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1. ABSTRACT 

Some organophosphorus compounds 

(OPs), which are used in the manufacturing of 

insecticides and nerve agents, are racemic mixtures 

with at least one chiral center with a phosphorus 

atom. Acute exposure of humans to these mixtures 

induces the covalent modification of 

acetylcholinesterase (AChE) and neuropathy target 

esterase (NTE) and causes a cholinergic syndrome 

or organophosphate-induced delayed polyne-

uropathy syndrome (OPIDP). These irreversible 

neurological effects are due to the stereoselective 

interaction of the racemic OPs with these B-

esterases (AChE and NTE) and such interactions 

have been studied in vivo, ex vivo and in vitro, using 

stereoselective hydrolysis by A-esterases or 

phosphotriesterases (PTEs) and the PTE from 

Pseudomonas diminuta, and paraoxonase-1 (PON1) 

from mammalian serum. PON1 has a limited 

hydrolytic potential of the racemic OPs, while the 

bacterial PTE exhibits a significant catalytic activity 

on the less toxic isomers P(+) of the nerve agents. 

Avian serum albumin also shows a hydrolyzing 
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capacity of chiral OPs with oxo and thio forms. There 

are ongoing environmental and bioremediation 

efforts to design and produce recombinants as bio-

scavengers of OPs. 

2. INTRODUCTION 

2.1. Organophosphorus compounds (OPs) 

and their toxicity 

OPs are amide esters or thiol derivatives of 

phosphoric acid or phosphorothioic acid; they have 

been synthesized since 1940. OPs have become the 

most used insecticides around the world because of 

their great ability to inhibit B-esterases (1, 2). The 

acute toxic effect of OPs on biological systems 

occurs through acetylcholinesterase (AChE) 

inhibition. Therefore, this cholinergic syndrome is 

caused by the acetylcholine accumulation in the 

peripheral synapsis (neuromuscular) and central 

synapsis (neuron-neuron) that primarily induce 

salivation, lacrimation, gastrointestinal stimulation, 

trembling, and convulsions. Abdominal respiratory 

paralysis is the main cause of human deaths caused 

by intoxication with these compounds. The 

cholinergic syndrome caused by OPs appears 

clinically during the first 72 h of the intoxication (3–5). 

In some cases of acute intoxication by OP racemic 

insecticides, such as phosphates, phosphonates, 

and phosphoramidates, irreversible and delayed 

symptoms with signs of ataxia appear between the 

second and third week after the exposure. This 

neurodegenerative syndrome is known as 

organophosphate-induced delayed polyneuropathy 

(OPIDP) (6, 7) and correlates with the inhibition and 

aging of the so-called neuropathy target esterase 

(NTE) of the central nervous system (8). 

2.2. Metabolism and treatment of OP 

intoxication 

The morbidity and mortality that occur in 

humans due to OP intoxication due to agricultural 

activities and the continuous threat of the use of 

nerve agents in wars have encouraged the search for 

enzymatic systems that can hydrolyze these 

compounds. This action would neutralize adverse 

effects to the human population. The current 

pharmacological treatment for cholinergic syndrome 

consists of the administration of atropine (an ACh 

muscarinic antagonist) and oximes (reactivation of 

AChE), which have been ineffective in most of the 

severe acute intoxication cases (9–11). There is no 

drug of choice to OPIDP. Consequently, treatment 

involves the application of biomolecules that interact 

with OPs to protect human life. Therefore, the 

administration of human serum butyrylcholinesterase 

(HuBuChE) has been suggested. This B-esterase 

may represent a promising scavenger biomolecule 

for OP intoxication (12). However, its main limitation 

is its stoichiometry: A large quantity of the enzyme is 

required to achieve protection from OP intoxication in 

vivo. Some proposed second-generation bio-

scavengers include A-esterases or 

phosphotriesterases (PTEs), such as bacterial PTEs, 

and, mainly, mammalian serum paraoxonase-1 

(PON1). Notably, variant recombinant PON1s have 

increased the enzyme’s specificity for more toxic OPs 

insecticides (13-15). These recombinant proteins 

could be a therapeutic alternative in the intoxication 

by racemic mixtures of these compounds. 

2.3. Chiral OPs 

Some OP pesticides have been 

commercialized as active ingredients in insecticides; 

the chemical structures have at least one chiral 

center in the pentavalent phosphorus atom 

(Figure 1). The biological activity of these racemic 

compounds is the result of the detoxification of one 

enantiomer. The other enantiomers can have 

adverse effects due to their interaction with target 

biomolecules (16–21). Johnson and coworkers (22) 

examined the stereoselectivity of cholinergic and 

delayed neurotoxicity with racemic OP mixtures. 

They evidenced stereoselective neurotoxicity of O-

ethyl O-4-nitrophenyl phenylphosphonothioate 

(EPN) and methamidophos insecticides. Other 

commercial insecticides, such as ruelene, 

trichoronate, and fenamiphos, require biochemical 

studies with regard to their stereoselective interaction 

with B-esterases. Given that these insecticides 

represent an environmental risk for intoxication (19, 

20, 23, 24), their differential toxicity among biological 

species and individuals may be due to the 

stereoselective hydrolysis of these racemic mixtures 

by A-esterases (16). The limited scientific information 

about stereoselective OP hydrolysis may be 
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attributed to the reduced number of chiral separation 

methods and the lack of OP enantiomer standards. 

