induces the production of inflammatory
factors after infecting immune cells, which plays a role in
fighting against the virus; conversely, however, excessive
production of these cytokines may also lead to the imbal-
ance of host innate immune response.

It is noteworthy that many studies have shown that the
levels of proinflammatory cytokines (IFN-γ, IL-1, IL-6, IL-
12) and chemokines (IL-8, IP10, MCP-1) are significantly
elevated in patients with SARS [72–74]. In contrast, pa-
tients with SARS have very low levels of IL-10 [72]. In ad-
dition, compared to patients with mild to moderate SARS,
the serum levels of IFN-α, IFN-γ, IP10, and MCP-1 in
patients with severe SARS were significantly higher [75–
77]. These results suggest that proinflammatory cytokines
and chemokines may play a role in the immunopatholog-
ical pathogenesis of SARS. These studies suggest that the
imbalance or exaggeration of SARS-CoV-infected alveolar
epithelial cells, dendritic cells, and macrophages to proin-
flammatory cytokines and chemokines may play an impor-
tant role in the pathogenesis of SARS.

3.3 Cytokine storms in MERS-CoV infection
MERS-CoV has a high morbidity and mortality. Al-

though its pathological mechanism remains unknown to
date, accumulating evidence indicates that immune re-
sponse plays an important role [78]. Studies have shown
that macrophages infected with MERS-CoV highly express
IL-12, IFN-γ, IP10, MCP-1, MIP-1α and IL-8 [79]. In
addition, monocytes and plasmacytoid dendritic cells in-
fected with MERS-CoV express a large number of type I
and III IFNs [80]. Moreover, studies have shown that air-
way epithelial cells infected with MERS-CoV induce de-
layed high expression of inflammatory cytokines (IL-1β,
IL-6, IL-8) [81]. These results suggest that MERS-CoV
can induce host immune cells to express a variety of cy-
tokines, and these abnormally expressed inflammatory cy-
tokines and chemokines may play an important role in its
pathogenesis.
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Table 1. Excessive cytokines and chemokines in highly pathogenic human coronavirus infection.
HCoVs infection Patient characteristics Cytokines and chemokines Ref.

SARS SARS
IFN-γ, IL-1, IL-6, IL-12,
IL-8, IP-10, MCP-1

Chien et al. [55]
Wong et al. [56]
Zhang et al. [57]

severe SARS IFN-α, IFN-γ, IP10, MCP-1
Cameron et al. [58]
Theron et al. [59]
Cameron et al. [60]

MERS MERS IFN-γ, TNF-α, IL-15, IL-17 Mahallawi et al. [66]

severe or moderate
IL-6, IL-1RA, IP10, MCP-1 Shin et al. [67]

MERS

severe MERS IFN-α, IL-6, IP10, IL-8, RANTES
Kim et al. [68]
Min et al. [69]

COVID-19 COVID-19
IL-1, IL-6, IL-7, IL-8, IL-9, IL-10,
IFN-γ, TNFα, IP10, MCP-1, MIP1α, G-CSF

Huang et al. [10]

severe COVID-19
IL-2, IL-6, IL-7, IL-10, IP10,
MCP-1, MIP1α, TNFα, G-CSF

Huang et al. [10]
Chen et al. [70]
Liu et al. [71]

HCoVs, human coronavirus; SARS, severe acute respiratory syndrome; MERS, Middle East respiratory syndrome;
COVID-19, coronavirus disease-19; IFN, interferons; IL, interleukin; IP10, interferon-gamma inducible protein 10; MCP-
1, monocyte chemoattractant protein-1; TNF, tumor necrosis factor; RANTES, regulated upon activation normal T-cell
expressed and secreted; MIP, macrophage inflammatory protein; G-CSF, granulocyte colony-stimulating factor.

