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1. Abstract
Background: High-throughput assays that can in-

fer neutralizing activity against SARS-CoV-2 are of great
importance for assessing the immunity induced by natural
infection and COVID-19 vaccines. We aimed to evaluate
the performance and degree of correlation of three fully
automated anti-SARS-CoV-2 immunoassays with neutral-
ization activity using a surrogate virus-neutralizing test
(sVNT) from GenScript, targeting the receptor-binding do-
main. Methods: 110 sera collected from PCR-confirmed

asymptomatic COVID-19 individuals were tested for neu-
tralizing antibodies (nAbs) using the sVNT. Positive sam-
ples were tested on three automated immunoassays target-
ing different viral antigens: Mindray CL-900i®, Abbott Ar-
chitect, and Ortho VITROS®. The diagnostic sensitivity,
specificity, agreement, and correlation with the sVNT were
assessed. Receiver operating characteristic (ROC) curve
analysis was performed to determine optimal thresholds for
predicting the presence of neutralizing activity by each as-
say. Results: All three assays showed 100% specificities.
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The highest sensitivity was 99.0%, demonstrated by VIT-
ROS®, followed by 94.3%, for CL-900i®, and 81.0%, for
Architect. BothVITROS® andCL-900i® had the strongest
correlation with the sVNT (ρ = 0.718 and ρ = 0.712, re-
spectively), while Architect showed a moderate correlation
(ρ = 0.618). ROC curve analysis indicated that the manu-
facturer’s recommended cutoff values are adequate for pre-
dicting the presence of nAbs and providing a strong cor-
relation with the sVNT. Conclusion: VITROS® and CL-
900i® serological assays, which detect antibodies against
SARS-CoV-2 spike protein, could serve as reliable assays
to predict neutralization activity after infection or vaccina-
tion.

2. Introduction

Following the emergence of the severe acute res-
piratory syndrome coronavirus 2 (SARS-CoV-2) in China,
the infectious agent of Coronavirus Disease 2019 (COVID-
19), the world faced a global health crisis with over 121mil-
lion confirmed cases and 2.68million deaths worldwide [1].
Since the release of the SARS-CoV-2 genome sequence in
January 2020, all efforts were directed towards the devel-
opment of effective anti-viral drugs and vaccines [2]. Up
to date, more than 180 vaccines have been developed and
many of which have moved into phase III of clinical tri-
als and received the emergency use authorization (EUA) by
the U.S. Food and Drug Administration (FDA) [3]. Con-
sequently, mass immunization campaigns were launched
worldwide to ease some of the restrictions that were en-
forced by COVID-19. Even so, a substantial ongoing surge
in cases and fatalities was still seen across many countries,
indicating that the rollout of vaccination probably came out
too late in these countries [4].

Neutralizing antibodies (nAbs) against SARS-
CoV-2 play a key role in the quest for protective immu-
nity and have been the reference method for assessing pro-
tection against several viruses after vaccination, including
smallpox, polio, and influenza viruses [5–8]. The antibody
immune responses against SARS-CoV-2 have been exten-
sively described in literature, where the limited pre-existing
immunity was suggested to account for the remarkable rise
in cases worldwide [4]. It was shown in several studies
that SARS-CoV-2 infected individuals develop protective
humoral immunity that persists for at least six months fol-
lowing infection [9–12]. Although not suited for early di-
agnosis, serological assays have been widely used to detect
antibody responses against SARS-CoV-2 and identify the
disease prevalence in populations [1, 13]. Also, serological
assays are important for measuring the efficacy of contain-
ment measures and screening convalescent sera for thera-
peutic and prophylactic purposes [12].