The separation and collection of enantiomers of 

some commercial chiral OPs with chiral liquid 

chromatography have allowed stereoselective 

toxicological evaluation (25–37). The enantiomer (–)-

trichloronate is 8–11 times more toxic than (+)-

trichloronate, and it contributed 68% and 72% of the 

harmful activity against the microorga-

nisms Ceriodaphnia dubia and Daphnia magna, 

respectively. Profenophos and fonofos showed 

stereoselective toxicity for (–) enantiomers in C. 

dubia (92–94%) and D. magna (87–94%). However, 

the stereoselective toxicity of the chiral OPs is not 

exclusive to the (–) isomers, because the (+) 

enantiomers of fenamiphos and leptophos were 2.0–

3.8 times more toxic to D. magna than the (–) isomers 

(38, 39). This selective poisonous effect for the (+) 

enantiomers has been observed for 

phosphoramidates such as methamidophos and 

acephate, which show 97% effectiveness against 

domestic flies versus their racemic mixtures (40).  

3. STEREOSELECTIVE HYDROLYSIS 

3.1. Stereoselective hydrolysis determines 

the toxicity of chiral compounds 

Stereoselective hydrolysis of racemic OPs 

is defined as the preferential hydrolysis of one 

stereoisomer over the other (41). The enantiomers of 

chiral OPs induce different toxic effects: 

Stereoselective hydrolysis is one of the biological 

factors that determines their toxicity. The adverse 

impact corresponds to the isomer that withstands in 

vivo hydrolysis by A-esterases or PTEs. The toxic 

relevance of degradation has been demonstrated for 

EPN (42), methamidophos (43, 44), and 

methamidophos analogs, specifically the S-methyl 

series and dichlorophenyl phosphoramidates (45–

48). PTEs that hydrolyze chiral OPs have been 

identified in invertebrates, mammals, and—mainly—

bacteria (49–57). PTEs are divalent metallic cation–

dependent hydrolases (53, 58–60). The structure of 

these metalloproteins shows binding sites for 

hydrophobic OPs due to a three-pocket conformation 

that binds the leaving group and the other two 

substituent groups of the molecule to position the 

phosphorous center and perform the catalysis (58, 

61–66). The crystalline structures of several bacterial 

PTE have been obtaining, and their catalytic 

capacities have been associated with structural 

folding, like TIM barrel, "pita-bread," β-lactamase, 

and β-propeller (61, 62, 67, 68). Paraoxon is 

considered to be a good substrate for PTEs, due to 

the catalytic efficiency: Kcat 104 s-1 and Kcat/Km of 

approximately 108 M-1 s-1 in the usual laboratory in 

vitro assay (59). However, PTEs can be considered 

nonspecific for OPs (69–76). In particular, bacterial 

PTEs are efficient enzymes for substrates with 

phenolic (77), thiol, and halogenide electron 

acceptors (72, 77). This broad substrate affinity for 

 
 

Figure 1. Three-dimensional representation of the docked complex of chiral structure of organophosphorus pesticides; *denotes chiral center.  
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these esterases is explained by the nonspecific 

nature of the substrate-binding site: There are three 

ester groups of the substrate interact with the three 

pockets hydrophobic site in the enzyme surface (78). 

The stereoselectivity of the wild-type PTE 

from Pseudomonas diminuta for chiral organic 

phosphates depends on the substituent bound to the 

central phosphorous atom (63, 71). Researchers 

confirmed the substrate specificity of this PTE with a 

library of 16 paraoxon analog compounds; the 

authors concluded that combinations of methyl, ethyl, 

isopropyl, and phenyl groups as structural 

substituents X and Y were substrates for this PTE, 

with values from 18000 s-1 for dimethyl p-nitrophenyl 

phosphate to 220 s-1 for diisopropyl p-nitrophenyl 

phosphate (79). The enzyme hydrolyzed the SP-

enantiomer, preferably in the racemic mixtures of 

chiral OPs (80, 81). The stereoselectivity activity was 

evident for methyl isopropyl p-nitrophenyl phosphate; 

the hydrolysis of the SP enantiomer was 100 times 

higher than its corresponding RP enantiomer (79). 

The efficient hydrolysis of the EPN (81), acephate, 

and methamidophos insecticides (73), as well as 

other racemic mixtures of phosphate, phosphonate, 

and phosphinate esters, constitute examples of the 

stereoselective hydrolysis of PTEs. In some cases, 

this stereoselectivity is around five orders of 

magnitude higher compared with non-

stereoselectivity (Table 1) (71).  

Site-directed mutagenesis has allowed 

modification of the rate of catalytic hydrolysis, 

increasing or decreasing it, as well as the 

transformation of the PTE stereoselectivity of P. 

diminuta for OPs. Glycine (Gly) residues of the 

substrate hydrophobic union site to PTE play a 

crucial role in providing the stereoselectivity to these 

chiral compounds (82). The mutant protein G60A of 

PTE showed a 100-fold reduction in its Kcat/Km 

value for the RP enantiomer of methyl phenyl p-

nitrophenyl phosphate. Consequently, the ratio of 

stereoselective hydrolysis increased 13000 times in 

favor of this enantiomer versus wild-type PTE (63, 79, 

83). This same recombinant PTE protein rose from 

1–3 orders of magnitude the stereoselectivity for 

other chiral phosphoric esters (71). Furthermore, 

mutant PTE I106G/F132G/H257Y reversed the 

stereoselectivity, because the RP enantiomer of 4-

acetyl phenyl methyl phenyl phosphate was 

hydrolyzed preferably (with a factor of 9.7 x 102). By 

contrast, the wild-type protein and mutant PTE G60A 

preferentially hydrolyzed the SP enantiomer (1.2 x 

102 and 3.7 x 105, respectively) (71). 

3.2. Hydrolysis of nerve agents by PTEs 

The most neurotoxic racemic OPs have 

been synthesized for use as agents of war; among 

the best known are sarin, soman, and VR (Figure 2). 