Recent studies have shown that there is a significant
proinflammatory cytokine response in the acute phase of
human infection with MERS-CoV, and the serum concen-
trations of IFN-γ, TNF-α, IL-15, and IL-17 in patients with
MERS are significantly higher than those in healthy indi-
viduals [82]. In addition, the levels of IL-6, IL-1RA, IP10,
and MCP-1 in the plasma of patients with severe or mod-
erate MERS increased significantly, and the degree of this
increase was related to the severity of the disease, and de-
creased to the basic level during the recovery period of the
disease [83]. In addition, studies have also shown higher
serum levels of IFN-α, IL-6, IP10, IL-8, and RANTES in
patients with severe MERS compared to patients with mild
MERS [84,85]. Moreover, the increase of serum cytokines
was well correlated with the severity of chest infiltration in
patients with severe MERS [84]. Although causality is un-
clear, elevated serum levels of pro-inflammatory cytokines
have been associated with the severity of MERS-CoV in-
fection.

Many patients with MERS-CoV infection, there-
fore, exhibit excessive proinflammatory cytokines and
chemokines, which leads to a cytokine storm and plays an
important role in the pathogenesis of MERS-CoV.

3.4 COVID-19 and cytokine storm

COVID-19, now considered a worldwide pandemic
disease with high morbidity and mortality, is caused by
SARS-CoV2. In the latest study, tissue biopsy samples ob-

tained from an autopsy of a dead patient with COVID-19
showed that the pathological features of COVID-19 were
very similar to those of SARS-CoV and MERS-CoV infec-
tion [86–88]. Studies have shown that lymphocytes, partic-
ularly CD4+ T and CD8+ T cells, are significantly reduced
in almost all patients with COVID-19 [89,90]. In addition,
C-reactive protein, neutrophil count and the neutrophil-to-
lymphocyte ratio in the peripheral blood of patients with
COVID-19 are increased, and that the neutrophil-to-CD8+
T cell ratio in patients with severe COVID-19 was signifi-
cantly higher than that in patients with mild diseases [91].
Therefore, understanding the complex immune dysregula-
tion is essential to the diagnosis and treatment of COVID-
19.

The study found that plasma concentrations of IL-
1, IL-7, IL-8, IL-9, IL-10, IFN-γ, TNF-α, IP10, MCP-
1, MIP1α, and granulocyte colony-stimulating factor (G-
CSF) in patients with COVID-19 were higher [10]. In ad-
dition, the plasma levels of IL-2, IL-7, IL-10, IP10, MCP-
1, MIP1α, TNF-α, and G-CSF in patients with COVID-
19 who were admitted to the ICU were higher than those
without ICU admission [10]. After that, a series of stud-
ies have found that circulating IL-2, IL-6, IL-10, TNF-α
and IFN-γ levels of patients with severe COVID-19 are
significantly higher compared to mild to moderate illness
[89,91]. Meanwhile, mounting evidence supports the role
of cytokine-mediated neuroinflammation as the underlying
mechanism in COVID-19-related encephalopathy [45,46].

4

https://www.imrpress.com


It is noteworthy that studies have shown that IL-6 is not
only correlated with the severity of disease, but also as-
sociated with mortality rates of COVID-19 infection [92].
Paradoxically, the administration of tocilizumab did not
improve survival in hospitalized patients with COVID-19
pneumonia who were not receiving mechanical ventilation
[93]. However, another study found that IL-6 antagonists
reduced 28-day all-cause mortality in patients hospitalized
for COVID-19 compared with usual care or placebo [94].
In addition, tocilizumab is considered a viable treatment op-
tion for patients with COVID-19 at risk for cytokine storm
[95]. Although a variety of studies have shown that patients
with severe SARS-CoV2 have higher pro-inflammatory cy-
tokines, anti-cytokine treatments have shown inconsistent
results, with some trials showing improvement and others
showing no effect.

4. Pathogenesis of cytokine storm in highly
pathogenic HCoV infection

Cytokine storms play an important role in highly
pathogenic HCoV infection. Current studies have found
that the main elevated cytokines in the plasma of critically
ill patients with SARS, MERS, or COVID-19 are IFN-γ,
IL-6, IP10, and MCP-1 [10,77,83]. Therefore, a cytokine
storm may trigger the downstream cascade signal pathway
through the binding of these proinflammatory cytokines and
chemokines to their respective receptors, then regulate the
expression of a series of corresponding genes and partic-
ipate in severe injury caused by highly pathogenic HCoV
infection (Fig. 1).

