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1. Abstract

Nitric oxide synthases (NOS) are the major
sources of nitric oxide (NO), a small bioactive molecule in-
volved in the regulation of many cellular processes. One
of the most prominent functions of NO is regulation of va-
sodilatation and thereby control of blood pressure. Most

important for vascular tone is NOS3. Endothelial NOS3-
generated NO diffuses into the vascular smooth muscle
cells, activates the soluble guanylate cyclase resulting in
enhanced cGMP concentrations and smooth muscle cell
relaxation. However, more and more evidence exist that
also NOS1 and NOS2 contribute to vascular function. We
summarize the current knowledge about the regulation of
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Table 1. Nomenclature of the different NOS isoforms.
Isoform descriptive name protein source cDNA source

NOS1

bNOS (for brain NOS);

rat cerebellum
porcine cerebellum

human and rat brain
cNOS (for constitutive or Ca2+-regulated NOS);
bcNOS (for brain constitutive NOS);
nNOS (for neuronal NOS);
ncNOS (for neuronal constitutive NOS)

NOS2
iNOS (for inducible NOS); mouse RAW 264.7 macrophages, mouse macrophages, rat hepatocyte
macNOS (for macrophage NOS); rat peritoneal macrophages, human and liver, human A-172- and DLD-
hepNOS (for hepatocyte NOS) DLD-1 adenocarcinoma cells 1 cells, hepatocytes and articular

chondrocytes

NOS3
eNOS (for endothelial NOS);

bovine lung endothelial cells bovine and human endotheliumcNOS (for constitutive or Ca2+-regulated NOS; over-
lap with nomenclature for NOS1);
ecNOS (for endothelial constitutive NOS)

The descriptive names are used in the literature, the protein sources and the cDNA sources are described. Summary from [27].

NOS expression in the vasculature by transcriptional, post-
transcriptional and post-translational mechanisms, in re-
gard to inflammation and innate immune pathways.

2. Nitric oxide as bioactive molecule

Nitric oxide (NO), a small gas molecule, has been
shown to act as bioactive substance. NO can be produced
by a great number of organisms ranging from bacteria [1],
yeast [2] and invertebrates [3] to mammals. NO as a simple
gas molecule, controls important functions such as vascu-
lar tone, smooth muscle cell proliferation, platelet aggrega-
tion, leucocyte adhesion (see Fig. 1), and neurotransmission
or the contraction of gastrointestinal organs. These broadly
based regulation activities are performedmainly by the NO-
dependent activation of soluble guanylyl cyclase [4]. Fur-
ther, by activation or deactivation of transcription factors
NO can affect gene transcription [5, 6] and mRNA transla-
tion (e.g., via iron-responsive elements) [7].

The NO radical reacts with multiple partners, a:
the SH groups of cysteine in peptides or proteins, resulting
in the formation of S-nitrosothiols. This modification is re-
versible and is important for the NO-related signaling func-
tions in the immune system. b: superoxide anions (O2

−) (a
chemical reaction with one of the highest reaction speeds
known) generating peroxynitrite (ONOO−) able to modify
proteins by tyrosine nitration. c: Fe2+(in heme groups or
iron-sulfur clusters) or Zn2+ (in zinc–sulfur clusters), im-
portant for the regulation of several enzymes and transcrip-
tion factors. d: nucleic acids, resulting in deamination lead-
ing to mutations. e: to unsaturated lipids, producing ni-
trolipids [8].

At high concentrations NO is known to kill bac-
teria, parasites and certain tumor cells by inhibiting iron-
containing enzymes [9], either by direct NO-DNA inter-
actions [10, 11], or by post-translational modifications of
proteins (for example S-nitrosothiol adduct formation [12]

or ADP-ribosylation [13]). At these high NO concentra-
tions (mostly formed by NOS2) reactive nitrogen species
(RNS) are formed that harm cell membranes, the endo-
plasmic reticulum, mitochondria, nucleic acids and pro-
teins/enzymes, which result in necrosis and cell death [14].

3. Nitric oxide synthases

In mammals, three isoforms of nitric oxide syn-
thase (NOS) exist. The cDNA, protein structures and
genomic DNA loci have been characterized in different
species (see Table 1 [4, 15, 16]). NOS1, first discov-
ered in neurons of rat and porcine cerebellum [17–19],
and NOS3, originally described in endothelial cells [20],
are Ca2+-activated enzymes with relative low NO produc-
tion whose physiological function is mainly signal trans-
duction. NOS2, primarily detected in cytokine-induced
macrophages [21, 22], is the high NO-producing isoform,
able to produce toxic amounts of NO. Innate immune cells
use this NO for their antimicrobial, antiparasitic and anti-
neoplastic activities. NOS2 activity is mostly (human) or
completely (mouse and rat) Ca2+-independent. All NOS
enzymes are homodimers that oxidize a guanidino nitrogen
of L-arginine, using molecular oxygen and NADPH as co-
substrates, to produce NO. Therefore, limiting the substrate
arginine by other arginine utilizing enzymes, as by arginase
I or II, or modulation of arginine transport [23, 24] is able to
regulate the activity of all three isoforms. For example, in
several cardiovascular diseases the consumption of arginine
by arginase leads to the dysfunction of the NOS3 enzyme
(NOS3 uncoupling) converting it to a superoxide-producing
enzyme, resulting in NOS3-dependent superoxide produc-
tion [25]. All NOS isoforms contain the prosthetic groups
FAD, FMN and heme iron and depend on BH4 as cofactor.
Suboptimal concentrations of the essential cofactor BH4 re-
sult in NOS3 uncoupling and superoxide production by the
enzyme. NOS1 and NOS2 are mostly soluble enzymes. In
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Fig. 1. Antihypertensive, antithrombotic, and antiatherosclerotic effects of endothelial NOS3. NOS3 enzyme activity in endothelial cells (EC)
can be stimulated by shear stress or several agonists, like bradykinin (BK) and vascular endothelial growth factor (VEGF). The EC-synthesized NO
diffuses into the blood stream and inhibits platelet aggregation and adhesion. In addition, the EC related NO inhibits leukocyte adhesion to the vascular
endothelium and leukocyte migration into the vascular wall. NO also diffuses into smooth muscle cells (SMCs). In SMCs NO stimulates vasodilation and
prevents SMC proliferation. Reprinted by permission from Springer Science + Business Media New York: Li H, Xia N, Förstermann U. Chapter 16-Nitric
Oxide Synthesis in Vascular Physiology and Pathophysiology. In “Endothelial Signaling in Development and Disease” Eds. Schmidt MH, Liebner S.
COPYRIGHT 2015.

contrast, NOS3 due to its amino-terminal fatty acylation by
myristic and palmitic acid is membrane bound [4, 26].