The adverse effects of these nerve agents depends 

on the stereochemistry in the phosphorous center 

(84). All contain a chiral center at the phosphorus 

atom, and some present a second chiral center in one 

carbon atom, such as soman. Bacterial PTEs 

hydrolyze most of the nerve agents in a 

stereoselective manner in favor of the RP isomers 

(85), which are less toxic for mammals. The 

detoxifying property of bacterial PTE on these 

warfare agents has been of great interest in medical 

toxicology and biotechnology for environmental 

bioremediation. Hoskin and coworkers (86) identified 

three enzymes in Escherichia coli that can hydrolyze 

soman, but only one of them showed 

stereoselectivity. The racemic mixture of soman was 

hydrolyzed with two-phase kinetic behavior: a fast 

initial phase and a subsequent slow phase, which 

approximates the observed non-enzymatic 

detoxification rate for soman. Hill and coworkers (87) 

demonstrated that organophosphorus acid 

anhydrolase (OPAA) from Alteromonas sp. 

hydrolyzed the isomer RPSC 7000 times more than 

the isomer SPSC from the soman analogs. The P(+) 

isomers of p-nitrophenyl sarin analogs were 

hydrolyzing by OPAA (2–4 fold) faster than bacterial 

wild-type PTE from P. diminuta, for chiral analogs of 

sarin and soman. the RP enantiomer of one sarin 

analog (Kcat = 2,600 s-1) had a higher affinity 

compared with its corresponding SP enantiomer 

(Kcat = 290 s-1). This stereoselectivity hydrolysis was 

reversed with the PTE mutant I106A/F132A/H254Y, 

with markedly reduced Kcat values: 410 s-1 for the RP 

enantiomer (6 fold smaller) and 4200 s-1 for the SP 

enantiomer (14 times greater) (88). Other similar 

enzymatic reactions were obtained for the hydrolysis 

of other chiral OPs with a thiolate leaving group. The 

comparison of the rates between soman and sarin 

analogs demonstrated that the pinacol substituent 

has less affinity than the isopropyl group in the active 
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site of the PTE enzyme wild-type of P. diminuta, 

because the sarin RP isomer is hydrolyzed faster (by 

two orders of magnitude) than the soman RPRC 

isomer (Table 1). 

Harvey and coworkers (89) confirmed the 

stereoselective hydrolysis property of PTEs from P. 

diminuta and Alteromonas sp., as well as OPAA 

from Alteromonas haloplanktis. Specifically, those 

wild-type proteins showed a hydrolysis ratio of 21.5, 

12 and 24, respectively, in favor of the (+) isomer of 

cyclosarin. The H254G/H259W/L303T mutant 

reversed the stereospecificity of the native PTEs 

because it preferentially catalyzed the hydrolysis of 

Table 1. Hydrolysis of chiral OPs insecticides and nervous agent by PTEs 

 Chiral OP compound  Bacterial phosphotriesterase Stereoselectivity (Fold) References 

Acephate   PTE from E. coli (wild-type)  SP > RP   (100) 73 

Methamidophos  PTE from E. coli (wild-type) SP > RP   (100) 73 

EPN  PTE from P. diminuta (wild-type) SP > RP  81 

Paraoxon analogue PTE from P. diminuta (wild-type) SP > RP (100)  79 

Sarin analogue PTE from P. diminuta (wild-type) Rp > Sp (9) 88 

Sarin analogue PTE from P. diminuta 

(I106A/F132A/H254Y mutant) 

SP > RP (10) 88 

Sarin analogue PTE from P. diminuta (G60A mutant) Rp > Sp (50) 88 

Soman analogue PTE from P. diminuta (wild-type) RPRC > RPSC, SPRC, SPSC (10-

1200) 

88 

Soman analogue PTE from P. diminuta 

(I106A/F132A/H254Y mutant) 

SPRC > SPSC, RPRC, RPSC, (5-37)  

Soman analogue PTE from P. diminuta (G60A mutant) RPRC > RPSC, SPRC, SPSC (4-6000) 88 

Acetylphenyl methyl phenyl phosphate  PTE from P. diminuta (wild-type) SP > RP (1.2 x 102)  71 

Acetylphenyl methyl phenyl phosphate  PTE from P. diminuta (G60A mutant)  SP > RP (3.7 x 105)  71 

Acetylphenyl methyl phenyl phosphate  
PTE from P. diminuta 

(I106G/F132G/H257Y mutant) 

RP > SP  (9.7 x 102)  
71 

Sarin analogue OPAA from Alteromonas sp. (wild-type) RP > SP (2)  86 

Soman analogue OPAA from Alteromonas sp. (wild-type) RPSC > RPRC, SPRC, SPSC (29-

7260) 

86 

Cyclosarin PTE  from P. diminuta (wild-type) (+)GF > (–)GF (21)  89  

Cyclosarin OPAA from Alteromonas sp. (wild-type (+)GF > (–)GF (12)  89 

Cyclosarin OPAA from A. haloplanktis  (wild-type (+)GF > (–)GF (24)  89 

Cyclosarin 
PTE from P. diminuta 

(H254G/H259W/L303T mutant) 

(–)GF > (+)GF 
89 

VX nerve agent  PTE  from P. diminuta (wild-type) SP = RP (1)  91  

VX nerve agent  
PTE from P. diminuta (H254Q/H257F 

mutant)  

SP > RP (12) 
91 

VX nerve agent  PTE from P. diminuta (L7ep-2b mutant)  RP > SP (12)  91 

VR nerve agent analogue PTE from P. diminuta (wild-type) RP < SP (25) 85 

VR nerve agent analogue PTE from P.diminuta (G60A mutant) RP > SP (7600)  85 

VR nerve agent analogue 
PTE from P.diminuta 

(I106A/F132A/H257Y mutant)  

SP > RP (270)  
85 

Abbreviations: OP: Organophosphorus compound, PTE: Phosphotriesterase, EPN: O-ethyl O-4-nitrophenyl phenylphosphonothioate, 

OPAA: Organophosphorus acid anhydrolase, SP: SP-enantiomer, RP: RP-enantiomer, RPRC: RPRC-enantiomer, RPSC: RPSC-enantiomer,  >, 