4.1 IFN-γ
IFNs are a class of cytokines that play an important

role in the innate immune response induced by viral in-
fection [96]. According to the specificity of the receptor,
they can be divided into three types—type I, type II, and
type III. IFN-γ is the only type II IFN, and its receptor is
IFN-γR1/IFN-γR2. In addition, IFN-γ is also important
for adaptive immunity, especially Th1 cell-mediated immu-
nity, and it can enhance the antiviral activity of type I IFN
[97,98]. After binding to its receptor, IFN-γ activates Janus
kinase (JAK) 1 and JAK2, and then recruits and phosphory-
lates signal transducer and activator of transcription (STAT)
1. Phosphorylated STAT1 homodimers form the IFN-γ ac-
tivation factor (GAF), then enter the nucleus and bind to
IFN-γ-activated sequence (GAS) to activate the expression
of IFN-stimulated genes (ISGs) [99]. Normally, the prod-
ucts encoded by ISGs have antiviral or immunomodulatory
functions [68]. However, when there is a large amount of
IFN-γ in the serum of patients with severe SARS orMERS,
this induces an excessive expression of ISGs through the
JAK–STAT signaling pathway, which leads to immune dis-
orders and cytokine storms, and aggravates tissue or organ
damage caused by highly pathogenic HCoV infection.

The cyclic GMP-AMP synthase (cGAS)-stimulator of

interferon genes (STING) signaling pathway is important
for the production of IFN. cGAS, a pattern recognition re-
ceptor of cytoplasmic double-stranded DNA (dsDNA), cat-
alyzes the reaction between GTP and ATP and generates
the small molecule cyclic GMP-AMP (cGAMP) after sens-
ing the dsDNA derived from pathogens or damage of host
tissues, and then activates STING to induce the phospho-
rylation of TANK-binding kinase 1 (TBK1) and interferon
regulatory factor 3 (IRF3), which ultimately induces IFN
expression and secretion [100,101]. Previous reports have
indicated that both SARS-CoV and SARS-CoV2 enter cells
via binding with angiotensin converting enzyme 2 (ACE2)
receptor to cause tissue and organ damage [62]. In addition,
self-DNA release due to tissue damage can over-activate the
cGAS-STING pathway and cause lung injury [102]. Mean-
while, as mentioned previously, IFN-γ level is increased in
SARS, MERS and COVID-19 patients [76,82,90]. There-
fore, it is speculated that the self-DNA released after tissue
and organ damage caused by viral virulence after HCoV in-
fection over-activates the cGAS-STING pathway, and then
induces the increases in the levels of IFN, thus amplifying
the damage of highly pathogenic HCoV to the body.

4.2 IL-6

IL-6 is an important cytokine that participates in the
regulation of immune response [103]. Its receptors include
IL-6 receptor-α (IL-6R) and the soluble forms of IL-6R
(sIL-6R). There are two signaling pathways in which IL-6
plays a role: the classic signaling pathway and the trans-
signaling pathway [104]. In the classic signaling pathway,
IL-6 binds to IL-6R and then forms a heterohexameric com-
plex with the IL-6 receptor subunit-β (gp130), which in
turn activates the JAK–STAT3 pathway and leads to the
transcription of STAT3 target genes [104]. Because IL-6R
is mainly expressed in the specific subsets of leukocytes,
megakaryocytes, hepatocytes, and some epithelial cells, the
classical IL-6 signaling pathway is limited in these types of
cells [105]. In the trans-signaling pathway, IL-6 binds to
sIL-6R and then binds to gp130 to form a polymer, thereby
activating the JAK-STAT3 pathway [104]. Although both
of them activate the JAK-STAT3 pathway, the current view
is that when the concentration of IL-6 is low, the anti-
inflammatory effect of IL-6 may be expressed through the
classic signaling pathway; however, when the concentra-
tion of IL-6 increases, the proinflammatory effect of IL-
6 may be expressed by initiating the trans-signaling path-
way [106]. Therefore, the high concentration of IL-6 in
the serum of patients with highly pathogenic HCoV infec-
tion may aggravate tissue or organ damage through the IL-6
trans-signaling pathway.

