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1. Abstract

Introduction: The prediction of interacting drug-
target pairs plays an essential role in the field of drug repur-
posing, and drug discovery. Although biotechnology and
chemical technology have made extraordinary progress, the
process of dose-response experiments and clinical trials is
still extremely complex, laborious, and costly. As a re-
sult, a robust computer-aided model is of an urgent need to
predict drug-target interactions (DTIs). Methods: In this
paper, we report a novel computational approach combin-
ing fuzzy local ternary pattern (FLTP), Position-Specific
Scoring Matrix (PSSM), and rotation forest (RF) to iden-
tify DTIs. More specially, the target primary sequence is
first numerically characterized into PSSM which records
the biological evolution information. Afterward, the FLTP
method is applied in extracting the highly representative
descriptors of PSSM, and the combinations of FLTP de-
scriptors and drug molecular fingerprints are regarded as
the complete features of drug-target pairs. Results: Finally,
the entire features are fed into rotation forests for inferring

potential DTIs. The experiments of 5-fold cross-validation
(CV) achievemean accuracies of 89.08%, 86.14%, 82.41%,
and 78.40% on Enzyme, Ion Channel, GPCRs, and Nuclear
Receptor datasets. Discussion: For further validating the
model performance, we performed experiments with the
state-of-art support vector machine (SVM) and light gra-
dient boosting machine (LGBM). The experimental results
indicate the superiorities of the proposed model in effec-
tively and reliably detect potential DTIs. There is an antic-
ipation that the proposed model can establish a feasible and
convenient tool to identify high-throughput identification
of DTIs.

2. Introduction

The identification of DTIs has turned into a fo-
cal point of pharmaceutical science to support screening the
drug candidates and solving the problems of etiologies. The
strikingly improved biochemical technologies have dramat-
ically promoted the process of therapeutic drug discovery.
In the last few years, Food and Drug Administration (FDA)
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has just approved a limited quantity of medicines due to
the efficiency issues and harmful side effects [1]. Detect-
ing interacting drug-target pairs is still of great significance
to select the promising molecule drugs. The researchers
have put much effort into exploring the DTIs based on tra-
ditional experiments. Nevertheless, the biochemical meth-
ods remain to be expensive and cumbersome. Furthermore,
these methods need to face the contingency of serial re-
sults. Hence, the novel computer-aided drug development
(CADD) models are essential to be constructed for stably
and reliably inferring DTIs [2].

With the breakthrough of protein sequencing and
drug molecular structure determination technologies, var-
ious sorts of databases including PubChem [3], ChEMBL
[4], Therapeutic Target Database (TTD) [5], Kyoto En-
cyclopedia of Genes and Genomes (KEGG) [6], and
DrugBank [7] are continuously enriching the public data
of target proteins and drug sub-structures. Previously,
computational-based prediction models mainly focused on
molecular docking, ligand, and data mining [8]. How-
ever, there are some limitations in these traditional meth-
ods. For instance, the molecular docking method mainly
predicts the binding sites by energy and geometry match-
ing, it predicts the affinity of binding sites by computa-
tional simulation [9]. This method plays a critical role in
determining the mode of drug actions. However, molec-
ular docking requires all proteins in the model to have a
complete 3D prediction structure that seriously limits the
versatility of the model. The ligand-based method com-
bines the chemical structure and pharmacological activity
of a specific object through quantitative-structure activity
relationships (QSAR), each model can only predict the re-
lationship of one target [10]. The poor physical interop-
erability of the single model makes the method is hardly
to be widely utilized in large-scale cross prediction. The
data mining method collects DTIs by text mining and data
matching [11]. The method is limited by mining algorithm
and database authority, so it cannot achieve further promo-
tion and application in DTIs prediction. In conclusion, the
development of effective and robust models has become the
essential requirement of DTIs prediction.