SPRC: SPRC-enantiomer, SPSC: SPSC-enantiomer, (+)GF: (+)GF-enantiomer, (-)GF: (-)GF-enantiomer. 
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the (−) isomer of cyclosarin ((+)/(–) ratio = 0.16), 

which is two times more toxic to AChE than the 

racemic compound. Tsai et al. (85, 90) have 

demonstrated that the inherent stereoselectivity of 

wild-type PTE from P. diminuta on the enantiomers 

RP of sarin, soman, and cyclosarin increased with the 

size of substituent group bound directly to 

phosphorous atom. The mutants of this wild-type 

protein have an increased stereoselective capacity 

for the R/S ratio (Kcat/Km) from 22 to 760 times for a 

cyclosarin analog. In other cases, the PTE mutants 

reversed the stereoselectivity. In particular, the 

substitution of alanine with a glycine residue (mutant 

G60A) in the small pocket of this bacterial PTE 

improved the stereochemical preference with an R/S 

ratio (Kcat/Km) from 25 to 7600 times in VR 

compound analog. The PTE I106A/F132A/H257Y 

mutant showed a stereoselective reversion for sarin, 

soman, cyclosarin, VX, and VR. Those mutant 

proteins showed levels of enzymatic activity up to 

15,000 times greater for the SP isomers compared 

with wild-type PTE. The results are relevant from a 

toxicological perspective because they are the 

enantiomers that show the highest toxic potency for 

mammals. 

3.2.1. Hydrolysis of V-type agents 

The catalytic activity of the wild-type PTE 

bacterial (from P. diminuta and Flavobacterium sp.) 

toward V-type nerve agents is approximately three 

orders of magnitude lower than G-type nerve agents 

(Kcat/Km < 103 M-1 s-1) (75, 76). Tsai and coworkers 

(85) observed that wild-type PTE showed a slight 

hydrolysis preference for the SP enantiomer of VX 

(S/R ratio, Kcat/Km = 2). Nevertheless, Bigley and 

coworkers (91) did not observe stereoselective 

hydrolysis when they used the bacterial wild-type 

enzyme. However, the double mutant of bacterial 

PTE QF (H254Q/H257F) hydrolyzed the more toxic 

SP enantiomer 12 times more than the RP 

enantiomer of VX. This result is similar to the one 

obtained by Tsai and coworkers (85) with a VX 

analog. These authors also observed stereoselective 

catalysis: Hydrolysis of the RP isomer (reverse 

hydrolysis) was 12 times higher than its 

corresponding SP enantiomer with the mutant L7ep-

2b (CVQFL + H254R/N265D/A270D/L272M/S276T) 

(91). Studies of PTE from P. diminuta have 

suggested their potential role as a therapeutic 

intervention for nerve agent intoxication to attenuate 

the neurological deficit in humans who are chronically 

exposed due to wars. With this objective, mutant 

PTEs have been designed to provide 

stereoselectivity on the more toxic isomer (91).  

3.3. PON1, a protein restricted in its ability 

to hydrolyze chiral OPs 

Serum aryldialkylphosphatase (EC 

3.1.8..1.), also known as PON1, is the best-known 

protein of the family of enzymes called paraoxonases 

from mammalian tissues (mainly liver and human 

serum). Its name is derived from its capacity to 

hydrolyze paraoxon, which is a metabolite of the 

neurotoxic insecticide parathion (92); in addition, it 

was the first of the three PON members discovered. 

Molecular studies have revealed that PON1 

messenger RNA (mRNA) is widely distributed in the 

brain, kidney, liver, small intestine, and lungs of 

animals. Nevertheless, PON1 only reaches 

significant levels of toxicological interest in the liver 

and serum (93–97). PON1 is a calcium-dependent A-

esterase that comprises 354 amino acids; its 

molecular weight is 45 kDa (95, 96, 98–100). It is 

synthesized in the liver (98) and secreted into the 

bloodstream to bind high-density lipoprotein (HDL) 

(101). PON1 is an A-esterase with paraoxonase, 

arylesterase, and lactonase activity. Phenylacetate is 

one substrate for which PON1 has high affinity (102, 

103). Since its identification in animal tissues, 

researchers have proposed that PON1 is involved in 

protection against OP toxicity (104–107). In vitro 

studies have demonstrated that PON1 hydrolyzes 

toxic aryl esters and OP insecticides (in the oxo 

 
 

Figure 2. Three-dimensional representation of the docked complex 

of chemical structure of toxic OP nerve agents; *denotes chiral 

center.  
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form), such as parathion, chlorpyrifos, diazinon, and 

chiral nerve agents, including sarin and soman (108–

110). Despite the broad affinity for ester substrates, 

PON1 shows different catalytic hydrolysis rates that 

depend on the chemical’s structural conformation 

(108, 110, 111). PON1 is considered to be a relevant 

protein for in vivo OP detoxification because species 

like birds and fish, which have low serum PON1 

activity, are very susceptible to OP insecticide 

intoxication (112). By contrast, species with greater 

levels of this protein, such as mammals, are more 

resistant to the toxicity of these compounds (108, 

113, 114). The most direct evidence of the protective 

role of PON1 against OP toxicity has been 

demonstrated in rodent models. The exogenous 

administration of purified PON1 protected against the 

toxicity of OPs in the oxo form. The extension of this 

protective effect was dependent on the efficiency 

catalytic of PON1 versus OP (115–118). The 

catalysis rate of human serum PON1 (HuPON1) on 

chiral nerve agents has been considered low in 

toxicological terms. Therefore, PON1 might be a PTE 

with limited protection against OP toxicity because it 

only hydrolyzed a few OPs and it is unable to act on 

racemic mixtures. For this reason, protein 

engineering has been applied to this A-esterase to 

increase specificity and rate of catalytic hydrolysis for 

OPs, including racemic warfare agents and chiral 

insecticides. 