4. NOS genes

In humans, three different genes located on chro-
mosomes 12, 17 and 7, respectively, encode the NOS iso-
forms 1, 2 and 3. Deduced from the cloned cDNAs, the
amino acid sequences of the three human isozymes show
less than 59% identity. Across tested mammalian species,
amino acid sequences are more than 90% conserved for
NOS1 and 3, and greater 80% identical for NOS2.

5. NOS isoform expression

In contrast to the often-used descriptive names, re-
searches have shown by immunohistochemical and western
blotting methods that NOS1 and NOS3 are expressed in a
large number of different cell types. NOS1 is expressed
for example in skeletal myocytes, in endothelial-, smooth

muscle-, or epithelial cells (see [16, 28, 29] for reviews) as
well as unprimed macrophages [30]. NOS3 is expressed
in different cell types like endothelial cells, epithelial cells,
neuronal cells, T cells, erythrocytes, perivascular adipose
tissue and platelets (see [16, 31] for reviews). NOS1 and 3
are believed to be constitutively expressed. However, also
expression of NOS1 and 3 is regulated by external stim-
uli [28]. For example estrogens (for NOS1 and 3), shear
stress, TGF-ß1, and in certain endothelial cells high glucose
(for NOS3) enhanced the expression of these enzymes. The
expressional regulation of the “constitutive” NOS (as well
of NOS2) is mediated by different mechanisms. These in-
clude changes in chromatin packaging, mediated by histone
methylation/acetylation, and/or effects of long non-coding
RNAs (ncRNAs), activation/inhibition of transcription fac-
tors and usage of different promoters (modulation of tran-
scription), regulation of mRNA-splicing, -localization and
-stability (post-transcriptional regulation by RNA-binding
proteins-RNA-BP, or micro-RNAs-miRNAs) and modula-
tion of protein-stability.
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5.1 Transcriptional regulation of the NOS1 gene

For the human and rodent NOS1 gene, tissue-
specific or developmentally regulated NOS1 mRNA tran-
scripts (at least 12 different human NOS1 mRNA isoforms)
have been reported. These different NOS1mRNAs are pro-
duced by alternative promoter usage, alternative splicing
(see below), and/or the usage of alternate polyadenylation
signals [32–38]. The different promoters display a multi-
tude of potential transcription factor binding sites [37], but
their functionality has been tested only for a small number.
For example, the cAMP-depending enhancement of NOS1
expression (mRNAs containing the exons ex1f and g) has
been shown to depend on a CRE site in the respective pro-
moter sequence [37].

5.2 Transcriptional regulation of the NOS3 gene

To analyze the differential activity pattern of
chromatin-versus episome-based human NOS3 promoter
Chan et al. examined the methylation status of 5’-
regulatory sequences of the human NOS3 gene. The au-
thors observed huge differences in the DNA methylation of
the NOS3 promoter sequence between endothelial and non-
endothelial cell types, like vascular smooth muscle cells
(VSMCs). The same cell type-specific methylation pattern
was observed at the native murine NOS3 promoter in vivo
in endothelial cells (EC) and VSMCs of the mouse aorta.
Transient transfection analyses showed that that methylated
NOS3 promoter sequences exhibited a marked decrease in
the action of Sp1, Sp3, and Ets1 on NOS3 promoter ac-
tivity, an effect enhanced by methyl-CpG-binding protein
2 (MECP2). In addition, ChIP analyses showed the bind-
ing of Sp1, Sp3, and Ets1 to the NOS3 promoter in ECs but
not VSMCs. Finally, NOS3 mRNA expression could be in-
duced in non-ECs by inhibition of DNA methyltransferase
activity with 5-azacytidine [39]. As described by Miao et
al. the LEENE lncRNA stimulates the binding of RNA
polymerase II to the NOS3 promoter upregulating NOS3
nascent RNA synthesis [40]. The nuclear located lncRNA
spliced-transcript endothelial-enriched lncRNA (STEEL)
also enhances RNA polymerase II loading at the proximal
promoter of the NOS3 gene and enhances NOS3 transcrip-
tion [41]. The placenta-specific expression of a placenta
NOS3 mRNA isoform is described to be related to usage
of an alternative Herv-LTR10A-related promoter upstream
of the classical promoter sequences [31, 42, 43] used in
non-placental tissues. The placenta-restricted expression
was also determined to be associated with placenta-specific
hypomethylation of the LTR10A element [44]. Analysis
of the human NOS3 promoter revealed the functional im-
portance of binding sequences for several transcriptional
factors like the AP-1-, AP-2-, Elf-1-, Erg-, Ets1-, GATA-
, HIF-, KLF2-, MAZ-, MZF-, NF-1-, p53-like, PEA3-,
Smad2-, Sp1-, Sp1/Sp3-like, YY1-like-binding site. Also,
acute phase reactant-, sterol-, and shear stress-regulated
elements have been described (see [31, 45] for reviews).

Also, the LTR10A-derived NOS3 promoter element impor-
tant for placenta-specific NOS3 expression, contains sev-
eral putative transcription factor binding sites, for example
C/EBPdelta, FOXO4, NF-Y, and Sox-5 [44], but the func-
tionality of these sequences have not been proved yet.

5.3 Post-transcriptional regulation of the NOS1
expression

The different 5’-UTRs of the multiple NOS1-
mRNA isoforms (see above) are likely to regulate the trans-
latability of these different NOS1 mRNAs [16]. Several
miRNAs have been shown to directly [46–51] or indirectly
[52] modulate human NOS1 expression.

