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1. Abstract

Purpose: The purpose of our present study was
to, for the first time, identify key genes associated with
postpartum depression (PPD) and discovery the potential
molecular mechanisms of this condition. Methods: First,
microarray expression profiles GSE45603 dataset were
acquired from the Gene Expression Omnibus (GEO) in Na-
tional Center for Biotechnology Information (NCBI). The
weighted gene co-expression network analysis (WGCNA)
was performed to identify the top three modules from
differentially expressed genes (DEGs). Furthermore,
cross-validated differential gene expression analysis of
the top three modules and DEGs was used to identify the
hub genes. Gene set enrichment analysis (GSEA) was
conducted to identify the potential functions of the hub
genes. We conducted a Receiver Operator Characteristic
(ROC) curve to verify the diagnostic efficiencies of the
hub genes. Lastly, GSE44132 dataset was used to search
the association between the methylation profiles of the

hub genes and susceptibility to PPD. Results: Altogether,
8979 genes were identified as DEGs for WGCNA analysis.
The turquoise, yellow, and green functional modules were
the most significant modules related to PPD develop-
ment after WGCNA analysis. The enrichment analysis
results of the Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway demonstrated that hub genes in the
three modules were mainly enriched in the neurotrophin
signaling pathway, chemokine signaling pathway, Fcγ
receptor-mediated phagocytosis, and Mitogen-activated
protein kinase (MAPK) signaling pathway. Eight genes
(HNRNPA2B1, IL10, RAD51, UBA52, NHP2, RPL13A,
FBL, SPI1) were identified as “real” hub genes from
cross-validation data of the three modules and DEGs,
and possessed diagnostic value in PPD. The GSEA
suggested that “OLFACTORY_TRANSDUCTION”,
“BUTANOATE_METABOLISM”, “MELANOMA”,
“AMINOACYL_TRNA_BIOSYNTHESIS”, and “LY-
SINE_DEGRADATION” were all crucial in the develop-
ment of PPD. Highly significant differentially methylated
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positions in the three genes (HNRNPA2B1, RPL13A and
UBA52) were identified in the GSE44132. Conclusion:
Using WGCNA analysis of GEO data, our present study,
for the first time, may contribute to elucidate the pathophys-
iology of PPD and provide potential diagnostic biomarkers
and therapeutic targets for postpartum depression.

2. Introduction

Postpartum depression (PPD) is one of the most
prominent mood disorders affecting 15% of parturient
women [1]. Its clinical symptoms typically occur within
two weeks after delivery, with patients reporting persistent
and severe moodiness, including negative emotions (e.g.,
anxiety, sadness, hopelessness and/or worthlessness), low
energy, and social withdrawal [2]. PPD may result in both
short-term and long-term negative effects on neonatal and
infant development, cognition, emotion, and behavior. Pre-
vious studies have shown that maternal depression is a risk
factor for higher rates of premature and low-birth-weight
babies, infant malnutrition and stunting, and infant diar-
rhoeal, which can lead to mothers’ reluctance to care for
their children and impair normalmother-child relationships.
And it’s becoming a major public health problem [3].

PPD is the result of the combined influence ofmul-
tiple factors. Previous studies have reported hypotheses re-
garding the physiopathologic mechanisms of PPD, such as
the abnormal changes of hormones, neurotransmitters, in-
flammatory factors [4], among others. The molecular path-
ways implicated in the PPD was involved in genetic in-
heritance [5], HPA axis [6], serotonin transporter [7], and
GABA receptor [8]. However, there is no exact evidence to
support any of the above conclusions, and the physiopatho-
logic mechanisms of PPD remain largely obscure.

Despite the severity of PPD on adverse infant
and maternal outcomes, early diagnosis would help es-
tablish mechanisms for the prevention and early cure of
PPD. Therefore, it is necessary to identify reliable diagnos-
tic biomarkers of PPD. In practical work, it is difficult to
acquire brain tissue for clinical testing. Peripheral blood
mononuclear cells (PBMCs) share mRNA expression pat-
terns in brain tissues [9]. In both PBMCs and the prefrontal
cortex, the expression levels of many genes and biologi-
cal processes are similar [10]. On the one hand, mount-
ing evidence has indicated that gene expression changes in
PBMCsmay intervenemolecular alterations in the region of
brain [11]. On the other hand, gene expression of peripheral
lymphocytes may be affected by the central nervous system
(CNS) via neurotransmitters, cytokines, and hormones [12].
Therefore, PBMCs can serve as an effective tissue to search
the gene expression in PPD.