 The relatively low expression of A-

esterases, like PON1, during neurodevelopment 

increases the susceptibility to OP pesticide toxicity in 

human populations (119, 120). The high toxicity of 

OP insecticides correlates with PON1 levels and 

carboxylesterases related to age (120, 121). 

Experiments with rodents have demonstrated that 

the ontogeny of this esterase correlates with the 

toxicity of these compounds (119–121). Specifically, 

clinical studies have shown that newborn children 

have one third to one quarter of the PON1 serum 

levels that are found in adults (122–124), as well as 

variability in the active protein levels among 

individuals (125). The combination of genetic 

variability and PON1 expression in human 

development can mean up to 160-fold greater 

susceptibility to OPs (123). A longitudinal 

epidemiological study concluded that PON1 activity 

in children increased 3.5 times from birth to 7 years. 

Nevertheless, these PON1 levels at the age of 7 

years were significantly lower (1.8%) than the 

maternal levels, and the difference was more evident 

for mothers and children with genotypes (QQ) 

associated with one PON1 copy with low activity (see 

section 3.4.2.) (124). In a longitudinal study of the 

cohort, González and coworkers (126) found that the 

PON1 levels in the serum of 9-year-old children were 

lower (1.7–7.9%) than the levels in their respective 

mothers. However, these differences were not 

statistically significant; hence, PON1 levels in 

children at this age may reach the levels found in 

adults. 

3.4. Toxicity and stereoselective hydrolysis 

of OPs in animal tissues 

Chiral OPs induce adverse effects in the 

biological systems related to their stereochemical 

structure and the affinity to B-esterases from the 

nervous system (127). Johnson and coworkers (43) 

established that the administration of 5–7 times the 

median lethal dose (LD50) of D (+)-methamidophos 

induced OPIDP in hens. By contrast, the 

administration of L(–)-methamidophos at similar 

doses did not induce OPIDP (128). The ratios of rate 

constants for the inhibition of AChE/NTE for D (+)-

methamidophos were 2 for hens and 3 for humans; 

the same ratios for L(–)-methamidophos were to 900 

for hens and humans (129). This same group 

previously demonstrated that the enantiomers of one 

OP showed a different capacity to inhibit AChE and 

NTE in hen’s brain, with consequent stereoselective 

OPIDP (22). These results suggested stereoselective 

hydrolysis when racemic mixtures of OPs that include 

phenyl phosphonothioates like EPN (130) and 

phosphoramidothioates like methamidophos and its 

analogs when administered in vivo (45, 131). Other 

pre-clinical studies on aquatic and cellular toxicity 

have corroborated the stereoselective toxicity of the 

chiral OPs pesticides (132). 

Fenamiphos is widely using as a 

nematicide in the production of fruits, vegetables, 

grains, and tobacco, among other crops (133, 134). 

This racemic OP is highly toxic to aquatic and 

terrestrial organisms (135). Aquatic toxicity studies in 

D. magna have demonstrated that (+)-fenamiphos is 

20 times more toxic than (–)-fenamiphos. This 
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stereospecific aquatic toxicity was corroborated with 

isomers of other chiral insecticides in D. 

magna and C. dubia (136), as well as in ex vivo 

inhibition studies of BuChE from horse serum (38) 

and AChE from PC12 rat cells (137). Notably, the 

racemic insecticide profenophos showed a 

stereoselective effect in vitro on AChE from animal 

serum, and (+)-profenophos inhibited this B-esterase 

up to 23 times more than (–)-profenophos. 

Nevertheless, in vivo studies have clearly shown that 

this isomer is approximately 23 times less potent as 

an inhibitor of AChE (138). The authors explained this 

contrary, adverse effect by suggesting a 

stereospecific bioactivation in vivo of enantiomer (–)-

profenophos (139), as was observed for (–)-

isofenphos in rat liver microsomes (140). Since the 

first reports of inhibition and aging in vivo and in vitro 

by chiral OPs of AChE and NTE esterases, it has 

been suggested that stereoselective metabolism 

(hydrolysis) should be considered in the neurotoxicity 

of these compounds. For this reason, the 

characterization of the hydrolyzing role of A-

esterases or PTEs, including PON1 from human 

serum (HuPON1), on the chiral OPs, insecticides, 

and warfare agents, is relevant in terms of public 

health and environment protection (Table 2).  

3.4.1. The calcium-dependent 

stereoselective activity of OPs associated 

with PON1  

PON1 activity in rabbit serum was first 

identified with paraoxon as a substrate in the 

presence of calcium (141), so 

ethylenediaminetetraacetic acid (EDTA) can inhibit it. 

Currently, this activity in animal tissues, such as liver 

and serum, is defined as calcium-dependent and 

EDTA-sensitive PTE activity. Albumin is a vertebrate 

serum protein with paraoxonase activity; it 

hydrolyzes paraoxon in the absence of calcium in 

mammalian serum (142). Studies carried out with 

neuropathic phosphoramidates, like methamidophos 

and its analogs, were among the first performed on 

stereoselective hydrolysis of OPs. In particular, the 

incubation of racemic O-hexyl-S-methyl 

phosphoramidite (HXM) with rabbit serum confirmed 

a slow but specific elimination of the R-(+)-HXM 

enantiomer (143). The stereoselectivity of this 

catalytic reaction was evident with its compound 

analog, O-2,5-dichlorophenyl phosphoramidate 

(HDCP) in several animal tissues (144, 145). These 

ex vivo assays showed stereospecific calcium-

dependent hydrolysis of S-(–)-HDCP in the 

microsomal fraction of rabbit liver and mainly in rat 

and rabbit serum. The EDTA-resistant hydrolysis of 

HDCP was not stereoselective in these tissues and 

animal species (145, 146). These results, suggest 

that the blood concentration of R-(+)-HDCP will 

remain higher than S-(–)-HDCP and induce the 

neurotoxic effects. 

