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1. Abstract

Background: Small open reading frames (sORFs)
with protein-coding ability present unprecedented chal-
lenge for genome annotation because of their short se-
quence and low expression level. In the past decade, only
several prediction methods have been proposed for discov-
ery of protein-coding sORFs and lack of objective and uni-
form negative datasets has become an important obstacle
to sORFs prediction. The prediction efficiency of current
sORFs prediction methods needs to be further evaluated to
provide better research strategies for protein-coding sORFs
discovery. Methods: In this work, nine mainstream ex-
isting methods for predicting protein-coding potential of
ORFs are comprehensively evaluated based on a random se-
quence strategy. Results: The results show that the current
methods perform poorly on different SORFs datasets. For

comparison, a sequence based prediction algorithm trained
on prokaryotic sORFs is proposed and its better prediction
performance indicates that the random sequence strategy
can provide feasible ideas for protein-coding sORFs pre-
dictions. Conclusions: As a kind of important functional
genomic element, discovery of protein-coding sORFs has
shed light on the dark proteomes. This evaluation work
indicates that there is an urgent need for developing spe-
cialized prediction tools for protein-coding sORFs in both
eukaryotes and prokaryotes. It is expected that the present
work may provide novel ideas for future SORFs researches.

2. Introduction

Small proteins (shorter than 100 amino acids) en-
coded by small open reading frames (sSORFs) have been

Submitted: 18 May 2021 Revised: 8 June 2021  Accepted: 7 July 2021

Published: 30 August 2021

This is an open access article under the CC BY 4.0 license (https://creativecommons.org/licenses/by/4.0/).

© 2021 The Author(s). Published by BRI.


http://doi.org/10.52586/4943
https://www.fbscience.com
https://creativecommons.org/licenses/by/4.0/

273

ignored in genome annotations during the past decades.
Reports of two functional small peptides myoregulin and
DWOREF encoded by transcripts that had been annotated
as long noncoding RNAs [1, 2] aroused unprecedented at-
tention to small open reading frames (sORFs) and their
encoded proteins [3-7]. The discovery of protein-coding
sORFs also led to a debate on the definition of noncod-
ing RNA and rethinking of the understanding of genome
[8-12]. Thus, sORFs have gradually become a research
hotspot in the past few years. Actually, SORFs have been
seriously underestimated because they were believed too
short to encode proteins, so that earlier literatures called
them evil little fellows (ELFs) [13]. In most cases, tradi-
tional methods are not suitable for short sequences [14, 15],
therefore identifying protein-coding sORFs is a huge chal-
lenge for genome research. Recently, rapid development of
versatile omics sequencing technologies such as mass spec-
trometry and ribosome profiling reveal a large number of
protein-coding sORFs with important functions in differ-
ent genomic regions [12, 16-18]. Even so, the proteoge-
nomic methods are not sensitive enough and the ribosome
profiling sequencing strategies require additional measures
to ensure comprehensive and accurate sORF annotation [5],
hence there is still lack of efficient technologies for SORF
identification [7, 16, 19, 20]. Furthermore, the resolution of
ribosome profiling for bacterial cells is lower than that for
eukaryotic cells due to technical challenges [18]. There-
fore, most sORFs studies mainly focus on several model
eukaryotes such as human, mouse, Arabidopsis Thaliana.
Thus, a limited number of protein-coding sORFs predic-
tion programs trained by eukaryotic SORFs have been de-
veloped recently [21-25]. Among them, sSORF finder [21],
MiPepid [25], CPPred-sORF [24] were specially designed
for sORFs. Some coding potential prediction programs
for normal ORFs, such as CPPred and e also tested on
sORFs datasets. These programs provide alternative tools
for sORFs detection, but the real efficiency need to be fur-
ther evaluated. On the other hand, lack of reliable datasets
particularly negative samples has become one of the key
issues in sORF prediction [5, 14, 16, 19, 24, 25]. Con-
struction of reliable sSORFs dataset and annotation platforms
have been the foremost challenge in the field [26]. Then, in
this work, we perform comprehensive evaluation of nine
up-to-date ORF coding potential prediction programs that
have been discussed in recent SORFs related studies [16, 27]
based on a random sequence strategy. It is expected that the
present work may provide novel ideas for future sSORFs re-
searches.

