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Abstract

Background: Thyroid dysfunction, including hypothyroidism (THO) and hyperthyroidism (THE), commonly arise from pathological
processes in the thyroid gland. The current diagnosis of thyroid dysfunction varies because of the age and sex of the patients. The aim of
this study was to explore novel candidate biomarker panels for hypothyroidism and hyperthyroidism screening with mass spectrometry
and bioinformatics. Methods: Plasma samples were collected from 15 THE patients, 9 THO patients, and 15 healthy controls. Data
Independent Acquisition(DIA)-based proteomic and untargetedmetabolomic analyses were performed to identify novel biomarker panels
for THO and THE patients. Finally, three candidate biomarkers were verified by ELISA in 34 samples. Results: A total of 2738 proteins
and 6103 metabolites were identified, and 173 proteins and 2487 metabolites were found to be differentially expressed among the THE,
THO and control groups. The results of the ensemble feature selection, K-means clustering and least absolute shrinkage and selection
operator (LASSO) regression model showed that two proteins (C4-A and C3/C5 convertase) combined with two metabolites (L-arginine
and L-proline), and proteins (APOL1 and ITIH4) combined with metabolites (cortisol, and cortisone) identified by plasma proteomics
and metabolomics could help distinguish THO and THE patients from healthy controls, respectively. Conclusions: This study identified
and verified two pairs of biomarker panels that can be used to distinguish THE and THO patients regardless of age and sex. Consequently,
our findings represent a comprehensive analysis of thyroid dysfunction plasma, which is significant for clinical diagnosis.
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1. Introduction
Thyroid hormones are essential for growth, devel-

opment, and energy metabolism [1]. Thyroid dysfunc-
tion, including hyperthyroidism (THE) and hypothyroidism
(THO), is a global high-risk disease that seriously affects
human health [2]. For patients with thyroid dysfunction,
if not treated in time, it can lead to serious and even life-
threatening complications: diabetes and cardiovascular dis-
ease [3]. In addition, women with thyroid dysfunction dur-
ing pregnancy might have a high incidence of miscarriage,
placental abruption, preeclampsia, premature delivery, and
decreased intelligence in their offspring [4]. The current
diagnosis of THE and THO is mainly dependent on the lev-
els of thyroid-stimulating hormone, but the reference range
varies according to patients’ age and sex [5,6]. Therefore,
it is necessary to identify the potential biomarkers for the
diagnosis of thyroid dysfunction.

Multiomics techniques, such as proteomics and
metabolomics, can be a powerful tool to discover biomark-
ers related to thyroid disease at the protein and metabolic

levels [7,8]. Recently, the plasma proteomics analysis of
THE and euthyroid groups showed that 20 differentially
abundant proteins related to the NF-kB and MAPK path-
ways were identified, which was served as clinical mark-
ers for the early detection of side effects in patients [9].
Another comparison of plasma proteomics study between
THO and euthyroid states revealed the changes in cir-
culating protein levels to characterize changes in thyroid
hormone status [10]. Nuclear magnetic resonance-based
metabolomics analysis of serum determined the metabolic
changes in hypothyroid patients before and after levothy-
roxine treatment, which contributed to integrate the hor-
mone assays and the diagnosis of euthyroid status [11].
And the metabolomic study of hyperthyroidism patients be-
fore and after antithyroid drug treatment showed that their
metabolomic characteristics were deeply affected by thy-
roid hormone levels, and this change persisted after its nor-
malization [12]. Furthermore, serum metabolomics anal-
yses of patients with autoimmune thyroid disease showed
that the significantly changed metabolites, including 22
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metabolites from hyperthyroidism and 17 metabolites from
hypothyroidism were involved in amino acid metabolism
and aminoacyl-transfer ribonucleic acid biosynthesis [13].
However, unlike single omics techniques, multiomics could
provide a more valuable reference for disease prediction
and diagnosis at multidimensional levels [14].