5.4 Post-transcriptional regulation of the NOS3
expression

Lorenz et al. detected three splice variants (NOS3-
13A, NOS3-13B, and NOS3-13C) of the NOS3 mRNA in
HUVEC with novel 3’ splice sites within intron 13. All
variants use the same polyadenylation site located at the
end of the novel exon, and all these NOS3 mRNA isoforms
code for inactive NOS3 proteins. These mRNA isoforms
are expressed in endothelial cells and various human tis-
sues. By formation of heterodimers, expression of the full-
length NOS3 with NOS3-13A diminished NOS3 enzyme
activity in COS-7 cells [53].

Beside promoter activity regulation, TNF-α re-
duces NOS3 expression in endothelial cells of different
species by destabilization of its mRNA [54–59]. By RNA-
protein interaction analyses different RNA-BPs (translation
elongation factor 1-alpha 1 - eEF1A1 and polypyrimidine
tract-binding protein 1 - PTB1) were found to bind to the
3’-UTR of the NOS3 mRNA [56–58]. In addition, TNF-α-
dependent post-transcriptional regulation of NOS3 expres-
sion by different miRNAs binding to its mRNA has been
described [59–61].

5.5 Post-translational regulation of the NOS1 protein

Several post-translational modifications, such as
phosphorylation, ubiquitination, and sumoylation, of the
NOS1 protein have been described [62]. NOS1 local-
ization, enzymatic activity and protein stability is also
regulated by protein-protein interactions with calmod-
ulin (CaM), heat shock proteins (hsp90/hsp70), PDZ-
domain containing proteins (syntrophin, PSD-95, or PSD-
93), the Carboxy-Terminal Postsynaptic Density-95/Discs
Large/Zona Occludens-1 Ligand of NOS1 (CAPON) (also
namedNitric Oxide Synthase 1Adaptor Protein - NOS1AP)
[62] and PIN, a protein inhibitor of NOS1 acting by disso-
ciation of NOS1 dimers into monomers [63, 64].

5.6 Post-translational regulation of the NOS3 protein

Post-translational modification of NOS3 has been
shown to include acetylation (decreasing its activity), acyla-
tion (membrane targeting), glutathionylation (uncoupling,
resulting in superoxide production), phosphorylation (reg-
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ulation of enzyme activity) or S-nitrosylation (reducing
its activity) [26]. Especially phosphorylation of different
amino acids (Y81, S615, S633, S1177 activating; S114,
T495, Y657 deactivating) bymultiple kinases (Akt, AMPK,
CaM-K-II, PKA, PKC, PKG, pp60src, PYK) modulates
NOS3 activity by different signaling pathways [65].

Beside post-translational modifications there are
numerous reports demonstrating the importance of pro-
teins interacting with NOS3 and thereby stimulating or
inhibiting NOS3 function. In addition to CaM, several
proteins like caveolin-1, cell division cycle 37 (Cdc37),
C-terminal hsp70-interacting protein (CHIP), connexin 37
and 40 (Cx37/40), G-protein-coupled receptor (GPCR) ki-
nase interactor-1 (GIT1), hemoglobin alpha (Hbα), heat
shock protein 90 (Hsp90), integrin-linked kinase (ILK),
NOS3 interacting protein (NOSIP) and NOS3 traffic in-
ducer (NOSTRIN), proviral integration site for Moloney
murine leukemia virus 1 (Pim1), prolyl isomerase (Pin) 1,
and stromal cell-derived factor 2 (SDF2), have been shown
to interact and regulate NOS3 (see [66] for a recent review).
In addition, the plasminogen activator inhibitor-1 (PAI-1)
interacts with NOS3 and inhibits its activity [67].

Cytokine-dependent regulation of NOS1 and
NOS3 by microbial products have been reported also. The
differentiation and activity of immune cells in vitro is af-
fected by NOS1 or 3. In addition, modulation of immune
responses and inflammatory processes in vivo have been de-
scribed [8].

5.7 Regulation of NOS2 expression

A “constitutive” expression of NOS2 has been de-
scribed for epithelial cells of the colon and lungs, which
is likely “induced” by the microbiota in these organs, and
spinal tissue of the brain and for different human cancer
cells (see [28] for a review).

NOS2 is mainly regulated at the expressional level
(Fig. 2). LPS, cytokines, and several other compounds
(mostly secreted by the innate immune system) are able to
induce NOS2 synthesis in many cell types (see [68] for a re-
view). Pathways involved in the NOS2 promoter activation
seem to vary in different cells. However, activation of the
transcription factors NF-κB and STAT-1α are believed as
essential steps for NOS2 transcription in most cells. Beside
transcriptional control NOS2 expression is intensively con-
trolled by post-transcriptional regulation of NOS2 mRNA
stability [68].

5.8 Transcriptional regulation of the NOS2 gene

Buzzo et al. demonstrated that NOS2 expres-
sion in murine peritoneal macrophages, induced by puri-
fied flagellin from Bacillus subtillis, involves caspase-1
mediated cleavage of the chromatin regulator Poly [ADP-
ribose] polymerase 1 (PARP1) to enhance the chromatin
accessibility of the NF-κB binding sites located in the
NOS2 promoter [69] (Fig. 2). In sharp contrast to murine

macrophages, LPS- and IFN-γ-treated human alveolar
macrophages express no NOS2 mRNA or protein. This un-
responsiveness is related to epigenetic gene silencing (chro-
matin compaction, CpG methylation and histone modifica-
tions) [70].

In macrophages from Leishmania amazonensis
patients binding of the inhibitory NF-κB p50/50 monomer
leads to a recruitment of histone deacetylase 1 (HDAC1)
to the human NOS2 promoter, preventing histone acetyl-
transferase (CBP/p300) binding to the NOS2 promoter and
further acetylation of H3K9 [71] (Fig. 2).

LPS/cytokine induced NOS2 expression in the
murine system depends on a promoter sequence with
around 1000 bp [72, 73]. In sharp contrast, the 1000 bp
human NOS2 promoter displays only basal activity not
induced by cytokine stimulation [74–76]. Only if much
longer DNA promoter fragments (up to 16 kb) are used
in transfection experiments (transient or stable) with hu-
man A549, AKN or DLD-1 cells, a clear promoter induc-
tion (8-10-fold) was detected (see [68] for a review). An-
alyzation of the 16 kb human NOS2 promoter sequence
with bioinformatic tools revealed a multitude of putative
transcription factor binding sites. However, only a few of
these binding sites have been shown to be functional im-
portant. The human 16 kb promoter contains a TATA-box
and binding sites for AP-1, CAR, C/EBPβ, EGFR-STAT3,
FKHRL1, HIF-1α, HMGA1, KLF6, NF-κB, NRF, Oct-1,
RAR/RXR, PXR, STAT-1α, Tcf-4, TCF11/MafG, and YY1
(all proven to be functional at least in transfection experi-
ments) [68, 77].