Although IL-6 is significantly elevated in patients with
severe COVID-19 and MERS, as previously noted, and
the cytokine storm is strongly associated with patient mor-
tality. However, it should be noted that the cytokine re-
sponse of patients with severe COVID-19 is distinct from
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Fig. 1. The role of cytokine storm in coronavirus infection. Akt, protein kinase B; ATF2, activating transcription factor 2; CCR2,
CC chemokine receptor 2; CXCR3, CXC chemokine receptor 3; DC, dendritic cell; ERK, extracellular signal regulated kinase; gp130,
interleukin-6 receptor subunit-beta; IFN-γ, interferon-gamma; IFN-γR, interferon-gamma receptor; IL-6, interleukin-6; IP10, interferon-
gamma inducible protein 10; IP3, inositol 1,4,5-trisphosphate; JAK, Janus kinase; MAPK, mitogen-activated protein kinase; MCP-1,
monocyte chemoattractant protein-1; MΦ, macrophage; NF-κB, nuclear factor-kappa B; PI3K, phosphatidylinositol 3-kinases; PKC,
protein kinase C; PLC, phospholipase C; sIL-6R, soluble forms of interleukin-6 receptor; STAT, signal transducer and activator of tran-
scription.
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that of patients with bacterial sepsis, in particular, the ele-
vated IL-6 levels are significantly lower [107,108]. Very re-
cently, a study has confirmed that routine use of tocilizumab
in hospitalized COVID-19 patients is not supported [109].
Moreover, studies have shown that anti-IL-6 receptor treat-
ments fail to benefit the survival of hospitalized patients
with COVID-19, and even increase the secondary infec-
tions in severe patients [110,111]. These results suggest
that IL-6 plays a complex role in the occurrence and de-
velopment of COVID-19, and the specific mechanism re-
mains unclear. Studies have indicated that plasma plas-
minogen activator inhibitor-1 (PAI-1) in patients with se-
vere COVID-19 is positively related to IL-6 levels, and the
production of PAI-1 can be reduced by inhibiting IL-6 sig-
naling pathway [112]. PAI-1 is a factor associated with vas-
cular endothelial injury, and its increase indicates vascular
endothelial lesions and coagulation dysfunction. Interest-
ingly, thromboembolic events be more frequent in COVID-
19 associated cytokine storm compared to other cytokine
storms [113]. Therefore, the abnormally elevated IL-6 in
patients with highly pathogenic HCoV may be involved in
the occurrence of thromboembolic events in severe patients
by promoting the production of PAI-1. In addition, low 25
(OH) vitamin D levels were associated with disease sever-
ity in patients hospitalized with COVID-19 [114]. Further-
more, studies have found that vitamin D3 is associated with
the inflammatory response of virus infected patients, espe-
cially can reduce the level of IL-6 in patients with RSV in-
fection [115]. Does this imply that the pathogenic mecha-
nism of IL-6 in the occurrence and development of coron-
avirus infection is regulated by vitamin D3. In conclusion,
current studies have shown that IL-6 plays a crucial role in
the process of highly pathogenic HCoV infection, and more
studies are needed to further clarify the specific mechanism
in the future.

4.3 IP10

IP10, a chemokine with a molecular weight of 10
kDa, is induced by IFN-γ, and is mainly expressed by neu-
trophils, eosinophils, monocytes, epithelial cells, endothe-
lial cells, and stromal cells [116,117]. Its only specific
receptor is CXC chemokine receptor (CXCR) 3, a trans-
membrane G protein coupled receptor, which is mainly ex-
pressed on T cells, B cells, natural killer cells, macrophages,
and dendritic cells [118]. After binding to the recep-
tor CXCR3, IP10 activates a variety of downstream sig-
nal pathways, resulting in increased chemotactic activity,
thereby regulating immune response, cell proliferation, and
other biological functions [119,120]. Study has confirmed
that IP10-CXCR3 signaling pathway plays a vital role in
the pathological deterioration of ARDS caused by virus or
non-virus [121]. In addition, IP10 may be a key chemokine
for COVID-19 associated cytokine storm and an indepen-
dent risk factor for the increase in mechanical ventilation
time after COVID-19 patients develop ARDS, and it is ex-

pected to become a potential therapeutic target for COVID-
19 [122,123].