In the present study, to explore the potential markers
on thyroid dysfunction for clinical diagnosis and treatment,
the integration of metabolomics and proteomics analyses of
plasma samples among the normal, THE, and THO groups
were performed. Perform Receiver Operating Character-
istic (ROC) analysis on the identified and quantified pro-
teins and metabolites, and combine the expression of pro-
teins and metabolites in the sample group to find potential
biomarkers. This was followed by an integrated analysis of
proteomic and metabolomic correlations and LASSO anal-
ysis in order to explore the performance of the combined
markers. Finally, independent samples were used to vali-
date biomarkers using ELISA kits. This will provide more
reference information for early diagnosis strategies of THE
and THO. These results will inform strategies for the early
diagnosis of THE and THO.

2. Materials and Methods
2.1 Patients and Samples

Plasma samples were obtained from 39 participants in
Zhejiang Provincial People’s Hospital. These 39 partici-
pants included 15 patients with hyperthyroid (THE), 9 pa-
tients with hypothyroid (THO), and 15 healthy controls (N),
the thyroid hormone levels of patients were shown in Sup-
plementary Table 1. All the participants were female and
signed written informed consent forms. This study was ap-
proved by the ethics committee for clinical studies of Zhe-
jiang Provincial People’s Hospital (No.2021QT355). All
pathological diagnoses of hyperthyroidism and hypothy-
roidism were confirmed by experts based on clinical ex-
amination standards. Plasma was collected from the pe-
ripheral vein from the participants after overnight fasting.
EDTA blood samples were centrifuged at 1000 × g for 10
min within four hours after collection, and the supernatant
was collected and stored at –80 ◦C until further analysis
(Supplementary Fig. 1).

2.2 Proteomic Analysis of Plasma Specimens
Protein extraction and digestion from plasma samples

were performed as previously described with minor mod-
ification [15]. SDS free lysate was added to 100 µL of
plasma samples, making up a total volume of 1 mL. The
proteins were reduced with 10 mM dithiothreitol (DTT) for
30 minutes at 37 ◦C, then alkylated with 55 mM iodoac-
etamide (IAA) in the dark for 30 minutes at room tem-
perature. Protein enrichment was performed using a solid
phase extraction (SPE) C18 column. The eluate was col-
lected and freeze-dried. The dried proteins were resolved
in 20 µL of 50 mM ammonium bicarbonate and quanti-

fied by Pierce Quantitative Fluorometric Peptide Assay.
Trypsin was added to the protein solution with an enzyme-
to-substrate ratio of 1:20. The mixture was incubated at 37
◦C for 14–16 h.

Then, the mixed peptides were analyzed by LC–
MS/MS in data-dependent acquisition (DDA) mode for li-
brary construction. For data-independent acquisition (DIA)
analysis, each digested peptide sample was ionized by a na-
noESI source and injected into a tandem mass spectrome-
ter Q-Exactive HF X (Thermo Fisher Scientific, USA) in
DIA detection mode (the specific steps of protein extrac-
tion, digestion and the settings of high-performance liq-
uid chromatography and tandem mass spectrometry are de-
tailed in the supplementary methods). For library con-
struction, the DDA data were analyzed by MaxQuant
[16] (version 1.5.3.30) and matched against the UniProKB
database (homo sapiens with 172,419 entries, downloaded
2020.07.20). Oxidation of methionine was set as a vari-
able modification and carbamidomethylation of cysteine
was set as a fixed modification. The mass spectra library
was constructed using Spectronaut with FDR <1%. Dif-
ferentially abundance proteins (DAPs) were analyzed by
MSstats with linear mixed-effects models [17], and signif-
icant DAPs were considered with the conditions of fold
change >2 and p value < 0.05. STRING (http://string-
db.org/, version: 11.0) software was used to analyze func-
tional protein association networks [18].