5.9 Post-transcriptional regulation of NOS2 expression

We and others have shown that the post-
transcriptional regulation of the mammalian (especially hu-
man) NOS2 expression is quite complex (Fig. 2). Trans-
lational efficacy and non-sense mediated mRNA decay
[78, 79] of the human NOS2 mRNA is regulated by a short
µORF located in exon 1 of the human NOS2 gene [80].
Several RNA-BP have been shown to bind to the 3’-UTR of
the humanNOS2mRNA and regulate mRNA-stability [81–
88]. In addition, different miRNAs (miR-26a, miR-146a
miR-939) directly bind to the humanNOS2mRNA and reg-
ulate its translatability and stability [8, 59, 89]. In murine
and rat cells natural antisense RNAs (NATs) are transcribed
from the 3’-UTR of the NOS2 gene, which stabilize NOS2
mRNA by interacting with the mRNA 3’-UTR [90]. No
such NATs were detected in the human system.

5.10 Post-translational regulation of NOS2 expression
and activity

Post-translational modification of NOS2 seem to
be important for NOS2 activity and intracellular local-
ization (Fig. 2). Palmitoylation of NOS2 at the amino
acid Cys-3 is essential for NO synthesis and intracel-
lular localization [91]. In muscle of septic patients,
tyrosine-nitration of NOS2 has been described, which re-
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Fig. 2. Regulation of (human) NOS2 expression and NOS2-mediated NO production. NOS2 is mainly regulated by modulation of NOS2 expres-
sion. NOS2 promoter activity is regulated by modulation of the accessibility of the chromatin (CpG-Methylation, histone acetylation) and binding of
transcription factors (NF-κB, STAT-1α). Also modulation of NOS2 mRNA stability is a major regulatory mechanism. RNA-BP (AUF1, HuR, KSRP,
PTB, TTP) bind to the NOS2 mRNA and regulate stability by interaction with the exosome. In rodents, modulation of NOS2 mRNA stability by inter-
action with anti-NOS2-asRNA has been described. NOS2 protein stability is regulated by interacting proteins (Cav1, src) and the proteasome. Finally,
enzyme activity of the NOS2 protein is modulated by interaction with several proteins (kalirin, NAP110, src, CaMKII, Rac2, hsp90). NOS2-mediated NO
production depends on arginine (Arg) supply. Therefore, proteins that also use arginine as substrate (arginase) may regulate NOS2 activity by substrate
competition. Membrane transporters important for arginine uptake into cells (cationic amino acid transporter, CAT) may have a role in the regulation of
NOS2-dependent NO production.

duces enzymatic activity [92]. Also, for the NOS2 pro-
tein several protein-protein-interactions have been pub-
lished that enhance or reduce the activity of the NOS2
enzyme (α-actinin-4, ezrin/radizin/moesin-binding phos-
phoprotein 50-EBP50, kinase suppressor of Ras-1-Ksr1-
adaptor-or scaffold-proteins; Hsp90, Rac2-allosteric acti-
vators; kalirin-dimerization inhibitor). Other protein inter-
actions lead to proteasomal degradation of the NOS2 pro-
tein (e.g., Rpn13/ARDM1/NAP110, UCH37) (see [8] for a
review).

6. Structure of the healthy vessel wall

Normal blood vessels are made of the tunica in-
tima, the tunica media and the adventitia surrounded by the
perivascular adipose tissue (PVAT) [93].

The tunica intima is composed of an EC mono-
layer attached to a basement membrane filled with extracel-
lular matrix. EC are exposed to shear stress resulting from
the blood flow [94]. Laminar shear stress up-regulates in
EC the expression of vasculoprotective transcription fac-
tors such as KLF2 and Nrf2, which orchestrated the anti-
inflammatory and antioxidant EC phenotype. However,
disturbed shear stress induces the pleiotropic transcription
factor NF-κB, leading to a pro-inflammatory and proathero-
genic EC phenotype. As natural barrier of the blood vessel
ECs prevent toxic molecules from penetration into the arte-
rial vessel wall and inhibit platelet- and leukocyte adhesion.
ECs are able to regulate the vascular tone by secretion of
vasoactive substances, such as endothelium-derived hyper-
polarizing factor (EDHF), NO, and prostaglandin I2 (PGI2),
which are vasodilators. EC-derivedNO is also regarded as a
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major anti-inflammatory factor in the vasculature [95]. On
the other hand, EC are able to secrete endothelium-derived
contracting factors (EDCFs) such as angiotensin II (Ang
II), endothelin 1 (ET-1), thromboxane A2 (TXA2), and uri-
dine adenosine tetra-phosphate (UP4A). Healthy EC pro-
mote the balance of pro- and anti-thrombotic mechanism by
releasing anti- or pro-thrombotic substances and also regu-
late VSMC proliferation [96].

The tunica media contains a layer of smooth mus-
cle cells (SMC), which secrete elastic and collagen fibers,
and pericytes. Mature SMCs contain a unique set of con-
tractile proteins (e.g., α-smooth muscle actin (αSMA) or
smooth muscle myosin heavy chain (SM-MHC)), ion chan-
nels, and specific signaling molecules that are required for
their contractile functions [97]. SMCs produce different
components of the extracellular matrix (ECMs), namely
cadherins, collagen, elastin, integrins, and proteoglycans
that build up a major portion of the blood vessel mass [98].

The adventitia consists of fibroblasts, mesenchy-
mal stem cells (MSCs), vasa vasorum, nerves and a small
number of immune cells in connective tissue [99].

In addition, most vessels (e.g., aorta and coro-
nary arteries) are embedded by perivascular adipose tissue
(PVAT), which is an active endocrine tissue affecting the
vasculature by secreting different mediators [100]. In addi-
tion, also cells of the immune system (like macrophages, T
cells), fibroblasts and capillary EC are found in the PVAT
[95, 101].