It is worth pointing out that IP10 was significantly el-
evated in severe SARS, MERS and COVID-19 patients,
but the specific role of IP10 remains unclear. Study has
shown that IP10 can inhibit vascular endothelial repair,
which means IP10 can promote thrombosis [124]. Inter-
estingly, autopsy pathological evidences have found that
thrombosis is a common clinical manifestation in patients
with severe COVID-19 [125]. In addition, a previous study
suggested that IP10 has neurotoxic potential [126]. Mean-
while, some scholars believe that IP10 plays a key role in
olfactory dysfunction in COVID-19 patients [127]. These
lines of evidence suggest that IP10 may be involved in the
development of highly pathogenic HCoV infection by dam-
aging vascular endothelia and exerting neurotoxicity. How-
ever, the specific mechanisms that cause these patholog-
ical processes are still being explored. It is known that
macrophages expressing high levels of CXCR3 can be re-
cruited by IP10 to produce large amounts of IL-6. In addi-
tion, high level of IL-6 can induce the high expression of
IP10 in the cerebrospinal fluid of patients with subarach-
noid hemorrhage [128]. Thus, whether IP10 and IL-6 form
a positive feedback loop in the occurrence and development
of the disease and eventually cause cytokine storm. It has
been found that a high concentration of IP10 in the serum of
patients with H1N1 canmediate the formation of ALI by ac-
tivating the phosphatidylinositol 3-kinases (PI3K)-protein
kinase B (Akt)-p38-activating transcription factor 2 (ATF2)
signaling pathway [129]. Based on this, we speculate that
excessive IP10 in the serum of critically ill patients with
highly pathogenic HCoV may also mediate tissue or or-
gan injury by activating the PI3K-Akt-p38-ATF2 signaling
pathway.

4.4 MCP-1

MCP-1 is a chemokine with a molecular weight of
13 kDa that belongs to the CC subfamily [130]. It can
be expressed by a variety of cells, including monocytes,
macrophages, endothelial cells, smooth muscle cells, fi-
broblasts, epithelial cells, mesangial cells, astrocytes and
microglial cells [131,132]. Its specific receptor, CCR2, is
a G protein coupled receptor that crosses the membrane
seven times [131]. After binding to CCR2, MCP-1 acti-
vates a series of signaling pathways, regulates the activation
and chemotactic migration of target cells, and then partici-
pates in the regulation of immune response [133]. The spe-
cific signaling pathways include phospholipase C (PLC)-
inositol 1,4,5-trisphosphate (IP3)-rotein kinase C (PKC),
nuclear factor-kappa B (NF-κB), and extracellular signal
regulated kinases (ERKs), c-Jun N-terminal kinase, and
mitogen-activated protein kinase (MAPK) [134,135]. Ac-
cording to the chemotactic mechanism of MCP-1, it can be
known that a large amount of MCP-1 in the serum of pa-
tients with SARS, MERS, or COVID-19 excessively ac-
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tivates downstream signaling pathways, which makes in-
flammatory cells largely chemotactic. Consequently, in-
flammatory cells potentially contribute to cytokine storms
by expressing a large number of proinflammatory cytokines
and chemokines, thus resulting in tissue or organ damage.

5. Conclusions
Highly pathogenic HCoV infections can cause respira-

tory diseases with varying severity, with highmorbidity and
mortality. Increased levels of proinflammatory cytokines
and chemokines were found in the plasma of patients with
SARS, MERS, or COVID-19, and this increase was related
to the severity of the disease. Therefore, it is considered
that cytokine storm is associated with the pathogenic mech-
anism of highly pathogenic HCoV infection. In addition,
the increased cytokines in the plasma of critically ill patients
with SARS, of MERS and COVID-19 were mainly IFN-γ,
IL-6, IP-10, and MCP-1; in particular, the increased lev-
els of IP-10 or MCP-1 in the plasma of all critically ill has
been noted patients. Therefore, it is considered that the cy-
tokine storm in highly pathogenic HCoV infection triggers
the downstream cascade signal pathway through the bind-
ing of these proinflammatory cytokines and chemokines to
their respective receptors, thus aggravating tissue or organ
damage. Selective blocking of the IFN-γ, IL-6, IP10, and
MCP-1 corresponding signaling pathways is beneficial in
mitigating the damage caused by highly pathogenic HCoV
infection.
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