With the development of high-throughput expres-
sion microarray technology, gene expression profiling has
become a powerful tool for in-depth study of the pathogen-
esis and diagnostic biomarkers of mental disorders at the

genomic level [13]. For example, microarrays have been
used to detect differences in gene expression characteris-
tics between healthy controls and PPD patients [14]. Many
microarray-based studies have focused only on screening
for differentially expressed genes (DEGs) without identi-
fying their links. Genes with similar expression patterns
may be functionally related. Weighted gene co-expression
Network analysis (WGCNA) algorithm can divide genes
into different modules according to the similarity of gene
co-expression in multiple samples. This produces a set of
genes that function similarly, allowing selection of disease-
related biomarkers and pathways. In the present study,
we, for the first time, used WGCNA to construct a co-
expression network of genes and determined key modules
and hub genes associated with PPD.

3. Materials and methods

3.1 Study design

The design of this study was exhibited in Sup-
plementary Fig. 1. We downloaded the mRNA microar-
ray expression profile dataset GSE45603 from GEO, a free
and publicly available database. This dataset was used to
screen DEGs, then construct co-expression networks using
WGCNA, and finally to identify hub genes associated with
PPD.

There were 210 samples from PBMCs in
the GSE45603 dataset, from which 21 samples were
finally selected, containing 5 healthy control sam-
ples (GSM1110484, GSM1110493, GSM1110498,
GSM1110515, GSM1110539) and 16 PPD sam-
ples (GSM1110374, GSM1110378, GSM1110380,
GSM1110400, GSM1110403, GSM1110409,
GSM1110412, GSM1110424, GSM1110433,
GSM1110447, GSM1110461, GSM1110477,
GSM1110505, GSM1110506, GSM1110518,
GSM1110547), the samples of preconception, 1st,
2nd, and 3rd trimester of pregnancy and postpartum were
not included in present study.

3.2 Screen differential expression genes

GEO2R was used to analyze DEGs between PPD
and healthy control samples, p < 0.05 was defined as
DEGs. GEO Database interactive online analysis tool for
further analysis (R, version 3.5.2, https://www.r-project.o
rg). DEGs were defined as log2FC <–0.5 (down-regulated
gene) and log2FC>0.5 (up-regulated gene), and the differ-
ence was statistically significant if the adjusted p value <
0.05.

3.3 Functional and pathway enrichment analysis

Gene annotation with functions involving cellular
components (CC), molecular functions (MF), and biolog-
ical pathway (BP) were analyzed by Gene ontology (GO)
[15, 16]. The key MF, BP, CC and pathways of statistically

https://www.r-project.org
https://www.r-project.org


1021

significant DEGs were visualized (p < 0.05). The function
of KEGG was to address genomes and biological pathways
related to diseases (p < 0.01). To improve the accuracy
of the analysis and identify the potential function of the
hub gene, GSEA analysis was carried out (GSEA version
4.0.3, http://software.broadinstitute.org/gsea/index.jsp). p-
value < 0.05 was used as truncation standard. The top 15
pathways of yellow module gene in KEGG were selected.

3.4 PPI network and module analysis

The results from the STRING (version 11.5, https:
//www.string-db.org/) [17] were analyzed and structured
using Cytoscape software (Cytoscape version 3.9.0, https:
//cytoscape.org/). The MCODE plugin was employed to
identify modules of the PPI network. Two modules were
selected (score >8). We found there were 8979 DEGs in
GSE45603 after analyse by GEO2R. Then, we set several
“strict” threshold (log2FC <–0.5 and log2FC >0.5 were
used as a cutoff, with the p value< 0.05) for identify “real”
DEGswhich were meet our requirements. 673 “real” DEGs
were imported into the STRING to obtain their interaction,
which were imported into Cytoscape software. CytoHubba
was used to calculate gene value [18], was used to screen
hub genes based on the degree algorithm, and the top 30
genes were defined as hub genes. We entered the 30 hub
genes into NetworkAnalyst, a visual analytic platform for
exhibition of the PPI networks [19]. In PPI network, genes
with combination score ≥0.9 and connectivity ≥10 were
also defined as hub genes. The top 30 hub genes with the
highest ranking was presented in Table 1.