The above-described blood vessel structure is
mainly preserved throughout the body. However, the vas-
culature in the different parts of the human body has unique
functions depending on the needs of the different organs and
tissues. For instance, the resistance vessels (arteries and ar-
terioles), are in contact with shear stress resulting from the
high pressure [102]. Towards the veins, the blood pressure
and shear stress are stepwise reduced. Veins are exposed
to a nearly 70-fold less pressure than arteries. As a result
of this high pressure, arteries and arterioles possess a thick
media layer with copious SMCs that provide elastic sup-
port. In sharp contrast, capillaries display only an intima
layer covered with a basement membrane and are supported
by pericytes.

7. NOS isoforms expressed in the healthy
vasculature

The expression of the different isoforms of NOS1-
3 has been published for nearly all cell types of the healthy
vasculature.

NOS1 is expressed in vascular smooth muscle
cells [103, 104] and vascular endothelium [105, 106]. This
was shown by immunohistochemistry or western blot using
isoform-specific antibodies. Research, often done in NOS3
deficient mice, showed a physiologically relevant role of
NOS1 in modulating cardiac function [107], systemic arte-

rial pressure [108], myogenic tone [109], and cerebral blood
flow [110]. Also, inactivation of the NOS1 gene resulted
in reduced acetylcholine-induced vasodilation [111] in the
mouse aorta. There are clear data that NOS1-generated
H2O2 [112] has an important impact on the regulation of
the vascular tone.

By immunohistochemistry NOS2 protein expres-
sion has been described in normal aortas in the surrounding
adventitia. NOS2 protein was detected also in neutrophils
and monocytes enclosed in thrombi surrounding these ves-
sels [113].

NOS3 expression in the vasculature has been
shown for the EC (see [31] for a review) and the PVAT
[114–116] by immunohistochemistry and western blot. Al-
though NOS3 is mainly believed to be a constitutively ex-
pressed gene there are several reports showing induction of
NOS3 expression. NOS3 expression has been described to
be upregulated by fluid shear stress [117] and cyclic stretch
[118] in cultured EC (see Fig. 1). This has been also ob-
served in animals after exercise [119, 120].

In normal vessel NO synthesized by NOS3 is be-
lieved to be a major regulator of vascular tone and to be
the most important anti-inflammatory mediator in the ves-
sel (see Fig. 1).

By post-translational acylation NOS3 is localized
to biological membranes such as the Golgi apparatus or
plasmalemma caveolae. This subcellular localization per-
mits optimal regulation by shear stress, calcium ions and
kinases. Therefore, agonists enhancing intracellular cal-
cium concentrations (e.g., bradykinin, histamine, VEGF),
or modulating pathways leading to increased CaM binding
or reduced CaM dissociation are able to activate NOS3-
dependent NO release [121].

8. Innate immunity

In higher vertebrates the immune system is made
up by two components: the non-specific innate immunity
and the adaptive immunity, which is highly specific. As
first level of reaction against anything foreign, the innate
immune system have evolved conserved strategies to de-
fend the body against a pathogen. These defense mech-
anisms comprise a magnitude of structures and media-
tors like the skin barrier, saliva, tears, various cytokines,
complement proteins, lysozyme, bacterial flora, and nu-
merous cells including neutrophils, basophils, eosinophils,
monocytes, macrophages, reticuloendothelial system, natu-
ral killer cells (NK cells), epithelial cells, endothelial cells,
red blood cells, and platelets.

The adaptive immune system (B- and T lympho-
cytes and their products) depends on antigen receptors,
which are somatically generated and clonally selected. In
contrast, the innate immune system senses pathogens by
highly conserved, relatively invariant structural motifs. The
“danger theory” published by Polly Matzinger in 1994
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[122] described that the innate immune system responds
to endogenous or exogenous “danger signals”. Pathogen-
associated molecular patterns (PAMPs) are exogenous dan-
ger signals and consist of highly conserved motifs in mi-
crobial organisms. Endogenous danger signals, also named
danger-associated molecular patterns (DAMPs), are pro-
teins, cytokines, chemokines, and other molecules from
distressed and injured cells. PAMPs and DAMPs stimu-
late innate immune cells by binding to pattern recognition
receptors (PRRs), which then activate signaling pathways
(e.g. MAPK-pathways), which result in the activation of
transcription factors, like AP1, CREB, c/EBP, IRFs, NF-
κB, and STATs, or RNA-BPs, involved in the regulation
of mRNA-stability and translatability like HuR, and modu-
late ncRNA expression (miRNAs and lncRNAs) to initiate
a wide array of responses against cell damage [123–128].
Aberrant activation of innate immune signaling cascades
can lead to a failure to regulate inflammatory events, result-
ing in considerable damage to host tissues and is involved
in the pathophysiology of cardiometabolic diseases [129].

Innate immune cells (phagocytes) use NOS2-
generated NO and NADPH Oxidase 2 (NOX2)-generated
superoxide to kill invading microorganisms. A patient with
genetic deficiency of NOS2 died by a fatal cytomegalovirus
infection [130], demonstrating the importance of NOS2
for anti-viral innate immune processes. NOS2 expres-
sion in innate immune cells resulted in the modulation
of cell-intrinsic capabilities and phenotypes, and regula-
tory effects on neighboring (immune) cells. For exam-
ple, NOS2-generated NO modulates different important
immune-relevantmechanisms like antigen presentation, cy-
tokine production, expression of MHC class II and costim-
ulatory molecules, phagocytosis, and survival as well as
apoptosis of myeloid cells [8].

Beside classic innate immune cells (monocytes,
macrophages, neutrophils, dendritic cells, and natural killer
cells) other non-immune cells like cardiomyocytes, en-
dothelial cells, and fibroblasts express these receptors and
can actively contribute to immune response via PRR signal-
ing [131, 132].

ECs can exert some innate immune functions
that macrophages can also perform, for example cy-
tokine secretion, phagocytic function, antigen presenta-
tion, pro-inflammatory immune-enhancing as well as anti-
inflammatory and immunosuppressive actions. Therefore,
Shao et al. have introduced ECs as multifunctional innate
immune cells [133].