Bolgár et al. [12] proposed Variational Bayesian
Multiple Kernel Logistic Matrix Factorization which em-
bedded multiple kernel learning, weighted observation, and
graph Laplacian regularization to model DTIs. Shi et al.
[13] develop two-layer multiple classifier system (TLMCS)
which focuses on fully utilizing heterogeneous features for
better predicting DTIs. Xia et al. [14] proposed a novel
model namely Self-Paced Learning with Collaborative Ma-
trix Factorization based on weighted low-rank approxima-
tion (SPLCMF) to predict DTIs. Specifically, this frame-
work employed regularized least squares to fuse the related
networks and reduce the complexity of samples by soft
weighting. Yan et al. [15] developed (substructure-drug-
target Kronecker product kernel regularized least squares)

Table 1. Statistical description of benchmark dataset.
Statistics Enzyme Ion channel GPCRs Nuclear receptor

Drugs 445 210 223 54
Target proteins 664 204 95 26
Interactions 2926 1467 635 90

SDTRLSmodel which integrates RLS-Kron model, chemi-
cal substructure similarity fusion, and Gaussian Interaction
Profile (GIP) kernels to detect interacting drug-target pairs.
Cui et al. [16] proposed L2,1-GRMF which is a developed
GRMF method to identify the DTIs by combining L2,1-
norm. Hao et al. [17] construct dual network integrated
logistic matrix factorization (DNILMF) for drug structure
matrix and target sequence kernel matrix to predict DTIs.

We established a novel in silico mothed to in-
fer DTIs within this paper, this method mainly integrates
PSSM, FLTP, and RF classifier. Specifically, the target pri-
mary sequences are first converted into numerical PSSM
metrics which record the frequencies of amino acids that
appear in different positions. Then, we employed FLTP ap-
proach to excavate the potential characteristics of PSSMs.
Subsequently, we merge them and drug fingerprints as en-
tire feature vectors of drug-target pairs. Finally, the full fea-
ture describers are fed into rotation forest to detect DTIs.
We verified our model on the benchmark data sets, viz. En-
zymes, Ion Channels, GPCRs, and Nuclear Receptors by
utilizing 5-fold Cross-validation. Furthermore, we com-
pared the established model with another advanced feature
describer and various classifiers including LGBM and RF.
The different experimental results illustrate that the pro-
posed model has an outstanding effect on predicting DTIs,
this model can reliably screen candidates for clinical trials.
The flowchart of the established model is depicted in Fig. 1.

3. Materials and methods

3.1 Datasets

In this paper, the databases, viz. DrugBank [7],
SuperTarget [18], BRENDA [19], and KEGG BRITE [6]
provide four benchmark datasets including Enzyme, Ion
Channel, GPCRs, and Nuclear Receptor for us to execute
the established model. Enzyme data set stores 445 drugs,
664 proteins, and 2926 DTIs. Ion channel data set stores
210 drugs, 204 proteins, and 1467 DTIs. GPCRs data set
stores 223 drugs, 95 proteins, and 635 DTIs. Nuclear Re-
ceptor data set stores 54 drugs, 26 proteins, and 90 DTIs.
Table 1 clearly listed the experimental statistics of these
benchmark datasets.

Drug and protein interactions were represented as
a bipartite graph; drugs and proteins formed the nodes of
the graph, and the verified interactions between them were
denoted by edges within the graph. In the experiments, all
drug-target pairs which are connected by edges are catego-
rized to positive dataset, the other pairs are treated as neg-
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Fig. 1. Workflow of our model. (a) numerical convert the proteins to PSSMs. (b) characterize PSSMs by FLTP. (c) extract the molecular fingerprints of
drugs. (d) feed the entire features into rotation forest. (e) predict DTIs.

ative samples. Considering the number of the nodes, the
known interactions only take a little account of all relation-
ships of drug-target pairs. Take GPCRs dataset for an ex-
ample, there are 42,840 (210 × 204) types of relationships
exist in the network. However, the interactions which have
been certified by biotechnology are 1467 which accounts
for 3.42%. Consequently, the down sampling algorithm is
employed to extract the same number of negative samples
as the positive data set to ensure sample balance. The 1467
positive samples are verified by clinical experiments, and
the remaining samples were verified as negative samples.
However, it is hardly to ignore the false verification caused
by the error in the clinical experiment. Meanwhile, consid-
ering the number of negative samples only accounted for
3.55% of the remaining samples, the possibility that posi-
tive samples which exist in the remaining samples are as-
signed to negative data set can be ignored for the huge quan-
tity gap.