3. Materials and methods

3.1 Data sources

The prokaryotic SORFs were filtered from the Ref-
Seq database [28]. The human and mouse sORFs were

downloaded from sORFs.org database [29], and the SORFs
of Arabidopsis thaliana were downloaded from the TAIR
database [30].

3.2 Datasets

Four non-redundant positive datasets (Hum-7111
dataset, Mou-7385 dataset, Ara-2125 dataset, Pro-6318)
are constructed in this work. To construct the Hum-
7111 dataset and the Mou-7385 dataset, 10000 human
sORFs and 10000 mouse sORFs were downloaded from
the sORF.org database respectively, and 2888 Arabidopsis
thaliana sORFs were downloaded from the TAIR database
to construct the Ara-2125 dataset. To construct the Pro-
6318 dataset, the sORFs with definite functions were de-
rived from 56 prokaryotic genomes (Supplementary Table
1), the genomic GC contents of the 56 selected prokaryotic
genomes have a wide range from 20% to 70%. Thus a total
of 6578 prokaryotics SORFs were obtained. These candi-
date sORFs were further filtered as follows:

(i) Excluding the redundant sequences in each
dataset using the CD-Hit program [31] with the similarity
threshold of 80% at DNA level;

(ii) Excluding the sORF >100 aa;

(iii) Excluding the sORFs whose sequence length
cannot be divisible by 3;

(iv) Excluding the sORFs that do not end with a
stop codon;

(v) Excluding the sORFs with stop codon in its se-
quence;

(vi) Excluding the sORFs that start with stop
codon.

In this way, 7111 human sORFs, 7385 mouse
sORFs, 2125 Arabidopsis thaliana sORFs and 6318
prokaryotic sORFs are obtained. These datasets are as the
positive testing sets. In Supplementary file 1, the four
datasets are provided in fasta format.

It is difficult to construct negative sSORFs datasets.
The sORFs from intergenic region and noncoding region
were usually extracted as negative samples, but there is
great possibility of the existence of protein-coding sORFs
in these regions. For prokaryotes, there are few noncod-
ing and intergenic regions, therefore constructing negative
samples is a challenging task for sORF prediction. Nega-
tive ORFs generated based on random sequencestrategies
have been used in gene prediction works [32, 33]. Then,
in this work, a strict negative SORFs generating strategy is
proposed by following steps:

(i) Randomly shuffling each positive sORF se-
quence to get a corresponding negative sequence without
any stop codons before the stop codon at the end of se-
quence;

(ii) Ensuering that the negative sequence shares
the same start codon and stop codon with its original posi-
tive SORF and there is no pre-mature stop codon in the se-
quence.
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Table 1. Operating parameters and settings of each program.

Programs Parameters  Type  Operating system
CPC2 - - online
CPPred Integrated - Linux
DeepCPP Human sORF Windows
CPPred-sORF  Integrated - Linux
CPAT - - online
MiPiped - - Windows
CNCI Vertebrate - Linux
PLEK - - Linux

LGC - - online

(iii) Excluding the redundant sequences with the
abovementioned standard.

Furthermore, an experimentally verified dataset
(Eexp-150-53) released by Hemm et al. [18] is also em-
ployed as test set. This dataset includes 150 positive sSORFs
and 53 negative SORFs detected from E. coli genome.