The clinical performance of the commercially
available serology assays detecting Abs against SARS-
CoV-2 has been extensively evaluated by numerous stud-

ies [12, 14–16]. In these studies, immunoassays that tar-
get the spike (S) protein of SARS-CoV-2 or the receptor-
binding domain (RBD) have shown the best performance
in terms of sensitivity and specificity [10]. However, mea-
suring the antibody response against the SARS-CoV-2 is
not sufficient for assessing protective immunity since most
of these Abs are binding Abs that do not neutralize the
virus [17]. On the other hand, nAbs are more indicative of
protective immunity as they block the interaction between
the virus and the host cells [18]. Methods for detecting
nAbs include virus neutralization assays (VNAs) which are
the gold standard for measuring protective immunity fol-
lowing infection or vaccination [17–20]. However, VNAs
are cumbersome, time-consuming, require biosafety level
3 (BSL-3) facilities, and cannot be implemented in rou-
tine practice [21]. Thus, correlation studies between high-
throughput commercial SARS-CoV-2 serology platforms
with nAbs are needed. In this regard, few studies have in-
vestigated the correlation between VNAs and SARS-CoV-
2 immunoassays [9, 16, 22–24]. A recent study compar-
ing six SARS-CoV-2 immunoassays with microneutraliza-
tion assay showed variable performances depending on the
target antigen with a sensitivity and specificity ranging be-
tween 43.8–87.8% and 68.3–97.5%, respectively. Thus,
due to variability of reported performances among the as-
says, further investigation is needed to accurately identify
reliable assays that provide the best correlationwith neutral-
izing activity against SARS-CoV-2. Such assays are crucial
to evaluate the effectiveness of the currently approved vac-
cines, determine the durability of the produced nAbs, and
identify whether the vaccines are effective against the re-
cently emerged SARS-CoV-2 variants [25, 26].

In this study, we aimed to evaluate the perfor-
mance characteristics of three fully automated immunoas-
says (CL-900i®, Architect, and VITROS®) targeting dif-
ferent SARS-CoV-2 antigens in comparison with a sur-
rogate virus-neutralizing test (sVNT) that detects nAbs
against SARS-CoV-2 RBD.

3. Materials and methods

3.1 Study design, ethical approval, and clinical samples

The performance of the following three CE-
marked SARS-CoV-2 chemiluminescent immunoassays
was evaluated: CL-900i® which detects IgG Abs against
viral S and nucleocapsid (N) proteins; Architect i4000SR
which detects IgG Abs against the N protein; and VIT-
ROS® which detects total Abs (IgG, IgA, and IgM) against
S1 antigen. The sera used were collected from volunteer in-
dividuals between July 26 and September 9, 2020, as a na-
tionwide survey sub-study [27]. The studywas approved by
the Institutional Review Boards at Qatar University (QU-
IRB 1492-E/21).
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A total of 110 sera samples from RT-PCR-
confirmed asymptomatic individuals were used to deter-
mine the sensitivity of each immunoassay was assessed
in comparison to the sVNT. Details regarding the demo-
graphic and clinical characteristics of the participants are
shown in Supplementary Table 1. Nasopharyngeal swab
specimens from all participants were tested for SARS-CoV-
2 using the Superscript III One-Step RT-PCR reaction mix
with PlatinumR Taq DNA polymerase (Cat No. 12594100,
ThermoFisher, Waltham, MA, USA) after RNA extraction
using Qiagen RNA extraction kit. Each sample was tested
using three sets of primers: one set targeting the E gene for
screening and the other two sets targeting the RdRp gene
for confirmation as described in [28]. Quant Studio 6 Flex
real-time PCR System was used, and cycle threshold (CT)
values below 30 were considered positive, while CT values
between 30–33 were considered reactive.

To determine the specificity of the immunoassays
and investigate cross-reactivity, we used a group of 70
pre-pandemic plasma samples collected from blood donors
before 2019 and used in previous studies we conducted
[12, 14, 29–32]. The panel comprised of plasma samples
seropositive for (a) dengue virus (n = 13), (b) influenza (n
= 15), (c) West Nile Virus and Parvovirus B19 (n = 9), (d)
non-respiratory viruses (n = 29) and (e) antinuclear antibod-
ies (ANAs) (n = 4). More details about the characteristics
of the pre-pandemic control samples are shown in Supple-
mentary Table 2.

3.2 Automated chemiluminescent immunoassays

Three commercial automated serology platforms
from different companies were used to detect anti-SARS-
CoV-2 Abs in COVID-19 patients and pre-pandemic sera
samples. These assays are: (i) CL-900i® SARS-CoV-2 IgG
(Mindray, Shenzhen, China), (ii) Architect SARS-CoV-2
IgG (Abbott Laboratories, USA), and (iii) VITROS® Anti-
SARS-CoV-2 Total Ab (Ortho Clinical Diagnostics, USA).
All tests were carried out according to the manufacturers’
instructions. The characteristics of the immunoassays, in-
cluding detection method, targeted antigens, detected anti-
body, and result interpretation, are summarized in Table 1
(Ref. [33–38]).