3.2 Drug substructure characterization

Recently, the molecular fingerprints which con-
tain chemical substructure information can effectively re-
flect drug structure [20]. It transforms the molecular struc-

tures into a series of binary fingerprint sequences by de-
tecting specific fragments in the molecular structure [21].
Although the molecular is divided into several independent
parts, it still ensures the integrality of the entire drug struc-
tural information [22]. Studies substantiate that themolecu-
lar fingerprints inhibit the information loss and accumulated
error of screening procedures. Meanwhile, it also reduces
the complexity of the calculation in the description process.
Specifically, when the fraction matches a molecular sub-
structure, the corresponding position of carrier will be as-
signed as 1. Mature fingerprint databases provide reliable
tools for the generation of molecular fingerprints. We se-
lected the fingerprint map which contains 881 substructures
from Pubchem system (https://pubchem.ncbi.nlm.nih.gov/)
[23]. Therefore, the describers of drug molecules are com-
pletely converted into a series of 881-dimentional Boolean
vectors. Fig. 2 gives the transformation of Zanamivir into
a fingerprint.

3.3 Position-specific scoring matrix

In recent years, various Physico-chemical meth-
ods are applied to numerically characterize protein which
is composed of 20 types of letters [24]. Position-Specific

https://pubchem.ncbi.nlm.nih.gov/
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Fig. 2. The transformation of Zanamivir into a fingerprint.

Scoring Matrix (PSSM) is extensively utilized in protein
binding site prediction, protein secondary structure predic-
tion, and protein subcellular localization [25]. In this sec-
tion, PSSM is employed to excavate the evolutionary in-
formation by calculating the probability of an amino acid
emerges in a specific location of protein primary sequence.
PSSM matrix is showed as follows.

PSSM =


ℓ1,1 ℓ1,2 · · · ℓ1,20
ℓ2,1 ℓ2,2 · · · ℓ2,20
...

...
. . .

...
ℓn,1 ℓn,2 · · · ℓn,20

 (1)

where PSSM is amatrix, where L× 20 denotes the length of
the target, and 20 represents the number of amino acids. ℓi,j
represents the evolutionary score that ith residue mutate
into jth amino acid during the evolutionary process. Af-
ter optimizing Position-Specific Iterated Basic Local Align-
ment Search Tool (PSI-BLAST), parameter e is set to 0.001
and the iteration frequency is set to 3. Fig. 3 gives the ex-
ample of Lipoprotein Lipase converting into PSSM.

3.4 Fuzzy local ternary pattern

Fuzzy Local Ternary Pattern (FLTP) can be uti-
lized to precisely describe the texture feature, and it has
a wide application in preventing face spoofing and image
tampering areas [26]. For the anti-rotation ability of FLTP,
it is also robust to the noise in the image. This method dy-
namically calculates the threshold based on Weber’s law to
extract multiple features. Meanwhile, it can be extended
to circles and neighborhoods with different radius. In this
paper, FLTP is employed to describe the characteristics of
PSSMs. The algorithm converts the difference between
neighborhood pixels and center pixels into the upper and
lower binary codes. The upper binary code can be ex-
pressed as FLTP−S

upper
P,R , the lower one can be expressed

as FLTP−S
lower
P,R . The complete describer is defined as

follows:

FLTP−SP,R =
[
FLTP−S

upper
P,R , FLTP−S

lower
P,R (2)

where FLTP−S
upper
P,R can be calculated as follows.

FLTP−S
upper
P,R (xc, yc) =

P−1∑
i=0

s (ii − (ic + τ)) 2i (3)

s(x) =

{
1 , x ≥ 0

0 , otherwhise
(4)

where FLTP−S
lower
P,R can be calculated as follows.