3.3 The protein-coding sORF prediction programs

At present, there are only a few sORF prediction
programs. Some prediction programs reviewed in recent
works are proposed for long ORF, but several of them are
also applied to sORFs [16, 27]. Then, in total of nine
OREF coding potential prediction programs [22-25, 34-38]
with source codes available are evaluated based on the test
sets constructed above. The operating system and parame-
ters used to run these programs are listed in Table 1. Tt is
noted that MiPepid, CPPred-sORF are specially proposed
for sORFs. On the other hand, although the abovemen-
tioned sORFs prediction programs are trained on the ORFs
(sORFs) derived from different eukaryotic species, some of
them were declared to have cross species prediction ability.
Even so, no uniform standard has been proposed to measure
their real efficiency. Therefore, different SORFs prediction
programs are evaluated in this work.

3.4 Construction of the prokaryotic SORFs prediction
method

Currently, most sORFs studies mainly focus on
several model eukaryotes such as human and mouse. To
verify the efficiency of the random sequence strategy, we
propose an alternative protein-coding sORFs prediction
algorithm (PsORFs) based on the presented random se-
quence strategy. This algorithm uses the frequency of the
64 kinds of codons as numerical parameters, and the ran-
dom forest is adopted as classifier. Detailed description
of this prediction algorithm is provided in Supplementary
file 2. Our earlier studies indicated that some prokary-
otic genomes exhibit properties of universal protein-coding
genes regardless of their genome sizes and genomic GC
contents [32]. The protein-coding genes in these genomes
can be used as training set to accurately predict the
protein-coding genes in other prokaryotic genomes. Then,
the protein-coding sORFs with known functions derived

MCC =

from five prokaryotic genomes (NC_009089, NC_003103,
NC_012962, NC_000913, NC_008380) are adopted as the
positive training set, and the negative SORFs in the training
set are generated according to the random sequence genera-
tion procedure mentioned above. Furthermore, the training
set is processed according to the abovementioned filtering
steps, and finally 1228 positive sORFs and 1327 negative
sORFs are obtained. In Supplementary file 3, we provide
the training sets in fasta format.

3.5 The evaluation indices

For evaluation purpose, the sensitivity (s,,), speci-
ficity (sp) and accuracy (ACC) are adopted, i.e.,

S _ TP
n— TP+FP
Sp = FNTFN €]
P TN+FN
ACC = TP+TN
TP+FP+TN+FN

In addition, the Matthew’s correlation coefficient (MCC) is
also used to describe the agreement of prediction and anno-
tation with a single value in the range of [-1, 1], i.e.,

TP xTN — FN x FP

V(TP 4+ FN) x (TP + FP) x (TN + FN) x (TN + FP)

@)

Where, TP and TN denote the number of coding sORFs and

non-coding sORFs that have been correctly predicted re-

spectively, FP and FN denote the number of coding sORFs

and non-coding sORFs that have been falsely predicted re-

spectively. Then, s,, and s,, correspond to the proportion of

the coding/non-coding ORFs that have been predicted cor-
rectly, respectively.

4. Results and discussions

4.1 Evaluation results of protein-coding sORF
prediction

Computational methods can provide quick and
convenient tool for sSORFs prediction. Several of the nine
computational algorithms evaluated in this work have been
tested in sORFs in their original literatures [22-25], and we
summarize their reported performances in Supplementary
Table 2. The CPPred program got its best performance with
ACC 0.8788 and MCC 0.7650 on their integrated test set.
As its improved version, CPPred-sORF got its best per-
formance with ACC 0.8849 and MCC 0.7680 on an inte-
grated eukaryotic SORFs dataset. Mipepid got prediction
accuracy 0.9576 on integrated dataset and 0.96 on human
sORFs dataset, but it only predicts the sORFs start with
ATG. DeepCPP is a deep neural network-based method for
RNA coding potential prediction, and its reported predic-
tion accuracy and MCC on a human sORFs test set are
0.8858 and 0.7740, respectively. The sORF finder program
seems to achieve the lowest performance. Lack of reliable
negative samples is one of the key challenges for sORFs
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Fig. 1. Length distribution intervals of each sORFs dataset. Where, p-M and n-M represent the positive and negative samples of Mipepid, p-C and

n-C represent the positive and negative samples of CPPred-sORF.