2.3 Untargeted Metabolomics Assay

After thawing the plasma sample, the extract and inter-
nal standard were added, and themetabolites were extracted
after mixing and centrifugation. Chromatographic sepa-
ration was carried out using an ultra-performance liquid
chromatography system (Waters, Milford, MA, USA). The
sample was injected on a Waters BEH C18 column. Mass
data acquisition was performed using a Thermo Q-Exactive
(Thermo Fisher Scientific, San Jose, CA, USA) equipped
with an electrospray ionization source. Detected metabo-
lites were identified using multiple databases, including
the BGI library, mzCloud database, Chemspider database,
HMDB, KEGG database, and Lipidmaps database (The
preparation of mass spectrometry samples and the setting
of mass spectrometry conditions are detailed in the sup-
plementary methods.). Compound Discoverer 3.1 software
(San Jose, CA, USA) from Thermo Fisher Scientific was
used for data processing as previously described [15].

2.4 Statistical and Bioinformatic Analyses

The NAguideR package was used to interpolate the
missing values. Ensemble feature selection (EFS) anal-
ysis was performed to reduce the biases of any individ-
ual feature selection. Statistical significance was evalu-
ated by Student’s t test when only two groups were com-
pared and one-way ANOVA with Tukey’s test when multi-
ple groups were compared. K-means clustering, DAVID,
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and Cytoscape analyses were performed using R v3.6.1.
The optimal clustering number was determined by elbow
method and “ggplot2” R package was used for data visual-
ization. Metabolic pathway enrichment analysis was per-
formed based on the KEGG database through MetaboAn-
alyst. LASSO regression algorithm was used to select the
minimum set of features to classify the sample groups. Fast
missing value imputation is achieved by the chained ran-
dom forests of the R software package in each separate
dataset. The caret and “glmnet” R software package were
used for regular machine learning to train, test, and evalu-
ate the LASSO logical classification model. The Pearson
correlation coefficient was calculated between the expres-
sion profiles of proteins and metabolites to identify poten-
tial biomarkers. The protein-metabolite coexpression net-
work was drawn with the Pearson correlation coefficient±
0.7 as the boundary.

3. Results
3.1 Demographic Characteristics of the Study Population

We used a total of 24 plasma samples from patients
with abnormal thyroid function and 15 healthy control
plasma samples matched for age, sex, and the levels of thy-
roid hormone (Supplementary Table 1). 15 of the 24 pa-
tients were hyperthyroidism, and 9 were hypothyroidism.

3.2 Global Proteomic Profiling of Hyperthyroid and
Hypothyroid

InDDAmode, a total of 20,322 peptides and 2738 pro-
teins were identified for the library construction. Among
them, 2622 proteins contained at least one unique peptide,
accounting for 95.76% of the total. A total of 2171 pro-
teinswith a sequence coverage of at least 20% accounted for
79.29%. In DIA mode, a total of 757 proteins with at least
one unique peptide and a false discovery rate (FDR) <1%
were identified in the plasma samples from all 39 samples.
Principal component analysis of protein quantitative values
from each sample showed a clear distinction between THE
and THO groups (Supplementary Fig. 2A). To deepen
the comprehensive molecular features related to thyroid
dysfunction, the expanded cohort was analyzed through
standard proteomic workflows as well as metabolomic ap-
proaches and the potential biomarkers were validated by the
ELSIA approach. Since the initial proteome matrix dis-
played obvious missing values, the NAguideR R-package
was used to interpolate the missing values, and proteins
with more than half of missing values among three groups
were removed. Finally, 173 differentially abundance pro-
teins (DAPs) obtained by one-way ANOVA analysis (p <

0.05) were used for the subsequent analysis.

3.2.1 Definition of the Potential Protein Markers between
the Thyroid Dysfunction and Healthy Groups

To identify reliable protein markers in the plasma
among the THO, THE, and N groups, the ensemble feature