FLTP−S
lower
P,R (xc, yc) =

P−1∑
i=0

s (ii − (ic − τ)) 2i (5)

s(x) =

{
1 , x < 0

0 , otherwhise
(6)

where (xc, yc) represents the circular central pixel, and ii
represents the gray value of neighborhood pixel. When cal-
culating the upper binary code, if the gray value of neigh-
borhood pixel is greater than ic+τ , the neighborhood pixel
is marked as 1. When calculating the lower binary code, if
the gray value of the neighborhood pixel is less than ic− τ ,
the neighborhood pixel is marked as 0. The gray value of
the circular central pixel ii which was generated by the non-
linear interpolation algorithm and dynamic threshold τ are
calculated as follows.

ii = I

(
xc +R sin

2πi

P
, yc −R cos

2πi

P

)
(7)
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Fig. 3. The example of Lipoprotein Lipase converting into PSSM.

|ii − ic|
ic

= τ (8)

Finally, the FLTP feature vector can be obtained
as follow.

H(k) =

I∑
i=0

J∑
j=0

f (FLTP−SP,R(i, j), k) , k ∈ [0, 255]

(9)
In this experiment, the radius of the circular do-

main R = 1, the number of pixels in circular domain P =
8. The upper and lower binary codes are transformed into
256 dimensional vectors respectively. Hence, the entire de-
scriptor of PSSM is a matrix of 1 × 512.

3.5 Rotation forest

Rodriguez et al. [27] proposed rotation forest (RF)
based on integrated forest [27, 28]. This ensemble classifier
succeeds in the classification of small-sized data set. Sig-
nificantly, RF also has good effects on promoting sample
difference [29]. Within the experiments, we utilized rota-
tion forest to detect DTIs. Firstly, RF stochastically sepa-
rates the sample set into L disjoint subsets. Subsequently,
Principal Component Analysis (PCA) approaches to con-
vert subsets to generate rotation forest. Finally, send them
to different base classifiers for scorning each subtree. The
matrix C of n×N is regarded to be the train set contain-
ing N features of n samples, and T = (t1, t2, · · · , tn)T

gathers the labels of different samples. The method has K
base classifiersRi. The sequential training steps of the base
classifier are as follows.

(I) Follow obtaining the optimized parameter L,
dataset P is separated to L disjoint subsets stochastically,
each subset has N/L features.

(II) LetPi,j represents jth the subset of P, andCi,j

denotes the feature set ofPi,j . Then calculate the new train-
ing features set C ′

i,j by bootstrap sampling on 75% of Ci,j .
(III) Execute PCA onC ′

i,j to get the principal com-

ponent coefficients a(1)i,j , a
(2)
i,j , · · · a

(mj)
i,j .

(IV) These coefficients make up the sparse rota-
tion matrix Qi as:

In the process of classification, the possibility that
sample x belongs to category ti is di,j (xQa

i ) yielded by
base classifier Ri. Afterword, calculate the confidence de-
grees that x belongs to different classes as follows:

θj(x) =
1

K

K∑
i=1

di,j (xQ
a
i ) (11)

Finally, the sample x will be classified in accor-
dance with the degree.

4. Results and discussion

4.1 Evaluation criteria

For improving the reliability of the experimental
performance, the evaluative indices, viz. accuracy (Acc.),
precision (Prec.), sensitivity (Sen.), specificity (Spec.), and
Matthews correlation coefficient (MCC) are utilized to an-
alyze the results of 5-fold CV.

Acc. =
TP + TN

TP + TN + FP + FN
(12)

Pr ec. =
TP

TP + FP
(13)

Sen. =
TP

TP + FN
(14)
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Spec . =
TN

TP + FP
(15)

MCC =
TP × TN − FP × FN√

(TP + FP ) × (TP + FN) × (TN + FN) × (TN + FP )
(16)

where true positive (TP) records the aggregate of interact-
ing drug-target pairs which were assigned to positive set;
true negative (TN) denotes the sum of non-interacting drug-
target pairs which were assigned to negative set; false posi-
tive (FP) is the quantity of non-interacting drug-target pairs
which were assigned in positive set; false negative (FN) de-
notes the count of interacting drug-target pairs which were
assigned to negative set. In addition, the receiver operating
characteristic (ROC) curves were pictured to visualize the
prediction results [30], the area under the curves (AUC)was
also attached to ROC for justifying the established model
[31]. We also utilized PR curves and AUPR values to indi-
cate the sample balance and model performance.