3.3 Neutralization assay (sVNT)

A SARS-CoV-2 surrogate virus neutralization test
(sVNT) was used as a reference test in this study (Cat. No.
L00847, GenScript Biotech, NJ, USA) for detecting nAbs
against SARS-CoV-2. This assay utilizes the same for-
mat as enzyme-linked immunosorbent assay (ELISA) by
detecting Abs that competitively inhibit the interaction be-
tween recombinant SARS-CoV-2 RBD-HRP fusion protein
and recombinant ACE2 protein coated on a 96-well plate
[39]. The assay was shown to have a high degree of cor-
relation with the conventional pseudovirus neutralization
test (pVNT, R2 = 0.84) and demonstrated high specificity

(99.9%) and sensitivity (95.0–100%) [21]. In this study, all
sera samples were tested for nAbs against the RBD using
the sVNT. According to the manufacturer’s instructions, a
percent inhibition of ≥20% was considered positive (nAbs
were detected), and a percent inhibition of <20% was con-
sidered negative (nAbs were not detected).
3.4 Statistical analysis

Using the GenScript sVNT as the reference stan-
dard, sensitivity, specificity, overall percent agreement, and
Cohen’s Kappa coefficient were calculated to assess the
performance of each automated immunoassay. Cohen’s
kappa coefficient (κ) is a robust statistical measure of agree-
ment used to test inter-rater reliability and to assess the pos-
sibility of agreement occurrence by chance [40, 41]. Kappa
value can be interpreted as follows: a value of ≤0 indi-
cates no agreement, 0.01–0.20 is a poor agreement, 0.21–
0.40 is a fair agreement, 0.41–0.60 is a moderate agree-
ment, 0.61–0.80 is substantial agreement, and 0.81–1.00 is
an almost perfect agreement [40]. Correlation and linear
regression analysis between each automated immunoassay
and the sVNT percent inhibition were performed. Non-
parametric Spearman’s correlation coefficient (ρ) was cal-
culated with 95% confidence interval (95%CI), where a co-
efficient of<0.3 suggests no or negligible correlation, 0.3–
0.5 is a weak correlation, 0.5–0.7 is a moderate correlation,
0.7–0.9 is a strong correlation, and >0.9 is a very strong
correlation [42]. Receiver operating characteristic (ROC)
curve analysis and Youden index were used to assess the as-
says thresholds (cutoff indices) and identify optimized ones.
A nonparametric ROC analysis was performed for each im-
munoassay to calculate the area under the curve (AUC). The
bigger the AUC, the more accurate a tool in terms of diag-
nostic performance. The relation between AUC and diag-
nostic accuracy applies as follows: an AUC of <0.5 sug-
gests no discrimination (ability to diagnose patients with
and without the disease or condition based on the test), 0.7–
0.8 is deemed to be acceptable, 0.8–0.9 is deemed excellent,
and>0.9 is deemed outstanding [43, 44]. Youden’s index is
often used as a summary measure of the ROC curve to eval-
uate the overall discriminative power of a diagnostic proce-
dure and to compare it with other tests [45]. Youden’s index
(J) was calculated using the formula: J = max (sensitivity +
specificity) – 1 to help determine the optimal thresholds for
each assay [46, 47]. All statistical analyses were performed
using Microsoft Excel 365 software and GraphPad Prism
software (Version 9.0.0, San Diego, CA, USA).