3.4.2. Stereoselective hydrolysis of 

commercial OP pesticides by alloforms of 

PON1 Q192R 

Mammalian serum PON1 hydrolyzes 

calcium-dependent OPs in the glutamine/arginine 

polymorphism at position 192 (Q192R). The Q192R 

polymorphism affects the hydrolysis levels of some 

racemic OPs substrates (98, 110, 115, 147). In our 

laboratory, the stereoselective hydrolysis of 

fenamiphos and HDCP by different PON1 Q192R 

alloforms from human serum has been characterized 

by chiral chromatographic methods (32, 37). The 

stereoselective hydrolysis has been quantified by 

measuring the residual concentration (µM) of each 

insecticide enantiomer, after a specified incubation 

time with 2.5 mM calcium or 5 mM EDTA at 

physiological pH and temperature. There were 

significant differences for the stereoselective 

hydrolysis of fenamiphos by the different PON1 

Q192R alloforms from human serum (36). The 

average residual concentration (μM) of (+)-

fenamiphos and (–)-fenamiphos for each one of the 

three PON1 Q192R alloforms from adults and 

children were in a range of 166–200 μM. The highest 

level of hydrolysis (12%) was not significant (p > 0.05, 

Student’s t-test). The lack of significant hydrolysis for 

the fenamiphos enantiomers in human serum 

suggests that age may not influence the catalytic 

efficiency of PON1 Q192R alloforms for the 

hydrolysis of chiral insecticides in vivo. These results 

contradict those reported for sarin, which established 

a greater susceptibility to chiral OPs intoxication 

associated with the age and to PON1 Q192R 

alloforms from human serum (104, 121, 148, 149).  

For HDCP hydrolysis by human serum 

samples, after a 60-min incubation at physiological 

conditions three PON1 Q192R alloforms showed an 
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exclusive and significant stereospecific calcium-

dependent hydrolysis of S-(–)-HDCP. Indeed, the 

remaining concentrations of this isomer were lower 

than R-(+)-HDCP in 47 human adult serum samples 

that were diagnosed by the PON1 192 polymorphism 

(33). This stereoselective calcium-dependent S-(–)-

HDCP hydrolysis is inhibited with EDTA and is 

independent of the PON1 Q192R alloform, which 

shows a tendency for greater hydrolysis compared 

with the RR alloform. This research reinforces that R-

(+)-HDCP (the isomer that inhibits NTE and causes 

its aging) might be the enantiomer that induces 

delayed neuropathy caused by this chiral 

phosphoramidate. In summary, the insecticide 

Table 2. Stereoselective hydrolysis of OPs insecticides and nerve agent by PON1 and animal tissues 

Chiral OP compound  Protein source Stereoselectivity (Fold)  References 

IMP-pNP  Mammalian serum PON1 (wild type) P(+) > P(–)  155 

IMP-pNP  Mammalian serum PON1 (V346A mutant) P(+) > P(–)  155 

Ciclosarin Mammalian serum PON1 (wild type) P(+) > P(–)  155 

Ciclosarin Mammalian serum PON1 (V346A mutant) P(+) > P(–)  155 

Soman Mammalian serum PON1 (wild type) P(+)C(+), P(+)C(–) > P(–)C(+), P(–)C(–) 155 

Soman Mammalian serum PON1 (V346A mutant) P(+)C(+), P(+)C(–) > P(–)C(+), P(–)C(–) 155 

Soman  Guinea-pig skin  P(+)C(+), P(+)C(–) > P(–)C(+), P(–)C(–) 

(~11) 

156 

Soman Mouse skin P(+)C(+), P(+)C(–) > P(–)C(+), P(–)C(–) 

(~15) 

156 

Soman Human skin P(+)C(+), P(+)C(–) > P(–)C(+), P(–)C(–) 

(~34) 

156 

Soman Rat liver (soluble fraction) P(+)C(–), P(+)C(+) > P(–)C(+), P(–)C(–) 161 

Soman 
Human serum P(+)C(+), P(+)C(–) > P(–)C(+), P(–)C(–) 

(~40) 

162 

Soman 
HuPON1 (wild-type) P(+)C(+), P(+)C(–) > P(–)C(+), P(–)C(–) 

(~3)  

163 

EMP–MeCyC HuPON1 (wild-type and mutants) P(+) > P(–)  164 

VX and VR  rHuPON1 (recombinant)  P(+) > P(–) 165 

HDCP  Rabbit serum S(–) > R(+)   142 

HDCP Rabbit serum S(–) > R(+) (8-10)   145 

HDCP Rat serum S(–) > R(+)  (5)  145 

HDCP 
Hen, rata or rabbit liver  (particulate or soluble 

fraction) 
S(–) > R(+)  (2-12)  145 

HDCP 
Hen, rata or rabbit kidney (particulate or soluble 

fraction) 
S(–) > R(+)  (1-12) 145 

HDCP Human serum  S(–) > R(+)  (2-3) 33 

HXM  Rabbit serum R(+) > S(–)  143 

Trichloronate  Human serum (+) = (–) 171 

Fenamiphos  Human serum (+) = (–) 36 

Profenofos  Human serum (+) = (–) 172 

Abbreviations: OP: Organophosphorus compound, PON1: Paraoxonase-1, HuPON1: Human serum PON1, rHuPON1: Recombinant 

human PON1, IMP-pNP = O-isopropyl-O-(p-nitrophenyl) methyl phosphonate, VX= VX nerve agent, VR= VR nerve agent, 
HDCP= O-Hexyl, O-2,5-dichlorophenyl phosphoramidate, HXM= O-n-hexyl-S-methylphosphorothioamidate, P(+): P(+)-enantiomer, P(–): 

P(–)-enantiomer, P(+)C(+): P(+)C(+)-isomer, P(+)C(–): P(+)C(–)-isomer, P(–)C(+): P(–)C(+)-isomer, P(–)C(–): P(–)C(–)-isomer, EMP–

MeCyC: methylphosphonic acid 3-cyano-4-methyl-2-oxo-2H-coumarin-7-yl ester ethyl ester, (–):(–)-isomer, (+): (+)-isomer.  
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fenamiphos is not hydrolyzed by PON1 Q192R 

alloforms from human serum. These data reinforce 

the hypothesis that PON1 has an irrelevant 

detoxifying role for OPs in vivo because of the limited 

number of chiral OPs that it hydrolyzes. When it does 

hydrolyze compounds, it prefers the less-toxic 

enantiomers, as is in the case of HDCP.  