4.2 Parameter discussion

In RF classifier, the main parameters K and L
denote the numbers of feature sub-sets and decision trees
which affect the classification accuracy. To get the opti-
mal parameters, this paper employs grid-search algorithm
to study the influence of parameters on prediction results
[32]. When L-value increased from 0 to 38, the experimen-
tal results show that the accuracy was increasing, then it
decreased sharply. Meanwhile, the accuracy was growing
with the increase of K-value. In consideration of the model
efficiency, the optimal parameters K and L are set to 18 and
38, respectively. Fig. 4 depicts the prediction accuracy sur-
face with factors of K-value and L-value.

Fig. 4. Accuracy surface of the optimization on K-value, and L-value.

4.3 Five-fold CV results on four datasets

To certify the feasibility of the established model
and avoid over-fitting, we executed 5-fold CV on four

benchmark data sets with the same parameters. Specifi-
cally, each data set is separated into 5 equal-sized and dis-
jointed fractions. The independent fractions take turns to be
treated as test sets, while the other fractions serve as train
sets. Tables 2,3,4,5 display the experimental results of our
method on four standard data sets.

The statistics of results has been shown in Ta-
ble 6. The average criteria of accuracy, sensitivity, preci-
sion, specificity and Matthews correlation coefficient are
89.08%, 90.32%, 87.52%, 90.62%, and 78.17% on En-
zyme data set. Their standard deviations are 0.68%, 0.59%,
1.21%, 0.43%, and 1.32%. We obtained the average cri-
teria of 86.14%, 86.46%, 85.69%, 86.60%, and 72.28%
on Ion Channel data set. Their standard deviations are
1.67%, 2.61%, 1.18%, 2.42%, and 3.37%. On GPCRs data
set, our model generated the average criteria of 82.41%,
82.10%, 81.97%, 82.96%, and 64.85% with standard de-
viation of 2.20%, 3.48%, 3.12%, 1.60%, and 4.43%. In
terms of Nuclear Receptor dataset, the average criteria are
78.40%, 76.33%, 77.78%, 76.43%, and 56.02%, respec-
tively, with standard deviation of 5.07%, 7.02%, 14.65%,
5.99%, and 12.21%. As can be noted, the small size of
Nuclear Receptor data set leads to a higher standard devi-
ation. Figs. 5,6,7,8 record the performance of our model
on four benchmark datasets, while the average AUC values
of 0.9535, 0.9292, 0.8901, and 0.8534 are also attached to
them. Figs. 9,10,11,12 plot the PR curve of our model on
four golden standard datasets, while the average AUPR val-
ues of 0.9608, 0.9345, 0.8941, and 0.8636 are also attached
to them.
4.4 Comparison of FLTP and ZMs models

For strictly validating the feature describing abil-
ity of fuzzy local ternary pattern (FLTP) method. We con-
structed the comparative experiment by replacing FLTP de-
scriptors with Zernike Moments (ZMs) descriptors which
have strong Rotational Invariance [33, 34]. ZMs method
is widely utilized in the field of edge detection by extract-
ing global feature information at different scales [35]. Ta-
ble 7 shows the comparison of ZMs and FLTPwith the same
classifier. These experimental statistic shows that FLTP
method has a significant performance improvement com-
pared with Zernike Moments on benchmarks. The criteria
values entirely get promoted on Enzyme, Ion Channel, and
GPCRs dataset. Fig. 13 displays the mean ROC curves of
FLTP model and ZMs model by an interpolation method.
It is noteworthy that the AUC values of FLTP-embedded
model are comprehensive greater than ZMs model, and the
mean value gaps attain 2.55%, 0.89%, 1.17%, and 4.09%,
respectively. The results indicate that our model provides
an effective way to characterize PSSM for detecting poten-
tial DTIs.
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Table 2. Experimental results yield by 5-fold CV on Enzyme dataset.
Test set Acc. (%) Pre. (%) Sen. (%) Spec. (%) MCC (%)