4. Results

4.1 Sample selection and nAbs screening using sVNT

A total of 110 samples from SARS-CoV-2-
confirmed asymptomatic individuals and the 70-pre-
pandemic samples were screened for the presence of nAbs
using the sVNT. Out of the 110 samples, 105 were positive
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Table 1. Characteristics of the automated analyzers used for anti-SARS-CoV-2 antibodies detection.
Manufacturer Immunoassay name Automated system Detection method/assay type Detected antibody Targeted SARS-CoV-2 antigen (s) Result interpretation Reference

Mindray Bio-Medical Electronics Co., Ltd. CL-900i® SARS-CoV-2 IgG CL-900i® system CLIA* IgG S and N*
<10 U/mL: Negative

[33, 34]
≥10 AU/mL: Positive

Abbott Laboratories Architect SARS-CoV-2 IgG ARCHITECT® i4000SR CMIA* IgG N
<1.4 S/C Negative

[35–37]
≥1.4 S/C: Positive

Ortho Clinical Diagnostics VITROS® Anti-SARS-CoV-2 Total Ab VITROS® ECiQ CLIA IgG, IgM, and IgA S (S1 subunit) *
<1.0 S/C: Negative

[38]
≥1.0 S/C: Positive

*CLIA, chemiluminescence immunoassay; CMIA, chemiluminescent microparticle immunoassay; S: spike protein; N: nucleocapsid protein; S1: subunit of the spike protein.

Table 2. Diagnostic assessment of the three automated SARS-CoV-2 immunoassays using sVNT as a reference test for nAbs detection.
Automated assay Mindray CL-900i® SARS-CoV-2 IgG Abbott architect SARS-CoV-2 IgG VITROS® anti-SARS-CoV-2 total test

Sensitivity % (95% CI) 94.3 (89.8–98.7) 81.0 (77.2–84.7) 99.0 (93.8–100.0)
Specificity % (95% CI) 100.0 (94.8–100.0) 100.0 (94.8–100.0) 100.0 (94.8–100.0)
Overall agreement % (95% CI) 96.6 (93.9–99.3) 88.6 (83.9–93.3) 99.3 (97.9–100.0)
Cohen’s kappa coefficient κ (95% CI) 0.93 (0.89–0.97) 0.77 (0.71–0.84) 0.98 (0.96–1.0)
ROC curves optimized cut-off index >7.860 >0.8650 >0.91
Sensitivity using optimized cut-off indices % (95% CI) 98.1 (93.3–99.7) 87.6 (79.9– 92.6) 99.0 (94.7–99.9)
Specificity using optimized cut-off indices % (95% CI) 100.0 (94.8–100.0) 100.0 (94.8–100.0) 100.0 (90.4–100.0)
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(95.5%). All pre-pandemic samples were negative, indicat-
ing a 100% specificity of the sVNT assay. Then, the posi-
tive 105 samples were used to evaluate the performance and
correlation of the three immunoassays in comparison with
the sVNT.

4.2 Diagnostic performance of the immunoassays using
sVNT as a reference test

The diagnostic performance of each automated
immunoassay using the sVNT as a reference test is sum-
marized in Table 2. The specificity of all three assays was
100% (95% CI: 94.8–100.0). Architect showed the low-
est sensitivity in detecting Abs that correlates with neutral-
izing activity at 81.0% (95% CI: 77.2–84.7), followed by
CL-900i® at 94.3% (95% CI: 89.8–98.7), and VITROS®
which showed the highest sensitivity at 99.0% (95% CI:
93.8–100.0). The overall agreement with the sVNT ranged
from 88.6% (95% CI: 83.9–93.3, kappa = 0.77), for Archi-
tect, to 99.3% (95% CI: 97.9–100.0, kappa = 0.98) for VIT-
ROS®. CL-900i® showed an overall agreement of 96.6%
(95% CI: 93.9–99.3, kappa = 0.93).

The correlation and linear regression analysis be-
tween the readings obtained from each automated im-
munoassay and neutralizing activity (percent inhibition)
from the sVNT are illustrated in Fig. 1. Spearman’s cor-
relation coefficients (ρ) showed a statistically significant
positive correlation for all three automated assays with the
sVNT (p < 0.001). The strongest correlation was shown
by immunoassays targeting the S protein; VITROS® (ρ
= 0.718, Fig. 1C), followed by CL-900i® (ρ = 0.712,
Fig. 1A). Architect immunoassay, which targets the N pro-
tein, demonstrated the weakest correlation compared to the
other two assays (ρ = 0.618, Fig. 1B). Linear regression
analysis showed that all constructed models could statisti-
cally significantly predict the dependent variable (% inhi-
bition) based on the cutoff index (COI) generated by each
immunoassay with a predication precision ranging between
13.9–15.6% (standard error of estimate, SEE). The best re-
gressionmodel fitting the data was shown byVITROS® (r2

= 403, SEE = 13.9%), followed by Architect (r2 = 0.308,
SEE = 15.1%) and Mindray (r2 = 0.275, SEE = 15.6%).