selection (EFS) approach and student’s t test were used to
aggregate and rank the results [19] (Fig. 1A). The top 13
EFS proteins among THE, THO, and N groups are listed
in Fig. 1A. Importantly, the biomarker ranks by EFS and
t tests were concordant among the three groups (Fig. 1B).
The highest ranked protein markers of the participants in
THE/N and THO/N groups were glutathione peroxidase 3
and apolipoprotein L1 (proteins Uniprot ID: P22352 and
O14791), respectively. The EFS approach ensures that the
top-ranked biomarkers are not correlated with one another
[20]. According to the average results of the EFS rank-
ing and the t test, the top-ranked proteins were used for
the further definition of the potential protein markers. ROC
analyses were performed on these proteins, and 16 proteins
with AUC values greater than 0.7 were recognized as the
potential markers (Supplementary Table 2). The relative
quantitative comparison and ROC analyses of 16 proteins
are shown in Supplementary Figs. 3,4. Among those 16
proteins, four proteins, including complement C4-A, com-
plement C3/C5 convertase, apolipoprotein L1 (APOL1),
and interalpha-trypsin inhibitor heavy chain H4 (ITIH4),
showed the best distinguishing effect between the thyroid
dysfunction groups (THE or THO) and the normal group.
For example, the relative abundance of complement C4-
A and C3/C5 convertase in the THE group showed an in-
creasing and decreasing trend compared to the N group
(Fig. 1C), while the relative abundance of apolipoprotein L1
and interalpha-trypsin inhibitor heavy chain H4 in the THO
group were significantly increased compared to the THE
and N groups (Fig. 1D). ROC analysis also showed high
AUC values (more than 0.8) of four proteins (Fig. 1C,D).

3.2.2 Unbiased Clustering of Thyroid Dysfunction Module
Analysis

Beyond defining biomarkers to predict thyroid dys-
function, we performed k-means clustering and elbow clus-
tering using the proteomic dataset. It was grouped into 5
clusters (Fig. 2A,B), revealing expression profiles of inter-
est. Clusters 1 and 3 showed decreases and increases in the
THO group, which was largely different from the results
in the THE and N groups. Clusters 2 and 4 were largely
different in the thyroid dysfunction groups (THE and THO
groups) compared to the normal group. To examine the
crosstalk of proteins between clusters, protein–protein in-
teraction networks of DAPs among the three groups (p <

0.05) were obtained using STRING based on conserved ge-
nomic neighborhoods, gene fusion, coexpression and cooc-
currence of genes across genomes, known metabolic path-
ways from databases and experimental events. The con-
fidence score was set at a high level (>0.7). Then, the
output table from STRING was visualized by Cytoscape
(Fig. 2C) and R for connections among different clusters,
indicating that Cluster 2 was strongly connected with Clus-
ter 5 (Fig. 2D). To define the functional roles, GO enrich-
ment analysis of proteins in each cluster was performed
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Fig. 1. Ensemble feature selection analyses of proteomics data and ROC analyses of potential biomarkers among N, THE, and
THO groups. (A) EFS analysis for Group THE/N, THO/N and THE/THO. (B) Comparison of EFS and t-test statistical analysis of
THE/N, THO/N and THE/THO. (C) The relative abundance and ROC analyses of the potential protein biomarkers between THE and N
groups. (D) The relative abundance and ROC analyses of the potential protein biomarkers between THO and N groups.

4

https://www.imrpress.com


(Fig. 2E). The results showed that Cluster 1 and Cluster
3 were commonly dominated by extracellular exosomes
and space. Cluster 3 was dominated by extracellular re-
gions, blood microparticles, and serine-type endopeptidase
inhibitor activity. The top three enriched GO functions in
Clusters 2 and 5 were the same: extracellular space, re-
gion, and exosome. For Cluster 4, the top three enriched
GO functions were hydrogen peroxide catabolic process,
hemoglobin complex, and hemoglobin binding, suggesting
a potential difference between thyroid dysfunction and nor-
mal (Fig. 2E).