1 88.46 90.51 86.05 90.89 77.02
2 89.15 89.61 87.18 90.91 78.23
3 88.55 89.88 87.14 89.98 77.14
4 89.06 91.12 87.88 90.38 78.15
5 90.17 90.46 89.35 90.95 80.33
Average 89.08 ± 0.68 90.32 ± 0.59 87.52 ± 1.21 90.62 ± 0.43 78.17 ± 1.32

Table 3. Experimental results yield by 5-fold CV on Ion Channel dataset.
Test set Acc. (%) Pre. (%) Sen. (%) Spec. (%) MCC (%)

1 88.31 90.21 86.29 90.38 76.69
2 84.58 85.33 84.49 84.67 69.14
3 87.12 87.46 86.87 87.37 74.24
4 84.41 83.16 84.34 84.47 68.77
5 86.27 86.15 86.44 86.10 72.54
Average 86.14 ± 1.67 86.46 ± 2.61 85.69 ± 1.18 86.60 ± 2.42 72.28 ± 3.37

Table 4. Experimental results yield by 5-fold CV on GPCRs dataset.
Test set Acc. (%) Pre. (%) Sen. (%) Spec. (%) MCC (%)

1 79.92 77.77 80.99 78.95 59.87
2 84.65 84.92 84.25 85.04 69.29
3 84.65 86.29 82.95 86.40 69.36
4 80.63 81.20 81.82 79.34 61.18
5 82.21 80.30 84.80 79.69 64.54
Average 82.41 ± 2.20 82.10 ± 3.48 81.97 ± 3.12 82.96 ± 1.60 64.85 ± 4.43

Table 5. Experimental results yield by 5-fold CV on Nuclear Receptors dataset.
Test set Acc. (%) Pre. (%) Sen. (%) Spec. (%) MCC (%)

1 73.88 81.25 56.52 76.92 42.32
2 86.11 78.95 93.75 80.00 73.41
3 80.56 83.33 78.95 82.35 61.21
4 74.29 66.67 71.43 76.19 47.14
5 77.14 71.43 88.24 66.67 56.01
Average 78.40 ± 5.07 76.33 ± 7.02 77.78 ± 14.65 76.43 ± 5.99 56.02 ± 12.21

Table 6. The statistics of results yield by 5-fold CV on four benchmark datasets.
Statistics Evaluation criteria Acc. Pre. Sen. Spec. MCC

Enzyme
Average 89.08 90.32 87.52 90.62 78.17

Standard deviation 0.68 0.59 1.21 0.43 1.32

Ion Channel
Average 86.14 86.46 85.69 86.60 72.28

Standard deviation 1.67 2.61 1.18 2.42 3.37

GPCRs
Average 82.41 82.10 81.97 82.96 64.85

Standard deviation 2.20 3.48 3.12 1.60 4.43

Nuclear Receptors
Average 78.40 76.33 77.78 76.43 56.02

Standard deviation 5.07 7.02 14.65 5.99 12.21

4.5 Comparison with other classifiers

Thus far, some machine learning-based classifiers
are utilized to identify DTIs. To fairly verify the perfor-
mance of the proposed model, we embed the state of art
support vector machine (SVM) and light gradient boosting
machine (LGBM) algorithm into our model with fuzzy lo-

cal ternary pattern. Within RF classifier, we set parame-
ters K = 18, L = 38 which was discussed above. The SVM
utilized inner product kernel function instead of nonlinear
mapping to high dimensional space, it also adopts small-
sample learning method to greatly simplify the process of
classification and regression. There are 400 experiments
with different combinations of parameters c and gwere car-
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Table 7. Performance comparison of fuzzy local ternary pattern with Zernike Moments.
Dataset Model Acc. (%) Prec. (%) Sen. (%) Spec. (%) MCC (%) AUPR (%)