3.5 Construction of weighted gene co-expression
networks

There were 8979 DEGs after analysis by GEO2R.
WGCNA (Version 1.6.0, https://git.bioconductor.org/packa
ges/GmicR) was performed using 8979 DEGs [20]. The
adjacency matrix was transformed into topological overlap
matrix (TOM) by one-step method, and the minimum value
was 30. Hierarchical clustering was used to generate hi-
erarchical clustering tree [21, 22]. The co-expressed gene
modules were generated by hierarchical clustering tree with
different colors, and the module structure was displayed by
topological overlapping matrix.

3.6 Identification of clinically significant modules and
hub genes in key modules

Correlations betweenmodular characteristic genes
(MEs) and clinical features were calculated to identify rele-
vant modules. Gene significance (GS) was measured as the
log10 transformation of the p-value (GS = lg p) of the linear
regression between gene expression and clinical informa-
tion. Modular significance (MS) was the average GS of all
genes in a module. Overall, of all the selected modules, the
module with the absolute first rank in MS was considered
to be relevant for clinical features. In our study, the genes
in key modules were imported into Cytoscape and screened

Table 1. The expression analysis of the top 30 hub genes with
the highest ranking.

Gene symbol log2FC p-value Score

UBA52 0.56 1.21 × 10−2 72
HNRNPA2B1 –0.847 6.80 × 10−4 43
IL10 –0.783 8.90 × 10−3 39
NHP2 0.581 2.52 × 10−3 35
CAT –1.04 1.77 × 10−3 34
CDC5L –0.517 3.39 × 10−2 34
PTGES3 –0.748 3.87 × 10−3 34
RPL23 –0.847 4.84 × 10−2 34
SIRT1 –0.512 3.18 × 10−2 34
RPS3A –0.725 2.28 × 10−2 33
CCT3 0.503 3.58 × 10−3 32
RPS28 –0.787 2.82 × 10−2 32
ALDH18A1 0.797 7.78 × 10−4 31
ATM –0.821 4.56 × 10−3 31
PABPC1 –1.2 7.00 × 10−3 31
ACTR3 –0.907 8.00 × 10−3 30
RPL13A 0.538 2.57 × 10−3 30
RPL37A –0.511 4.49 × 10−2 30
FBL 0.741 2.34 × 10−3 29
RPL10A 0.538 5.93 × 10−3 29
RPS15A –0.607 1.36 × 10−2 29
SPI1 –0.73 2.77 × 10−2 29
CCL5 0.536 2.14 × 10−2 28
RPS29 0.515 3.66 × 10−2 28
CCR7 0.582 2.04 × 10−2 27
HSPE1 –1.13 3.65 × 10−2 27
KPNB1 –0.516 2.26 × 10−2 27
RPS27 –0.551 2.97 × 10−2 27
RAD51 –0.501 1.97 × 10−2 26
RPS26 1.28 2.79 × 10−3 26

out according to degree. Key modules and two genes were
overlapped using Venn diagrams.

3.7 Distributions of Hub Genes and Methylation
Analysis

The distribution of all DEGs in GSE45603 was
identified, and the functional similarity between proteins
was evaluated by GOSemSim package (version 2.18.1,
http://bioconductor.org/packages/release/bioc/html/GOSe
mSim.html) [23]. Then, the methylation of the hub gene
was detected. Genome-wide models of prenatal DNA
methylation analysis data (GSE44132) were also down-
loaded. This dataset includes 55 samples. Among these, 25
samples without depression (GSM1079474, GSM1079478,
GSM1079480, GSM1079481, GSM1079482,
GSM1079483, GSM1079484, GSM1079485,
GSM1079486, GSM1079488, GSM1079491,
GSM1079492, GSM1079493, GSM1079494,
GSM1079495, GSM1079497, GSM1079498,
GSM1079499, GSM1079501, GSM1079503,
GSM1079504, GSM1079505, GSM1079507,
GSM1079510, GSM1079528) and 11 samples with

http://software.broadinstitute.org/gsea/index.jsp
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http://bioconductor.org/packages/release/bioc/html/GOSemSim.html
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Fig. 1. The DEGs fromGSE43056. (A) Heat map of differentially expressed genes. (B) Volcano plot of gene expression. Red means upregulated DEGs;
green means downregulated DEGs; black means no difference.