prediction. As two specially designed programs for protein-
coding sORFs prediction, Mipepid and CPPred-sORF de-
fined ORFs derived from miRNA and IncRNA as negative
samples in their training and test datasets respectively. In
Fig. 1, we analyzed the length distribution of the protein
coding datasets in Mipepid and CPPred-sORF. Obviously,
there is apparent length bias between the positive dataset
and negative dataset in both programs. It is noted that more
than 90% negative samples from Mipepid are shorter than
20 aa, while more than 80% negative samples from CPPred-
SORF are longer than 100 aa. It means that one can discrim-
inate negative samples from positive samples only based on
their length. However, SORFs generally exist in different
parts of the genome, so the length of SORFs cannot be dif-
ferent between positive and negative samples. Therefore, in
order to develop the prediction method of sORFs better, it
is necessary to evaluate these procedures based on the third
party datasets objectively.

The original prediction results of each program are
provided in Supplementary Tables 3.1-3.5, where coding
and noncoding represent the positive or negative sSORFs that
are predicted as coding sORFs or noncoding sORFs, and
unknown represents the SORFs cannot be predicted (among
these programs, MiPiped can only predict the sORFs start
with start codon of ATG, therefore the SORFs with other
start codons cannot be predicted). In Table 2, we provide
the prediction efficiency of different programs based on
the four random sequence-based test datasets of Hum-7115,

Ara-2142, Mou-7385, Pro-6578 and the experimental veri-
fied dataset of Eexp-150-53. It can be seen from the results
that the prediction performances of different programs for
the two data types are consistent. For comparison, we mark
the lower s,, and lower s,, with italic fonts, the biggest in-
dexes of ACC and MCC are marked by bold fonts. Obvi-
ously, according to s,, and s,, these programs can be di-
vided into two groups. Group 1 includes CPC2, CPPred,
DeepCPP, CPAT, CNCI, PLEK, LGC, these programs are
inefficient for positive SORFs, and most positive SORFs are
falsely classified as negative samples. Another group in-
cludes CPPred-sORF and MiPiped, both of them are spe-
cially designed for sORFs, but the results show that they
failed to identify the negative samples. It is noted that the
input of most programs evaluated above is DNA sequence,
while some of them were developed for RNA transcripts
and their input should be RNA sequence [16]. Then, in
Supplementary Tables 4.1-4.5, we also provide the pre-
diction results by inputting RNA sequences. The results
show that the prediction efficiencies are much worse than
that of DNA sequences. In fact, in tradional gene prediction
programs, ORFs longer than 303 bp are usually excluded to
decrease the prediction false positive [39]. Therefore, the
results in Table 2 further confirm this conclusion. The poor
prediction efficiencies indicate that there is still huge room
for improvement in prediction of protein-coding sORFs.
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Table 2. Evaluation of protein-coding sORFs prediction programs based on different datasets.