Enzyme
FLTP + RF 89.08 ± 0.68 90.32 ± 0.59 87.52 ± 1.21 90.62 ± 0.43 78.17 ± 1.32 96.08 ± 0.32
ZMs + RF 86.13 ± 0.53 87.15 ± 0.79 85.25 ± 1.76 87.40 ± 1.13 72.69 ± 1.13 93.97 ± 0.38

Ion Channel
FLTP + RF 86.14 ± 1.67 86.46 ± 2.61 85.69 ± 1.18 86.60 ± 2.42 72.28 ± 3.37 93.45 ± 0.92
ZMs + RF 84.00 ± 1.14 84.14 ± 2.83 84.00 ± 3.02 84.11 ± 3.11 68.13 ± 2.23 91.88 ± 1.26

GPCRs
FLTP + RF 82.41 ± 2.20 82.10 ± 3.48 81.97 ± 3.12 82.96 ± 1.60 64.85 ± 4.43 89.41 ± 2.24
ZMs + RF 81.50 ± 3.15 81.27 ± 5.73 81.46 ± 5.84 81.62 ± 3.70 63.06 ± 6.33 88.21 ± 1.65

Nuclear Receptor
FLTP + RF 78.40 ± 5.07 76.33 ± 7.02 77.78 ± 14.65 76.43 ± 5.99 56.02 ± 12.21 86.36 ± 5.86
ZMs + RF 75.15 ± 5.34 76.19 ± 10.26 75.90 ± 9.22 75.78 ± 11.93 51.83 ± 11.41 81.09 ± 6.24

Fig. 5. The ROC curves generated by 5-fold CV on Enzyme dataset.

Fig. 6. The ROC curves generated by 5-fold CV on Ion Channel
dataset.

Fig. 7. The ROC curves generated by 5-fold CV on GPCRs dataset.

Fig. 8. The ROC curves generated by 5-fold CV on Nuclear Receptors
dataset.
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Fig. 9. The PR curves generated by 5-fold CV on Enzyme dataset.

Fig. 10. The PR curves generated by 5-foldCVon IonChannel dataset.

ried out to get the highest accuracy, and we set c-value,
g-value to 0.7 and 40, respectively. The kernel of SVM
was select as radial basis function (RBF) based on LIBSVM
tool. The LGBMmethod is the improved gradient boosting
decision trees (GBDT) algorithm to reduce the time cost
and power consumption in industrial applications. After pa-
rameter optimizations, the leaves-number, the learning rate,
and the training rounds were set to 55, 0.05, and 37, respec-
tively.

Fig. 14 records the comparison between RF,
LGBM, and SVM on Enzyme, Ion Channel, GPCRs, and

Fig. 11. The PR curves results generated by 5-fold CV on GPCRs
dataset.

Fig. 12. The PR curves generated by 5-fold CV on Nuclear Receptors
dataset.

Nuclear Receptor data sets. The results indicate that model
which embeds RF classifier has higher prediction accu-
racy. Compared with SVM classifier, the average accu-
racy promotions of RF are 10.49%, 10.57%, 8.40%, and
15.20%, the accuracy gaps between RF and LGBM are
3.93%, 3.24%, 3.21%, 6.77% on four benchmark dataset.
Figs. 15,16 plot the ROC curves of the golden standard
datasets based on the rates of 1-specificity against sensi-
tivity. The model which has higher AUC values predict
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more accurate. As shown in Figs. 15,16, the AUC value
gaps of four data sets attain to 0.1051, 0.1162, 0.0944, and
0.2232 between RF and SVM, the value gaps between RF
and LGBM attain to 0.1013, 0.1013, 0.0910, and 0.1329,
respectively. Therefore, it is considered that the proposed
model is more efficient at predicting DTIs.

Fig. 13. Comparison of average AUC values on FLTP and ZMs.