PPD were selected (GSM1079475, GSM1079476,
GSM1079477, GSM1079479, GSM1079487,
GSM1079489, GSM1079490, GSM1079496,
GSM1079500, GSM1079502, GSM1079506). The
raw data were analyzed using “minfi” package (version
1.38.0, http://www.bioconductor.org/packages/release/bi
oc/html/minfi.html) in R and were converted into a score,
referred to as a beta value.

3.8 Screening of diagnostic biomarkers

Receiver operating characteristic (ROC) analysis
combines sensitivity and specificity to comprehensively
evaluate diagnostic accuracy or discriminant effect. The
“pROC” package (version 1.68.1, http://www.bioconduct
or.org/packages/release/bioc/html/ROC.html) [24] was ap-
plied to evaluate the diagnostic value of hub genes and to
screen out the diagnostic biomarkers of PPD.

3.9 Statistical Analysis

All statistical analysis were measured as mean ±
standard deviation. R software (version 3.5.2, https://www.
r-project.org/) was utilized to measure the data.

4. Results

4.1 Identification of DEGs

There was a total of 21 PBMCs samples in this
study, which included 5 healthy control and 16 PPD sam-
ples. There were 8979 DEGs. Then, the cutoff criteria were
adjusted p value < 0.05, log FC >0.5, or log FC <–0.5. A

total of 673 DEGs, including 163 upregulated genes and
510 downregulated genes, were explored after analyzing
GSE45603. The expression level is displayed in Fig. 1A,B.

4.2 GO Function and KEGG pathway enrichment
analysis

GO function annotation and KEGG pathway en-
richment analysis were conducted to obtain more com-
prehensive knowledge of the selected DEGs. As for BP,
the upregulated DEGs were mainly implicated in the reg-
ulation of translation, rRNA processing, regulation of im-
mune response, and SRP-dependent cotranslational protein
targeting the membrane. Mitochondrion, T cell receptor
complex, ribosome, mitochondrial inner membrane, and
cytosolic large ribosomal subunits were involved in the
CC. Changes in MF were mainly enriched in the struc-
tural constituents of ribosomes, methyltransferase activity,
poly (A) RNA binding, protein binding, and mRNA bind-
ing (Supplementary Fig. 2A). The downregulated DEGs
were mainly responsible for reciprocal meiotic recombi-
nation, antigen processing, and presentation of exogenous
peptide antigen via MHC class I, TAP-independent, posi-
tive regulation of long-term synaptic potentiation, positive
regulation of macroautophagy, and negative regulation of
gene expression in BP. Cytoplasmic, cytosolic, phagocytic
vesicle membrane, NADPH oxidase complex, and focal
adhesion in CC. Protein binding, four-way junction DNA
binding, superoxide-generating NADPH oxidase activator
activity, superoxide-generating NADPH oxidase activity,
and enzyme binding in MF (Supplementary Fig. 2B).

http://www.bioconductor.org/packages/release/bioc/html/minfi.html
http://www.bioconductor.org/packages/release/bioc/html/minfi.html
http://www.bioconductor.org/packages/release/bioc/html/ROC.html
http://www.bioconductor.org/packages/release/bioc/html/ROC.html
https://www.r-project.org/
https://www.r-project.org/
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Fig. 2. Construction of co-expressionmodules by theWGCNA. (A) The cluster dendrogram of genes in GSE45603. Branches of the cluster dendrogram
of the most connected genes gave rise to eleven gene co-expression modules. Every gene represents a line in the hierarchical cluster. The distance between
two genes is shown as the height on the y-axis. (B) Interaction relationship analysis of 400 selected co-expression genes. Different colors of the horizontal
axis and vertical axis represent different modules. The brightness of yellow in the middle represents the degree of connectivity of different modules. There
was no significant difference in interactions among different modules, indicating a high degree of independence among these modules. (C) Hierarchical
clustering of module hub genes that summarize the modules yielded in the clustering analysis. (D) Heatmap plot of the adjacencies in the hub gene
network.