3.3 Metabolomics Analysis of the Thyroid Dysfunction and
Healthy Groups

To identify the differential plasma metabolite profiles
related to thyroid dysfunction, we performed metabolomic
analysis using UPLC Orbitrap/MS. A total of 6311 features
including 4435 in positive ion mode and 1876 in negative
ion mode were detected from 39 plasma samples. Among
them, 3121 metabolites were identified. Based on one-way
ANOVA analysis, 2487metabolites with p< 0.05 were rec-
ognized as the significantly changed metabolites (SCMs)
among the THE, THO, and N groups. Principal com-
ponent analysis of metabolites from each sample showed
a clear distinction between the THE and THO groups
(Supplementary Fig. 2B). To identify potential metabolic
biomarkers in hyperthyroidism and hypothyroidism pa-
tients, the EFS approach was used to further rank the re-
sults and applied to the three primary datasets to rank the
top biomarkers (Fig. 3A). In addition, Student’s t test was
also performed to rank the variables between two groups,
which was concordant with the EFS results (Fig. 3B). In
the hyperthyroid group, the contents of L-arginine and L-
proline were significantly different from those in the other
two groups. Moreover, the contents of cortisone and cor-
tisol in the hypothyroid group were also significantly dif-
ferent from those in the other two groups. Subsequently,
the top metabolites from the average results of EFS rank-
ing and t test were used for ROC analyses, and 16 metabo-
lites with AUC values greater than 0.7 were selected as
the potential metabolic biomarkers (Supplementary Ta-
ble 3). Among them, L-arginine and L-proline showed a
significant increase in the THE group compared to the N
group (Fig. 3C). Cortisol and cortisone were significantly
increased in the THO group compared to the THE and N
groups (Fig. 3D). ROC analyses of these four metabolites
showed high AUC values, suggesting that theymight be po-
tential metabolic biomarkers (Fig. 3C,D). The remaining 12
metabolites were also analyzed by ROC (Supplementary
Figs. 5,6).

For metabolomics analysis, the SCMswere used for k-
means cluster analysis and grouped into 8 clusters (Fig. 4A).
The violin chart intuitively indicates the relationship be-
tween the clusters and thyroid dysfunction. Clusters 1,
2, and 5 showed increases in the THO group compared

to the N group, while Clusters 3, 7, and 8 showed de-
creases compared to the N groups. Clusters 1, 4, 5, and
6 showed differences in the THE group compared to the
N group, while Clusters 2, 3, 7, and 8 showed large dif-
ferences in the THE group compared to the THO group
(Fig. 4A). Furthermore, kinship variables were divided
into 8 groups by the elbow method (Fig. 4B). To eval-
uate the importance of metabolic pathways affected by
thyroid dysfunction, metabolic pathway enrichment anal-
ysis was performed based on the KEGG database through
MetaboAnalyst (Fig. 4C). The top 25 enriched pathways
from the metabolite sets are shown in Fig. 4C, of which 5
pathways, arginine biosynthesis, steroid hormone biosyn-
thesis, butanoate metabolism, D-glutamine and glutamate
metabolism, and the citrate cycle, were significantly en-
riched with p values less than 0.05 (Fig. 4C).

3.4 Potential Biomarkers of Thyroid Dysfunction Based on
Integrated Omics Analyses

To gain a holistic view of the changes in protein and
metabolite profiles between the normal and thyroid dys-
function groups, the proteomic and metabolomic data were
integrated for comprehensive analysis. Based on the above
analysis, proteins (complement C4-A and C3/C5 conver-
tase) (Fig. 1C) and metabolites (L-arginine and L-proline)
(Fig. 3C) were the largest difference biomarker between
THE and N groups. While proteins (apolipoprotein L1
and interalpha-trypsin inhibitor heavy chain H4) (Fig. 1D)
and metabolites (cortisol and cortisone) (Fig. 3D) were the
largest difference biomakers between THO and N groups.
They were selected for the dual-omic logistic regression
model analysis (Fig. 1C,D and Fig. 3C,D). The results
showed that the mean AUC of the dual-omic model was
0.978 between the THE and N groups and 0.963 between
the THO and N groups, which were significantly higher
than those of the individual biomarkers (Fig. 5A). Further-
more, correlation analysis of proteins and metabolites in the
plasma landscape was performed. The links with a Pear-
son correlation coefficient >0.5 were exported and made
into a network colored with K-means clustering results in
Cytoscape (Fig. 5B). The results indicated that GPX3 and
C4-A in protein Cluster 5 were surrounded by features in
metabolite Cluster 3 and Cluster 6 between the THE and
N groups. APOL1 and KNG1 in protein Cluster 2 were
surrounded by features in metabolite Cluster 1 between the
THO and N groups (Fig. 5B).