4.3 Receiver operating characteristics (ROC) curve
analysis

As shown in Fig. 2, ROC curve analyses showed
that all three assays had an AUC that exceeded 0.99,
indicating an excellent performance for all assays (CL-
900i®: 0.9976, Architect: 0.9966, VITROS®: 0.9997, p
< 0.0001). Optimized thresholds (cutoff indices) for de-
tecting anti-SARS-CoV-2 Abs that correlate with the sVNT
were obtained based on these ROC curves and the calcu-
lated Youden’s index. The derived cut-off indices were
>7.860,>0.8650, and>0.91 for CL-900i®, Architect, and
VITROS®, respectively, compared to the manufacturer’s
suggested cut-offs which were ≥10.0, ≥1.4, and ≥1.0, re-
spectively. By applying these new cutoff values, all assays

showed an improved sensitivity (CL-900i®: 98.1%, Archi-
tect: 87.6%), except for VITROS®, which maintained the
same sensitivity (99.0%). The new cutoff values did not af-
fect the specificity of the assays, which remained at 100%.

5. Discussion

The ongoing COVID-19 pandemic requires high-
throughput serological assays that can provide strong corre-
lations with nAbs against SARS-CoV-2 and enable study-
ing the immunity induced by natural infection and vaccines.
Although conventional virus neutralization tests (cVNT)
are the gold standard for detecting nAbs, they are cumber-
some, time-consuming, require BSL-3 facilities, and can-
not be implemented in routine practice [21]. On the other
hand, sVNT is a quick and straightforward test that does
not require specialized facilities and has shown an excel-
lent performance compared with the cVNT in several stud-
ies [21, 47, 48]. However, this assay is not available yet in
high throughput automated format for screening large pop-
ulations compared to commercial automated assays. There-
fore, we aimed to evaluate the performance of three au-
tomated immunoassays (CL-900i®, Architect, and VIT-
ROS®) using the GenScript sVNT as a reference test. Also,
we aimed to assess the correlation of these assays with neu-
tralizing activity against SARS-CoV-2. A panel of 110 sam-
ples collected from RT–PCR confirmed individuals and 70
pre-pandemic sera were used.

Following the initial screening of all samples us-
ing the sVNT, nAbs were detectable in 95.5% (105/110)
of the sera samples. The sVNT did not show any cross-
reactivity with the pre-pandemic samples, neither did any of
the three automated assays, with 100% specificities. VIT-
ROS® demonstrated the highest sensitivity (99.0%), fol-
lowed by CL-900i® (94.3%) and Architect (81.0%). These
findings were concordant with a previous study that re-
ported a 100% sensitivity for VITROS® using a microneu-
tralization test as a reference test [49]. A possible explana-
tion of the superior sensitivity demonstrated by VITROS®
could be attributed to the fact that it detects the total Abs
(IgM, IgA, and IgG) against the virus, compared to the other
two assays (CL-900i® and Architect) that only detect IgG
Abs. Thus, targeting multiple types of Abs could increase
the chance of detecting Abs that correlate with neutraliz-
ing activity, and enhance the assay’s sensitivity. Further,
although a different sample cohort was used, the sensitiv-
ity obtained by CL-900i® was comparable to the one re-
ported in a previous study we conducted (~96%), at which
the performance of three immunoassays was assessed using
the sVNT test [15]. In line with our findings, Architect also
showed a comparable performance in another study that re-
ported a sensitivity of 80.5% using a microneutralization
assay as the reference test [49, 50].
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Fig. 1. Correlation and linear regression analysis between each SARS-CoV-2 immunoassay ratio results and the surrogate virus neutralization
test (sVNT) percent inhibition in asymptomatic COVID-19 individuals (n = 105). Spearman’s correlation coefficient (ρ), r2, and p-value are shown
for each model. Rho (ρ) is shown with 95% confidence interval (95% CI), a correlation value of<0.3 is negligible, 0.3–0.5 is weak, 0.5–0.7 is moderate,
0.7–0.9 is strong and >0.9 is very strong [34]. The dashed red line corresponds to the cutoff value of each assay (CL-900i® ≥10.0, Architect ≥1.4,
VITROS® ≥1.0). The significance level was set at 0.05. COI, cutoff index; S/C, signal/cutoff.