Programs
Dataset Index
CPC2  CPPred DeepCPP CPAT CNCI PLEK LGC CPPred-sORF  MiPiped*  PsORFs
Sn, 0.0014  0.0634 0.0416 0.0678  0.0553 0 0.0018 0.8187 0.9474 0.6840
Hum-7111 Sp 0.9993  0.9535 0.9854 0.9941  0.9684 1 0.9977 0.2313 0.0860 0.5022
ACC  0.5004 0.5084 0.5135 0.5309 0.5118 0.5000  0.4998 0.5250 0.5167 0.5928
MCC 0.0108 0.0370 0.0817 0.1642  0.0579 - 0.0047 0.0619 0.0656 0.1887
Sn, 0.0918  0.3842 0.3802 0.0847  0.0513 0 0.2221 0.9939 0.9876 0.3934
Ara-2195 Sp 0.9139 0.7741 0.7152 0.9986  0.9506 1 0.7699 0.0028 0.0338 0.9487
ACC  0.5028 0.5778 0.5478 0.5416  0.5009  0.5000  0.4960 0.4984 0.5107 0.6656
MCC 0.0099 0.1719 0.1014 0.2052  0.0043 - 0.0096 —0.0247 0.0713 0.3970
Sn, 0.0027  0.0726 0.0450 0.0269  0.0489 0 0.0018 0.8079 0.9677 0.3885
Mou-7385 Sp 0.9995 0.9541 0.9874 0.9981 0.9671 1 0.9992 0.2265 0.0495 0.7607
ACC 0.5011  0.5213 0.5162 0.5125 0.5080  0.5000  0.5005 0.5172 0.5086 0.5853
MCC 0.0269  0.0567 0.0968 0.1051  0.0403 - 0.0132 0.0423 0.0433 0.1758
Sn 0.1009  0.5426 0.4635 0.3118 0.1610 0 0.1364 0.9737 0.8763 0.9888
Pro-6318 Sp 0.9805  0.8048 0.7134 0.9926  0.9649 1 0.8627 0.0635 0.1123 0.8845
ACC  0.5407  0.6737 0.5885 0.6522  0.5629  0.5000  0.4995 0.5186 0.4931 0.8996
McC 0.1713  0.3600 0.1828 0.4155 0.2116 - 0.0013 0.0899 -0.0177 0.8032
Sn, 0 0.2333 0.0200 0.0133  0.0933 0 0 1 0.8593 0.9434
Eexp-150-53 Sp 1 0.8679 0.9808 1 0.9245 1 1 0.0755 0.1556 0.4133
ACC 0.2611  0.3990 0.2673 0.2709 0.3103 0.2611  0.2611 0.7586 0.6833 0.5517
McCC - 0.1098 0.0024 0.0593  0.0276 - - 0.2385 0.0182 0.3358

* The indexes of MiPiped are evaluated by the sSORFs start with ATG. The lower s, and lower s,, are labeled using italic fonts and the

biggest indexes of ACC and MCC are marked using bold fonts.

4.2 Prediction results of the prokaryotic sORF
prediction method

Protein-coding sORFs have a widespread occur-
rence in diverse species and can be of high functional im-
portance. However, no single identification method de-
veloped to date is sufficient to identify all sORFs, hence
sORFs detection is a multidisciplinary strategy [16]. The
evaluation results of CPPred-sORF and MiPiped indicate
that protein-coding sORFs prediction is still in its infancy.
There are few noncoding regions in prokaryotic genomes,
so it is very difficult to construct prokaryotic negative
sORFs datasets. Then, we propose the PsORFs model
based on the random sequence strategy. The random for-
est is employed as the core algorithm to train the PsORFs
model. The number of bags was set as 200 according the
evaluation result during K-fold cross validation. The five-
fold cross validation was used to evaluate the model per-
formance, the accuracy and MCC (threshold set as 0.5) of
which are 0.8925 and 0.7852, respectively. To compare
with other programs, PsORFs is evaluated by the five in-
dependent test datasets and its prediction results are also
provided in Table 2. It can be found that the prediction effi-
ciency of PsORFs is better than other methods in each test
dataset. Although PsORFs is trained based on the prokary-
otic sORFs, its prediction efficiency in eukaryotic SORFs
is superior to other programs, which indicates the random
sequence can provide robust data sources for sSORFs predic-
tion. The source code of PsORFs algorithm in Matlab for-
mat can be downloaded from http://211.64.32.111:8888/.

5. Conclusions

The important roles of protein-coding sSORFs in bi-
ological activities have been confirmed by a large number
of studies in recent years. As a kind of important functional
genomic element, discovery of protein-coding sORFs has
shed light on the dark proteomes [39]. In this work, we eval-
uated different types of prediction programs, and the results
showed that our evaluation study can provide important the-
oretical basis and novel ideas for SORFs discoveries.
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