3.4.3. PON1, an enzyme that 

stereoselectively hydrolyzes OP nerve 

agents 

The stereospecific calcium-dependent 

hydrolysis of warfare agents by mammalian 

tissues has been studied for more than 50 years to 

determine the toxic properties of its isomers on 

human health. The first study reported by 

Augustinsson (150) identified stereoselective 

degradation of tabun by pig kidney tissue. Cristen 

(151, 152) observed the stereoselective hydrolysis 

of P(+) sarin in the plasma of several species, 

which included rats and humans. Subsequently, 

other researchers used chromatographic 

techniques and corroborated the stereoselective 

hydrolysis of soman in animal tissues (153, 154) 

that included the skin homogenates of the mouse, 

human, and guinea pig. Those results showed the 

hydrolysis of the less toxic isomer (C(+/–) P(+)) of 

this compound, with a speed constant of 0.127 

min-1 g-1. The stereospecificity of PON1 on nerve 

agents has been studied to determine the toxic 

properties of their isomers. Wild-type PON1 and 

their recombinants have shown metal-dependent 

stereospecific hydrolysis for the less toxic soman 

isomers (89, 155). Different studies have 

demonstrated the stereospecific hydrolysis of 

soman in rats, guinea pigs, and marmots (153, 

154). Van Dongen (156) examined the 

stereoselective hydrolysis of soman using skin 

homogenized from guinea pigs, mice, and 

humans; it hydrolyzed the less toxic isomer (C(+/–

) P(+)) of soman, with a rate constant of 0.127 min-

1 g-1 l-1. In 1957, Augustinsson reported that 

phosphorylphosphatase from pig liver had a 

stereospecific effect toward D-tabun. While, 

Cristen and coworkers (152) demonstrated the 

stereoselective hydrolysis of sarin in serum from 

several species; they also reported higher 

hydrolysis of P(+)-sarin than its corresponding P(–

)-isomer (151). Later, researchers demonstrated 

that the P(+)-sarin isomer was rapidly hydrolyzed 

(157, 158). On the other hand, Herbert and 

coworkers (159) showed stereoselectivity in 

fraction IV of human serum towards soman C+P+ 

isomer. Likewise, Benschop et al. (158) and De 

Jong and coworkers (160) reported that the tissues 

with a high PON1 content, such as mammalian 

serum and liver, preferably hydrolyzed the C(±) 

P(+) soman stereoisomers. These results for 

stereoselectivity were corroborated with a variant 

of the gen-shuffled (LR1) of HuPON1, expressed 

in bacteria, which exhibited stereoselective 

hydrolysis in vitro for the less toxic isomers soman 

and cyclosarin. Although the catalytic efficiency of 

HuPON1 against warfare agents, like sarin, VX, 

and soman, was low, its capacity to hydrolyze 

these toxic nerve agents in vivo makes it an 

attractive protein as a biological scavenger of 

chiral OPs (155). Meanwhile, Little and coworkers 

(161) reported significant non-stereoselective 

hydrolysis of the four soman isomers in the rat 

liver, data that suggest the presence of a 40-kDa 

enzyme that is not PON1. The stereoselective 

hydrolysis capacity of PON1 on chiral OP esters 

has been demonstrated against racemic 

substrates, like the sarin analog known as O-

isopropyl-O-(p-nitrophenyl) methyl phosphonate 

(IMP-pNP). Amitai (155), showed the 

stereoselective hydrolysis of cyclosarin, soman, 

and O-(isopropyl)-O-(p-nitrophenyl)methyl 

phosphonate (IMP-PNP); these data corroborate 

that PON1 is less active toward the less toxic 

isomers. 

De Bisschop (162) identified the 

stereoselective hydrolysis of soman in human serum. 

Yeung and coworkers (163) characterized the 

catalytic activity of HuPON1 toward each of the four 

soman isomers simultaneously by chiral-gas 

chromatography coupled to mass spectrometry. The 

Kcat/Km values ranged from 625 to 4130 mM-1 min -

1, with the following order for the isomers: C(+) P(+) 

> C(–) P(+) > C(+) P(–) > C(–) P(–). These data 

indicate that the soman hydrolysis by HuPON1 is 

stereoselective. Wild-type HuPON1 showed low 

activity, but its catalytic hydrolysis of the four soman 

stereoisomers was stereospecific. A critical 

assumption in the analytical model developed to 

determine the kinetic constant for each stereoisomer 
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is that each one behaves as an independent 

substrate, but competitive in the hydrolysis reaction.  

3.4.4. PON1 recombinants and 

stereoselective hydrolysis of OP nerve 

agents 

The reversal of stereoselective hydrolysis 

through recombinant mammalian PON1 has been 

developing by Amitai and coworkers from the Israel 

Institute for Biological Research. They have 

proposed that research should aim to increase 

enzymatic detoxification toward the more toxic P(–) 

isomer of nerve agents because wild-type 

mammalian PON1 have shown calcium-dependent 

stereoselective hydrolysis toward the less toxic P(+) 

enantiomers of those neurotoxic compounds. 