Fig. 2. Empirical Receiver Operating Characteristic (ROC) curve analysis for each automated immunoassay to estimate the optimal threshold
levels for predicting the presence of neutralizing antibodies against SARS-CoV-2 in asymptomatic COVID-19 individuals (n = 105). The sensitivity
and specificity values correspond to the plotted points in the graphs which were used to calculate the area under the curve (AUC) and p-value for each
curve plot. Based on the area under the ROC curve, the Youden Index cutoff values that maximize the sum of sensitivity and specificity were determined.
The significance level was set at 0.05.

The correlation between the ratios obtained from
each automated assay and the percent inhibition of nAbs
targeting the RBD was also examined. Both CL-900i®
and VITROS® demonstrated a strong correlation with the
sVNT compared to Architect, which showed a moderate
correlation (Fig. 1). This could be because CL-900i® de-
tects Abs against both the S and N proteins, while VIT-
ROS® solely targets Abs against S1 subunit, which also
contains the RBD. Similar studies have shown that the RBD
is a potent target for nAbs and that serology assays that de-
tect Abs against the S1 subunit or the RBD alone strongly
correlate with neutralization activity [21, 48, 51–53]. A
study comparing the performance of five serology assays
with neutralization test showed that assays targeting the S
protein including DiaSorin CLIA, Beckman Coulter CLIA,
and Euroimmun ELISA had the highest correlation coef-
ficients (rho = 0.72, 0.68, and 0.63, respectively), similar
to our findings (Fig. 1). On the other hand, the correlation
between Architects and nAbs was weaker due to the fact it

only targets Abs against the N protein. An earlier study also
demonstrated a modest correlation between nAb titers and
immunoassays detecting Abs against the N protein [51]. In
that study, Pearson correlation coefficients were calculated
between SARS-CoV-2 neutralization titers (EC50) and the
ratios reported by Roche and Abbot immunoassays. The
correlation coefficient was 0.29 for Roche and 0.47 for Ab-
bot, denoting a moderate correlation with nAbs for both as-
says.

ROC curve analysis was performed to determine
the optimal cutoff indices for each automated immunoassay
that could predict the presence of nAbs against SARS-CoV-
2 (Fig. 2). The calculated cutoff values showed that the
manufacturer’s recommended thresholds are adequate for
predicting the presence of nAbs and providing a strong cor-
relation with the sVNT. Further, these cutoff indices can be
adjusted depending on the clinical setting or research con-
text in which they can be lowered to improve the sensitivity
without affecting the specificity in high prevalence settings.
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Our study had some limitations, including the
small sample size and the fact that all samples were
collected from asymptomatic male individuals. How-
ever, these samples were collected as part of a previous
population-based study we conducted on the craft and man-
ual workers in Qatar [27] who represent an important sec-
tion of Qatar by comprising 60% of the total population.
Also, the selected samples were obtained from various time
points (7–35 days) after the positive RT-PCR test to account
for variability and delay of elicited immune response among
different individuals. Further, other studies have shown that
male individuals produce weaker immune responses, par-
ticularly nAbs, than females [54, 55]. Hence, identifying
the thresholds of protective immunity in male individuals
is essential to avoid false-negative results and accurately
estimate herd immunity. Another limitation is that our pre-
pandemic sera samples did not include seropositive samples
for other human coronaviruses, potentially leading to an
overestimated specificity. However, our control group did
include Dengue and ANA seropositive samples which have
been reported to cause cross-reactivity with SARS-CoV-2
in other studies [56, 57].

In conclusion, our findings showed that both CL-
900i® and VITROS® immunoassays demonstrated excel-
lent performance in terms of sensitivity, specificity, and
overall correlation with the sVNT, suggesting that they
could serve as reliable and high-throughput assays for pre-
dicting the presence of protective nAbs. The identification
of such reliable assays is of particular importance following
the mass vaccination campaigns taking place worldwide.
They could be used for screening vaccinated populations
and recovered COVID-19 patients to measure the effective-
ness of the developed vaccines and ensure efficient herd im-
munity.
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