In addition, least absolute shrinkage and selection op-
erator (LASSO) regression was used to validate the reliabil-
ity of the combined biomarkers. All the identified proteins
and metabolites from the THE, THO, and N groups were
merged for LASSO and logistic regression algorithm anal-
yses, and then the minimum features required for classifica-
tion were obtained. For participants in the THE-N groups, a
set of 126 features (Supplementary Table 4) was screened
through the “varImp” function in the caret R package, in-
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Fig. 2. Cluster-based modular analysis of differential proteins in thyroid dysfunction. (A) K-means clustered heatmap and violin
diagram. (B) Elbow clustering of identified proteins. (C) Protein-protein interaction network. (D) Statistics of the number of protein
connections among clusters. (E) GO enrichment for each cluster.

cluding 8 proteins and 118 metabolites and 238 features for
participants in the THO-N groups (Supplementary Table
5). From the heatmap, these features can obviously group
the samples (Supplementary Fig. 7). Due to the small
size of the sample queue, we selected the first six important

variables to build a logistic regression model through the
Sklearn package in Python (version 3.7.3, Python Software
Foundation, http://www.python.org). LOOCV (leave-one-
out-cross-validation) was used to enhance the robustness of
themodel. Aswe expected, themodel with an average ROC
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Fig. 3. Ensemble feature selection analyses of metabolomics data and ROC analyses of potential metabolite biomarkers among
N, THE, and THO groups. (A) EFS analysis for Group THE/N, THO/N and THE/THO. (B) Comparison of EFS and t-test statistical
analysis of THE/N, THO/N and THE/THO. (C) The relative abundance and ROC analyses of the potential metabolite biomarkers between
THE and N groups. (D) The relative abundance and ROC analyses of the potential metabolite biomarkers between THO and N groups.
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Fig. 4. Cluster-basedmodular analysis of differential metabolites in thyroid dysfunction. (A) K-means clustered heatmap and violin
diagram. (B) Metabolites elbow clustering. (C) Dot plot of the top 25 enriched metabolite sets using MSEA analysis based on KEGG
database.

AUC of 0.991 and 0.993 was more effective than the former
combined biomarkers (Fig. 5C).

3.5 Validation of Potential Biomarkers for Thyroid
Dysfunction

To verify the distinguishing performance of the
biomarkers obtained by omics analysis in patients with
dysthyroid function and normal people, independent batch
plasma samples containing 9 THO, 10 THE, and 15 normal
groups were used for the analysis. The contents of three
potential markers, apolipoprotein L1, complement C4-A,
L-arginine and cortisol, were measured by ELISA kits. The
results showed that in the control group, apolipoprotein L1
was 143.45 ng/mL, complement C4-A was 12.07 ng/mL,

and cortisol was 1.90 µg/µL, L-arginine was 0.4471 ng/mL;
in the THE group, apolipoprotein L1 was 141.34 ng/mL,
complement C4-A was 8.56 ng/mL and cortisol was 1.92
µg/µL, L-arginine was 0.4536 ng/mL; and in the THO
group, apolipoprotein L1 was 147.76 ng/mL, complement
C4-A was 12.04 ng/mL, and cortisol was 2.22 µg/µL, L-
arginine was 0.4479 ng/mL. Apolipoprotein L1 was signif-
icantly higher in the THO group than N group, while com-
plement C4-A was significantly lower in the THO group
than N group, and cortisol was significantly higher in the
THO group than N group (Fig. 6A–C). This results were
consistent with the omics results. The dispersion analyses
of these biomarkers were shown in Supplementary Table
6.
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Fig. 5. Joint analysis of differential proteins and metabolites between disease and normal groups. (A) LASSO regression analysis
of two proteins and two metabolites from THE/N and THO/N. (B) Correlation network diagram of protein-metabolite. (C) LASSO
logistic regression of the top six important variables.
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Fig. 6. Validation of the levels of potential biomarkers among N, THE, and THO groups using ELISA assays. (A) The levels of
Apolipoprotein L1. (B) The levels of Complement C4-A. (C) The levels of cortisol. (D) The levels of L-arigine.