9. Vascular inflammation

Vascular inflammation can be induced by a multi-
tude of stimuli. In microbial infections, the increased con-
centrations of pro-inflammatory cytokines and chemokines
result in vascular inflammation. Also, alterations in blood
flow and shear stress, hypoxia, metabolic dysregulation like

increase of the low-density lipoprotein (LDL)-, fatty acid-
or blood glucose-concentration as well as cardiovascular
diseases like hypertension induce (and often result from)
vascular inflammation [134–139]. As in infections also in
cardiometabolic diseases the important involvement of sev-
eral cytokines, chemokines and adipokines (including IL-
6, IL-1β, TNF-α, MCP1, and leptin) in the pathophysio-
logic process has been described [140]. In vascular inflam-
mation circulating leukocytes (monocytes/macrophages as
well as neutrophils, cells of the innate immune system) are
allured to the site of injury and transmigrate into the intima.
Their task is to clear the tissue from the source of inflam-
mation and dead cells and ultimately resolve the inflam-
mation. However, if the inflammation cannot be stopped
and develops into a chronic state, this leads to pathologic
situations through the development of vascular diseases
like atherosclerosis. In these processes, enhanced gener-
ation of reactive oxygen/nitrogen species (ROS/RNS) by
innate immune cells is central to the pathological mecha-
nisms [139]. Since blood vessels play an important role in
the maintenance of homeostasis, the dysregulation of vas-
cular function in inflammation is central to numerous dis-
orders such as atherosclerosis [134] and related complica-
tions (ischemia, myocardial infarction, stroke, and throm-
bosis [141]), as well as age-related cognitive decline [142],
cancer [143], and neurodegeneration [144].

10. The intima in atherosclerosis and
vascular inflammation

Endothelial dysfunction (ED) is the most impor-
tant step in the development of atherosclerosis. Cardiovas-
cular risk factors, such as aging, diabetes mellitus, hyper-
lipidemia, hypertension, obesity, and smoking induce en-
dothelial cell damage, resulting in ED [145]. In contrast to
the healthy situation, dysfunctional EC accelerate the gen-
eration of ROS and potentiate vascular inflammation [146].
The defect of the endothelium causes a disturbance of the
balance between vasoconstriction and vasodilation. The
increased EDCFs (especially ET-1) and reduced EDRFs
(mainly NO) initiate pathophysiologic changes that stim-
ulate or fortify atherosclerosis, like increased vascular per-
meability to lipoproteins and enhanced leukocyte adhesion,
platelet aggregation, and generation of cytokines [147]. In
addition, the enhanced concentrations of pro-inflammatory
cytokines, (TNF-α, IL-1β, and IL-6), result in the endothe-
lial expression of adhesion molecules (VCAM, ICAM), as
well as MCP-1 and other chemokines, transforming it to an
“inflamed endothelium”. This also leads to enhanced ad-
herence and migration of monocytes [148–151]. After im-
migration into the intima the monocytes develop to tissue
macrophages with enhanced expression of scavenger recep-
tor (SR) and increased internalization of (ROS)-modified
lipoproteins [152]. In the end these cells become foam
cells (FCs), a highlight of an early atherosclerotic lesion
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[153]. Atherosclerotic plaque rupture leads to an imbalance
of thrombotic and anti-thrombotic substances. Here, EC-
dysfunction leads to an increase of thrombotic substances
(vWF, TXA2) and to reduced concentrations of antithrom-
botic substances. These effects result in thrombosis, caus-
ing devastating consequences [154].

11. The media in atherosclerosis and vascular
inflammation

In the inflamed vessels SMCs have been shown to
be crucially involved in the pathophysiological process of
atherosclerosis [155]. In this process, SMCs migrate to the
intima, proliferate, synthesize extracellular matrix (ECM)
and deposit lipids. This facilitates arterial wall fibrosis
and thickening and leads to luminal stenosis. Normally,
SMC proliferation is inhibited by NO (and other factors)
but, as described above, NO concentration decline in the
inflamed vessel. Some of the ECMs released by SMCs con-
tribute to stabilization of the fibrous cap of the atheroscle-
rotic plaque and thereby help to protect against plaque rup-
ture and thrombosis [156]. Several cytokines are produced
by SMC (PDGF, TGF-β1, MIF, IFN-γ and MCP-1) which
are involved in the inflammatory response to lipids [157].

12. The adventitia in atherosclerosis and
vascular inflammation

Several data show that the adventitia displays
an important role in the pathogenesis of atherosclerosis.
Mainly activated by TGF-β1, fibroblasts in the adventi-
tia could differentiate into myofibroblasts [158], result-
ing in increased expression of inflammatory cytokines and
growth factors [159, 160]. In addition, the NAPDH oxidase
(NOX)-generated ROS in adventitial fibroblasts has been
described as sensors and messengers for the development
of vascular diseases [161].

Also, lymphocytes (T and B cells) accumulate in
the adventitia, the major site of inflammation in the arterial
wall. These processes are related to lymphocyte infiltra-
tion in atherosclerotic arteries [162]. T helper 1 (Th1) cells,
secreting proinflammatory cytokines such as IL-2, TNF-
α, and IFN-γ, are believed to be proatherogenic cells. In
contrast, by releasing anti-inflammatory cytokines (e.g., IL-
4, IL-5, IL-9, IL-10, and IL-13) regulatory T (Treg) cells
are atheroprotective. Th2 cells are mainly proatherogenic
whereas Th17 cells are predominantly atheroprotective. Al-
though the exact mechanisms are unclear, natural killer T
(NKT) cells are regarded as proatherogenic cells. B-1 cells,
commonly found in peripheral sites and not in spleen or
lymphnodes, are involved in antibody response during an
infection or vaccination. They exert anti-atherogenic activ-
ities via secreting IgM, inhibiting the formation of FCs. B-2
cells (also named as common B cells) stimulate Th1 cells

and dendritic cells (DCs) to play a proatherogenic role. By
secreting GM-CSF (acts on DCs), innate responsive activa-
tor (IRA) play proatherogenic roles [163].