4.6 Comparison with previous methods

So far, numerous advanced models have been es-
tablished to predict DTIs and assist drug design. In this sec-
tion, we compared our model with partial state-of-art mod-
els for fully evaluating the model performance by adopt-
ing 5-fold CV. After experimenting the previous methods
such as SIMCOMP [36], DCT [37], Bigram-PSSM [38],
LOOP [39] on benchmark datasets. Table 8 gives the com-
parison of AUC value and AUPR values. It is clearly that
the performance of the established model has risen signif-
icantly. Although the AUC value of our model is 0.006
lower than LOOP on Ion Channel dataset, the AUC val-
ues of Enzyme,GPCRs, and Nuclear Receptors have grown
0.003, 0.004, and 0.034, respectively, and the AUPR values
of four benchmark datasets have grown 0.028, 0.014, 0.029,
and 0.042, respectively. As a result, the experiments sub-
stantiate that the model which combining FLTP descriptors
and rotation forest can remarkably enhance the performance
of predicting DTIs.

5. Conclusions

In summary, this paper integrates Position-
Specific ScoringMatrix, fuzzy local ternary pattern, and ro-
tation forest as a novel prediction algorithm for identifying
the relationships between drugs and targets. Specifically,
the fusions which combine FLTP describers of PSSMs and
drug molecular fingerprints are fed into RF for inferring
DTIs. The mean accuracies of our model were 89.08%,
86.14%, 82.41%, and 78.40% on standard data sets. We

Table 8. Comparison between our model with state-of-art
methods in terms of benchmark data sets.

Dataset Method AUC AUPR

Enzyme

SIMCOMP 0.876 0.358
DCT 0.909 0.873

Bigram-PSSM 0.948 0.546
LOOP 0.951 0.933

Our method 0.954 0.961

Ion Channel

SIMCOMP 0.767 0.274
DCT 0.893 0.812

Bigram-PSSM 0.889 0.39
LOOP 0.935 0.921

Our method 0.929 0.935

GPCRs

SIMCOMP 0.867 0.452
DCT 0.867 0.793

Bigram-PSSM 0.872 0.282
LOOP 0.886 0.865

Our method 0.890 0.894

Nuclear Receptor

SIMCOMP 0.856 0.435
DCT 0.799 0.628

Bigram-PSSM 0.869 0.411
LOOP 0.819 0.822

Our method 0.853 0.864

also made systematic comparisons to ensure the superiority
of our model. First, the Zernike Moments (ZMs) method
was utilized to alter the FLTPmethod to validate the feature
description ability. Second, the state-of-art SVM, LGBM
with FLTP features are experimented to access the perfor-
mance of RF. The results indicate that this computational
can be regarded as a significantly reliable tool for screen-
ing feasible candidates for medical trials.

6. Limitation and future work

Besides achievingmore accurate prediction results
than previous models, we also noticed the limitations of
our model. This section will analyze these limitations from
two aspects. On one side, the fuzzy local ternary pattern
only describes the local texture characteristics. This fea-
ture descriptor is hardly to capture the global information
of the sample, which leads to the singleness of the feature
of PSSM. To extract more excellent feature vectors, future
work will focus on fusion features. We will study a variety
of local and global feature extraction methods and combine
them to build a prediction model. On the other side, the
loss and noise of data samples have a great effect on the
accuracy of the model. We will explore two-dimensional
data sample filtering algorithms to reduce data noise and
improve data robustness. Meanwhile, we will further opti-
mize the parameters to keep the integrity of the samples for
accurate prediction. In general, the subsequent work will
concentrate on extracting more accurate supervised classi-
fiers and more fusion features which integrate the texture
features and contour features of PSSMs. The growth of high
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Fig. 14. Comparison of advanced classifiers on gold standard data sets. (a) 5-fold CV results on Enzyme data set. (b) 5-fold CV results on Ion Channel
data set. (c) 5-fold CV results on GPCRs data set. (d) 5-fold CV results on Nuclear Receptors data set.

Fig. 15. ROC curves obtained by different classifiers on Enzyme and
GPCRs datasets.

throughput data set will create favorable circumstances and
challenges for constructing auxiliary tools to enhance the
accuracy of identification.
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