4. Discussion

Clinically, thyroid function tests, including thyroxine
(T4), triiodothyronine (T3), thyroid stimulating hormone
(TSH), free T3, and free T4, are general indicators for the
diagnosis of thyroid dysfunction. For participants in the
THE group, one of the most common causes was Graves’
disease, and the other causes were toxic multinodular goi-
ter and toxic adenoma [21]. Generally, the TSH level was
used for preliminary screening; if the results were uncer-
tain, then the method of radionuclide uptake was used for
the definite diagnosis. For participants in the THO group,
there are no uniform clinical diagnostic criteria because the
reference level of TSH differs based on age, weight, area

and medication history. In addition, THO is the most com-
mon drug-induced thyroid dysfunction [22]. In the present
study, the integrated proteomics and metabolomics analy-
ses revealed the potential biomarkers for thyroid dysfunc-
tion.

For hyperthyroid, four molecules, complement C4-A,
complement C3/C5 convertase, L-arginine and L-proline,
were identified as potential biomarker panels to predict
THE (Fig. 1C). Complement C4-A is a short-term fragment
of complement C4 that plays an important role in the func-
tion of the lectin complement pathway [23], and is related
to other autoimmune inflammation, infectious diseases and
neurological diseases. Alfadda et al. [10] found that the
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expression of complement C4-A in patients with abnormal
thyroid function was increased. In addition to B lympho-
cytes, complement proteins can also be synthesized by thy-
roid cells [24], and the metabolic function of thyroid cells
is impaired by complement activation. C3/C5 convertase
was a protein involved in the process of complement acti-
vation that can cleave the complement component C3 into
C3a and C3b and the complement component C5 into C5a
and C5b [25]. Jafarzadeh et al. [26] found that the ex-
pression of complement C3 was increased in the patients
with hypothyroidism. In this study, the expression levels
of C3/C5 convertase were increased in patients with thy-
roid dysfunction, especially in the patients with THE which
was much higher than that in the patients with hypothy-
roidism. It suggests that C3/C5 convertase could be a po-
tential marker for distinguishing THE and normal groups.
L-arginine is an essential amino acid in the human body,
which participates in many biological processes such as the
normal functions of the cardiovascular and immune sys-
tems [27]. Rodríguez-Gómez et al. [28] found that the
abundance of arginase I was increased in the aorta, heart,
and kidney of hyperthyroid rats, whereas the abundance of
arginase I was decreased in the kidney and aorta of hypothy-
roid rats, and arginase II in hyperthyroidism Increased in
the aorta and kidney of rats and remained unchanged in
all organs of hypothyroid rats. In the present study, the
abundance of L-arginine in thyroid dysfunction patients, es-
pecially for the participants in THE group, was increased
(Fig. 3C), which means that L-arginine could be one of the
potential biomarkers for THE. L-Proline is the active prod-
uct of OAT, with L-ornithine as the substrate, and the high-
est content in the kidneys. The level of L-proline is posi-
tively regulated by thyroid hormones in the liver [28]. In
this study, the level of L-proline in patients with hyperthy-
roidism had an upward trend, which indicated a close re-
lationship between L-proline and thyroid hormone. Addi-
tionally, the above four markers were integrated for LASSO
and logistic regression analysis. The results showed that the
combination of multiple markers was more effective than a
single marker (Fig. 5D). The AUC value of multiple mark-
ers combined with ROCwas 0.991, which was significantly
higher than that of a single marker.