13. The PVAT in atherosclerosis and vascular
inflammation

PVAT acts as modulator of the vessel function by
releasing adipokines, such as leptin, adiponectin, visfatin,
resistin, and cytokines/chemokines, such as TNF-α, IL-6,
IL-8, MCP-1, and other factors like plasminogen activator
inhibitor 1 (PAI-1). Altogether, these factors contribute to
SMCmigration and proliferation [164], enhance neointimal
formation and hyperplasia [165, 166], stimulate inflamma-
tion responses and oxidative stress [167], and regulate vas-
cular tone [168]. All these factors exert important roles in
atherosclerosis.

PVAT plays an essential role in the inflamma-
tory response to atherosclerosis. For example, analyzing
the EC-dependent, NO-mediated vasodilator response to
acetylcholine in aortas isolated from high-fat diet treated
male C57BL/6J mice, Xia et al. described normal va-
sodilation in PVAT-free samples. In sharp contrast, a de-
cent reduction in the acetylcholine-induced vasodilator re-
sponse was observed in aortas from obese mice with in-
tact PVAT. By immunohistochemistry, the authors demon-
strate that adipocytes in PVAT express NOS3. High-fat diet
did not change NOS3 expression but resulted in reduced
NO production due to NOS3-uncoupling. This was related
to arginase induction and l-arginine deficiency observed in
PVAT [169]. In addition, locally elevated levels of leptin in
the PVAT seems to promote neointimal formation [166]. Fi-
nally, endovascular injury-induced neointimal formation is
associated with a rapid phenotypic modification of PVAT
with proinflammatory adipocytokines being upregulated,
and adiponectin downregulated. TNF-α has been shown
to play a central role in these changes in the PVAT [165].

14. Changes in NOS expression and activity
in atherosclerosis and vascular inflammation

As stated above, in vascular cells expression of all
NOS isoforms (1-3) is regulated by a number of different
stimuli (e.g., cytokines, ROS, miRNAs). The mode of reg-
ulation is complex and comprises multiple epigenetic, tran-
scriptional, post-transcriptional post-translational mecha-
nisms as well as protein-protein-interactions.

14.1 Changes in NOS1 expression/activity

Both in early and advanced human atheroscle-
rotic lesions NOS1 expression is up-regulated in ECs,
macrophages and in the neointima [113]. As demonstrated
in NOS1 knockout mice the inactivation of the NOS1 gene
results in a worsening of neointimal formation and con-
strictive vascular remodeling [170]. In line with that,
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NOS1/apoE double knockout mice, compared to apoE-ko
animals, displayed an accelerated atherosclerotic vascu-
lar lesion formation [171]. These data imply that NOS1
may also suppress atherosclerotic vascular lesion formation
[172]. The upregulation of NOS1 expression is likely to
have a compensatory role in case of reduced NOS3 expres-
sion/activity, as present in inflammation and atherosclero-
sis, to maintain vascular homeostasis. In addition, there
are reports using immunohistochemically methods or west-
ern blot showing enhanced vascular NOS1 expression af-
ter stimulation with inflammatory/proliferative stimuli (an-
giotensin II, interleukin-1β, and platelet-derived growth
factor), hypoxia, hypertensive situation, and statin treat-
ment [103, 173–176].

14.2 Changes in NOS2 expression/activity

In human atherosclerotic plaques, NOS2 expres-
sion was detected. Immunostaining and in situ hybridiza-
tion localized NOS2 to (CD68-positive) macrophages, FC
and VSMC [177]. In contrast to murine endothelial cells,
cytokine incubation do not induce NOS2 expression in hu-
man endothelial cells (HUVEC). Dreger et al. indicated at
least a partial role of the histonemethyltransferase enhancer
of zeste homolog 2 (Ezh2), which mediates trimethylation
of histone 3 at lysine 27-H3K27me3, in the epigenetic sup-
pression of NOS2 expression in human endothelial cells
[178]. In septic patients high expression NOS2 is described
in many organs or tissues, which results in an enhanced
NO formation that are important for hypotension, vascular
hyporeactivity to vasoconstrictors, organ injury, and organ
dysfunction [179]. The marked hypotension in septic shock
patients is attributed to the strong induction of NOS2 in the
vessels as shown in different animal studies [180]. It seems
that the major part of this enhancement could be attributed
to enhanced NOS2 expression in VSMC [181].

14.3 Changes in NOS3 expression/activity

Regulation of NOS3 expression by treatment of
EC with pro-inflammatory mediators activating the innate
immune system or cytokines (like TNF-α) produced by
these cells has been reported. In addition, hypoxia regu-
lates NOS3 expression both on the transcriptional as well
as on the post-transcriptional level.

TNF-α reduces human NOS3 promoter activity
in pulmonarymicrovessel endothelial monolayers (PMEM)
[182]. This decrease was related to TNF-α-induced mod-
ulation of the binding activity of the transcription factors
GATA-4 and Sp3 to the promoter sequence.

Activators of the innate immune system like oxi-
dized LDL (ox-LDL) [183] and LPS [184] as well as cy-
tokines produced by innate immune cells like TNF-α [54–
59, 117] as well as hypoxia [185, 186] have been described
to regulate NOS3 mRNA levels post-transcriptionally. An-
alyzing the factors involved in the TNF-α-mediated reduc-
tion of NOS3 mRNA, the RNA-BPs translation elonga-

tion factor 1-alpha 1 (eEF1A1) and polypyrimidine tract-
binding protein 1 (PTB1) were found to interact with the
3’-UTR of the NOS3 mRNA and thereby destabilizing the
mRNA [56–58]. In addition to RNA-BPs, also miRNAs
have been shown to be involved in the TNF-α-mediated re-
duction of NOS3 mRNA expression. In HUVEC, TNF-α
increased the expression of miR-155, an important regula-
tor of the innate immune system [187], which directly binds
to the 3’-UTR of the NOS3mRNA and destabilize it. In ad-
dition, in human internal mammary artery rings adenoviral
overexpression of miR-155 decreased both NOS3 expres-
sion and acetylcholine-induced endothelium-dependent va-
sodilation [60]. As shown by Lee et al. NF-κB is im-
portant for the TNF-α-mediated upregulation of miR-155
expression and the post-transcriptional downregulation of
NOS3 mRNA expression [61]. Kim et al. reported that the
NF-κB-regulated miR-31-5p is up-regulated in sera from
patients with pre-eclampsia and in HUVECs treated with
TNF-α. miR-31-5p downregulated human NOS3 mRNA
expression by post-transcriptional destabilization [59].