Previous studies on OP hydrolysis with recombinant 

PON1 have allowed the identification of Leu69, 

Val346, and His115 of PON1 as key positions that 

enhance the hydrolysis of cyclosarin, soman, and 

other nerve agents. However, residual AChE 

inhibition studies have suggested their 

stereoselective hydrolysis toward the less toxic P(+) 

isomer of these chiral OPs similar to the 

stereoselectivity of wild-type PON1. For these 

studies, the authors designed and synthesized other 

PON1 variants as well as new asymmetric 

fluorogenic OPs analogs of VX, cyclosarin, and 

soman. Finally, they demonstrated through AChE 

inhibition assay that the recombinant HuPON1 

L69V/S138L/S193P/N287D/V346A showed reverse 

stereoselectivity toward the more toxic P(–) isomer of 

an analog compound of these warfare agents (164). 

On the other hand, Otto and coworkers in 

2010 (165) demonstrated the stereoselective 

hydrolysis of P(+) enantiomer of VX and VR by 

HuPON1 purified from Trichoplusia ni larvae. This 

HuPON1 variant was resistant to the hydrolysis of 

non-chiral insecticides, such as chlorpyrifos. The 

P(+) isomer of VX was fully hydrolyzed after 240 min, 

but its corresponding P(–) isomer was not hydrolyzed 

after 360 min. The stereoselectivity of the VR racemic 

mixture was similar to the observed for VX; the P(+) 

isomer was fully hydrolyzed after 420 min. The 

preferential hydrolysis of rHuPON1 on one particular 

isomer is indicative of the conformational restrictions 

of the active site of PON1 variant, where the fixation 

and catalysis are dependent on the three-

dimensional arrangement of substituents O-alkyl 

around chiral phosphor atom in OPs. The lack of 

hydrolysis toward P(–) isomers of VX or VR by 

rHuPON1 might result from the enzyme's inability to 

bind the substrate, a phenomenon that inhibits the 

catalysis. Kirbli and coworkers (166) synthesized 

recombinant single (H115W) and double 

(H115W/F347W) PON1s to generate variants that 

hydrolyzed class G and V warfare agents. They 

reported that H115W PON1 recombinant increased 

the catalytic activity levels of chiral OPs to wild-type 

PON1 protein. The double variant H115W/F347W 

PON1 showed a light stereoselective hydrolysis 

toward the tabun P(–) isomer ((–)/(+) ratio = 1.34) 

versus simple mutant H115W PON1 ((–)/(+) ratio = 

1.06). These results suggest the participation of the 

amino acid tryptophan at position 347 near the active 

site residues promotes higher affinity binding of the 

P(–) isomer compared with the P(+) isomer. 

Goldsmith and coworkers (167) have used direct 

evolution to increase PON1 activity toward the more 

toxic SP isomer of nerve agents G-type (tabun, sarin, 

soman, and cyclosarin). The PON1 variants showed 

a ≤ 340 increase in the ratios and catalytic 

efficiencies of 0.2–5 × 107 M-1 min-1. Additionally, 

there was PON1 stereospecificity reversal, from an 

enantiomeric ratio of (E) < 6.3 × 10−4, in favor of the 

RP isomer of the cyclosarin analog and wild-type 

PON1, to E > 2,500 for the SP isomer in an evolved 

variant. PON1 variants can hydrolyze the toxic SP 

isomer of cyclosarin (≤ 1.75 × 107 M-1 min-1) 

efficiently. This result had been previously obtained 

using directed evolution (168).  

3.5. The activity of PTEs in birds 

Research has identified a 

phosphotriesterase activity that is different from 

PON1 in birds. This activity is not calcium-dependent 

and  EDTA-resistant in hen serum; this activity was 

named HDCPase due to the ability to hydrolyze 

HDCP. Sogorb and coworkers (169) identified 

albumin as the protein responsible for this PTE 

activity. Subsequently, ex vivo experiments with 

particulate fraction of the hen, rabbit, and rat liver, as 

well as serum from rabbit and rat, demonstrated the 

stereoselective activity of S-(–)-HDCP (146), which 

was in a range of 1–3 fold greater when the 

microsomal fraction of the liver was used in the assay 
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(10–80 mg) (147). Toxicological research has 

demonstrated that employing high concentrations of 

subcellular fractions for in vitro or ex vivo tests 

achieved a more realistic approximation of the 

stereoselective hydrolytic processes of OPs in 

biologic systems in vivo. Our research group recently 

identified novel PTE activity in chicken (34) and 

turkey serum (37). It is 20 fold higher than calcium-

dependent HDCP activity, which is copper-

dependent and stereoselective to the enantiomers of 

higher toxicity of HDCP and trichloronate; R-(+)-

HDCP) and (–)-trichloronate (a chiral compound in 

thio form), respectively. This new A-esterase activity 

has been identifying in chicken and turkey serum 

albumins (35, 170). 

4. CONCLUSIONS 

 The results of studies on stereoselective 

hydrolysis by bacterial wild-type PTEs and their 

recombinants on chiral warfare agents have allowed 

researchers to suggest potential uses in the clinical 

toxicology treatment against racemic OPs toxics. In 

the field of biotechnology, these proteins can be used 

in the elaboration of bioreactors in environmental 

bioremediation. Human serum PON1 is a PTE with a 

limited role in OP hydrolysis because it only 

hydrolyzes a few non-chiral OP insecticides. Indeed, 

the main limitation comes from the limited hydrolysis 

of chiral OP insecticides, or its preference for 

hydrolyzing the isomers with low toxicity. 

Biotechnological production of recombinant PTEs 

with stereoselective hydrolysis of OPs is required in 

the field of the clinic and veterinary toxicology for the 

treatment of intoxications caused by chiral OP 

insecticides. Finally, the toxicological field needs to 

continue in the discovery and design of new A-

esterases or PTE proteins that hydrolyze chiral OPs 

compounds or their neurotoxic enantiomers. 
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