For the THO, the four potential biomarkers including
APOL1, ITIH4, cortisone and cortisol can also significantly
distinguish the THO and normal groups. APOL1 is a minor
HDL3-related apolipoprotein related to lipid transport and
metabolism, apoptosis, autophagic cell death, and cell lysis
caused bymembrane pore formation [29]. Masood et al. [9]
found that the expression level of APOL1 was increased in
the patients with thyroid dysfunction. It is known that the
increased level of APOL1 is positively correlated with hy-
perglycemia and plasma triglycerides in patients with coro-
nary artery disease with high-density lipoprotein (HDL),
and it is a potential factor for premature cardiovascular dis-
ease [30]. Previous studies found that HDL participated

in the diffusion of thyroid hormone through the cell mem-
brane and inner nuclear membrane [31], which indicated
that the level of APOL1 may affect the diffusion of thyroid
hormone. In this study, the expression level of APOL1 in
patients with THO was increased significantly (Fig. 1D). it
was consistent with the independent validation experiments
(Fig. 6). Previous studies showed that ITIH4was a potential
diagnostic and prognostic marker for several diseases, such
as acute ischemic stroke, ovarian cancer, interstitial cystitis,
and liver fibrosis [32]. And its level in the plasma of thyroid
cancer patients was increased compared to healthy controls
[33]. Similarly, in this study, ITIH4 has a higher expres-
sion in patients with hypothyroidism. Cortisol, also known
as hydrocortisone, is the adrenal cortex hormone with the
strongest effect on carbohydrate metabolism. Nobumasa
et al. [34] found that one patient with corticotropin defi-
ciency can treat primary hypothyroidism with cortisol. In
this study, the levels of cortisol and cortisone in THO group
were significantly higher than the normal group, suggesting
they might be the potential biomarkers of THO. Addition-
ally, in this study, the above four markers were integrated
for LASSO and logistic regression analysis. The results
showed that the combination of multiple markers is more
effective than a single marker (Fig. 5D). The AUC value
of multiple markers combined with ROC was 0.991, which
was significantly higher than that of a single marker. Fur-
thermore, among these markers of thyroid dysfunction, two
proteins and one metabolite were validated using the inde-
pendent samples by ELISA assays (Fig. 6), which are con-
sistent with the omics results.

To further explore the mechanism of thyroid dysfunc-
tion, integrated omics of clustering and network analyses
were performed. K-means cluster analyses showed that
proteins related to thyroid dysfunction were highly corre-
lation with negative regulation of endopeptidase activity,
hydrogen peroxide catabolic process and platelet degranu-
lation (Fig. 2). Mousa et al. [35] found that platelet func-
tion was regulated by L-thyroxine (T4), while T4 induced
platelet aggregation and degranulation. Therefore, in the
present study, complement activation and platelet degran-
ulation may affect the normal thyroid function by affect-
ing the metabolism of thyroid cells. Furthermore, previous
study has shown that the levels of glycine and L-serine in
patients with hyperthyroidism are reduced, and the serum
glutamine levels in hyperthyroidism and hypothyroidism
groups were increased, while L-glutamate and L- citrulline
and taurine levels were reduced [13]. Pathway analysis
showed that thyroid dysfunction might be mainly related to
steroid hormone, arginine, butanoate, glutamine and gluta-
mate metabolism, and citrate cycle. Endogenous arginine is
mainly derived from the conversion of citrulline in the prox-
imal convoluted tubules of the kidney, while citrulline was
synthesized from glutamate and glutamine in the intestinal
tract. And the biosynthetic pathway of steroid hormones
was related to sugar metabolism.
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5. Conclusions

To identify the novel biomarker panels for THE and
THO diagnosis, integrative proteomics and metabolomics
analyses of plasma were performed. A total of 757 pro-
teins and 2487 metabolites were identified and quantified.
ROC analysis of proteins showed 16 proteins were the po-
tential markers with an AUC value more than 0.7. Among
them, four proteins were significantly different between the
thyroid dysfunction and healthy groups. Similarly, four
metabolites including L-arginine, L-proline, cortisol, and
cortisone were recognized as the potential biomarkers. Fur-
thermore, integration of proteomic and metabolomic cor-
relation and LASSO analyses indicated complement C4-
A, C3/C4 convertase, L-arginine, L-proline and APOL1,
ITIH4, cortisol and cortisone could be the combined
biomarkers for THO and THE, respectively. And the in-
dependent samples were used for the validation of these
biomarkers using ELISA assays. In future, studies of the
larger sample groups and strongly validated experiments
will be benefit for the deeper understanding of thyroid dys-
function. However, the present results provide a potential
way for the early diagnosis of THE and THO.
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