Hypoxia regulates NOS3 expression both tran-
scriptionally and post-transcriptionally [185]. Analyzing
the effects of hypoxia on the NOS3 expression in human
EC (HUVEC and HMEC cells) Coulet et al. described
hypoxia-induced NOS3 mRNA expression. In transfection
experiments a hypoxia regulated element (HRE) was iden-
tified (located at position -5382/-5356) in the human NOS3
promoter. Binding of the transcription factors HIF-1α/1β
and 2 to this element was shown by supershift experiments
[188]. Hypoxia is known to induce endothelial dysfunction
(ED), in part, by reduction of NOS3 in ECs. Fish et al.
showed that hypoxia reduced NOS3 transcription with par-
allel decreased histone acetylation and H3 lysine 4 methy-
lation on NOS3 proximal promoter histones. In addition,
the authors demonstrate that histones are quickly removed
from the proximal promoter NOS3 in hypoxia. Longer du-
ration of hypoxia leads to reincorporation of histone, lack-
ing substantial histone acetylation. After reoxygenation of
the ECs the chromatin remodeler BRG1 is involved in the
reactivation of NOS3 expression [186]. Hypoxia-mediated
downregulation of NOS3 mRNA and protein expression
enhances the expression of a natural antisense transcript
(NAT) ncRNA sONE, also known as NOS3AS or APG9L2,
in HUVEC or rat aorta. sONE displays antisense homology
to the 3’-UTR and part of the coding sequence of the NOS3
mRNA. Downregulation of sONE by siRNAs diminished
hypoxia-induced reduction of NOS3 expression indicating
NOS3 expressional regulation by sONE [189]. Hypoxia up-
regulates the expression of miR-134 in rat cardiomyoblast
H9c2 cells. As miR-134 directly targets NOS3 mRNA and
reduce NOS3 protein expression this post-transcriptional
mechanisms seem to be part of the hypoxia related down-
regulation of NOS3 expression [190].

Cardiovascular diseases often are related to en-
hanced synthesis of reactive oxygen/nitrogen species (su-
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Fig. 3. PVAT-, EC- and immune cell-derived NO regulates vascular tone. Adiponectin stimulates NO production from PVAT and from endothelial
cells (EC). By stimulating the leptin receptor (LepR) Leptin induces EC-dependent vasodilatation. The Leptin/LepR interaction results in NOS3 activation
via the AMP-activated protein kinase (AMPK) and Akt pathway. PVAT- and EC-synthezised NO induce vasodilatation by activating soluble guanylate
cyclase (sGC), leading to the synthesis of cyclic guanosine monophosphate (cGMP). NO from PVAT and EC can also induce/potentiate vascular smooth
muscle cell (VSMC) hyperpolarization through KCa channels. Pro-inflammatory mediators, like LPS and TNF-α, can induce NOS2 expression in innate
immune cells and thereby lead to the synthesis of high amounts of NO resulting in strong vasodilation. NOS1 expression has been detected in EC and
VSCM and contribute to NO-mediated vasodilation. Modified from [116], an open access article under the terms of the Creative Commons Attribution-
NonCommercial License.

peroxide, hydrogen peroxide) as well as peroxynitrite or
hypochlorous acid. In addition, the detoxification of theses
reactive molecules by lowmolecular weight antioxidants or
ROS degrading enzymes is often reduced [139, 191–194].
As shown in several animal models and also in humans, the
pathophysiology of vascular inflammation and ED depends
on enhanced expression/activity of superoxide generating
NOX enzymes resulting in enhanced production of ROS
[193]. This excessive superoxide has been shown to react
with NO to peroxynitrite and which in turn by oxidation of
the essential NOS cofactor BH4 leads to NOS3 uncoupling
converting it into a superoxide-producing enzyme. Beside
cellular and animal studies, NOS3 uncoupling in ED has
also shown in patients with hypercholesterolemia [195], di-
abetes mellitus [196], or essential hypertension [197].

EC express arginase II and its expression can be
enhanced by different factors leading to ED. As NOS3 and
arginase II compete for the substrate l-arginine the enhanced
arginase II expression/activity also contributes to vascular

dysfunction [193].
The endogenous NOS inhibitor asymmetric

dimethyl-L-arginine (ADMA) is synthesized by the en-
zyme arginine N-methyltransferase (PRMT) and degraded
by the enzyme dimethylarginine dimethylaminohydrolase
(DDAH). Both enzymes are redox-sensitive, and ROS
have been shown to upregulate PRMT- and downregulate
DDAH activity. As a result, ROS-induced ADMA-
levels may reduce NOS3-mediated NO synthesis or even
uncouple the enzyme [193].

As described above, in healthy situations there
are post-translational regulatory mechanisms of NOS3 ac-
tivity and localization, such as modulation by interact-
ing proteins like calcium/calmodulin, caveolin, HSP90 as
well as protein modifications like phosphorylation, palmi-
toylation, and myristoylation. Different kinases (like
PKB/Akt, AMPK) perform the stimulating phosphorylation
at Ser1177. In the inflamed vessel dysregulation of NOS3
activity is related to the synthesis of redox-active species
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that initiate inhibitory phosphorylation by redox-active ki-
nases at Thr495/Tyr657 (e.g., PKC and PYK-2), disruption
of the zinc-sulfur-complex needed to stabilize the NOS3
dimer, S-glutathionylation, oxidative BH4 depletion, and
ADMA depletion (enhanced activity of PRMT and reduced
activity of DDAH) (reviewed in [26, 139, 194, 198]).

In summary, NOS1 and NOS3 are vasoprotective
(see Fig. 3) whereas NOS2 has detrimental effects in the
vasculature. During sepsis, NOS2 induction represents a
major cause of hypotension (see Fig. 3). In addition, NO
produced by NOS2 in inflammatory cells contributes to
atherogenesis. In contrast, NOS3-derivedNO is diminished
during atherosclerosis. The reduced level of endothelial NO
is mainly attributable to NOS3 uncoupling, reduced NOS3
enzymatic activity and enhanced NO inactivation by super-
oxide.
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