Fig. 3. Top 30 genes in (A) turquoise module, (B) yellow module, and (C) green module. The size of the node represents the clustering coefficient.
The color of the node indicates its degree, the bigger the node, the greater the number of connections it has, blue, yellow and orange color represent big,
middle and small degrees respectively. (A) Hub genes in turquoise module. (B) Hub genes in yellow module. (C) Hub genes in green module.
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Fig. 4. Validation of diagnostic value for the hub genes in PPD. (A,B) ROC curve of the hub genes for PPD diagnosis.

The enrichment analysis results of KEGG pathway demon-
strated that upregulated DEGs were mainly involved in ri-
bosome enrichment, biosynthesis of amino acids, oxida-
tive phosphorylation, ribosome biogenesis in eukaryotes,
and hematopoietic cell lineage (Supplementary Fig. 2C).
The downregulated DEGs were mainly enriched in phago-
somes, osteoclast differentiation, antigen processing and
presentation, glucagon signaling pathway, and Forkhead
box O3 (FoxO) signaling pathway (Supplementary Fig.
2D).

4.3 Module Screening from the PPI network

The PPI network consisted of 571 nodes and
2213 edges, and module A (score = 17.263, including
20 nodes and 164 edges; Supplementary Fig. 3A),
and B (score = 8.5, including 37 nodes and 135 edges;
Supplementary Fig. 3B) with score >8 was identi-
fied from the PPI network. To establish DEGs from in-
teractive PPI networks, these genes were imported into
the STRING tool, the data from STRING was imported
into Cytoscape (Supplementary Fig. 4A), and 30 hub
genes were identified from the PPI network by cytoHubba
(Supplementary Fig. 4B) and visualized by NetworkAna-
lyzer (Supplementary Fig. 4C).

4.4 Weighted co-expression network construction and
key modules selection

Firstly, we checked the data quality in
GSE45603. All samples were taken for subsequent
analysis (Supplementary Fig. 5). DEGs containing
8979 genes was analyzed using WGCNA, and modules
containing highly related genes were identified. Based on

the approximate scale-free topology criterion, soft thresh-
old power was 14 (scale-free R2 = 0.86) was optimized
(Supplementary Fig. 6A and Supplementary Fig. 6B).
There were 12 modules (Fig. 2A), 1921 genes in turquoise
module, 704 genes in yellow module, and 447 genes in
green module. The 2736 genes that could not be included
in any module were placed into the gray module and
identified as non-co-expressed.

4.5 Correlation between modules and identification of
key modules

The 400 genes were selected to draw a network
heat map (Fig. 2B). Our results so far showed that the
turquoise, yellow, green, and blue modules were inde-
pendently verified and showed a high degree of indepen-
dence between modules and the relative independence of
the genes expressed in each module. The 11 modules were
divided into twomain clusters: one consists of twomodules
(turquoise, black), while the other consists of nine modules
(magenta, brown, pink, blue, greenish-yellow, green, red,
purple and yellow modules; Fig. 2C). Finally, heat maps
were drawn according to the connectivity of characteristic
genes to visualize the results (Fig. 2D).

4.6 Identification and distribution of hub genes

The turquoise, yellow, and green modules were vi-
sualized by Cytoscape, and the top 30 genes were screened
out by sorting node degree candidate genes for further anal-
ysis (Fig. 3A–C). Cross-validation of the data from these
three modules and DEGs revealed 3 genes (HNRNPA2B1,
IL10, and RAD51) in both DEGs and the green module,
4 genes (UBA52, NHP2, RPL13A, FBL) in both DEGs
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Fig. 5. The expression and methylation levels of HNRNPA2B1, RPL13A and UBA52. (A) The expression levels of the three genes (HNRNPA2B1,
RPL13A and UBA52) were correlated with PPD (based on microarray data of GSE44132). (B) The methylation levels of HNRNPA2B1, RPL13A and
UBA52 (based on microarray data of GSE44132).

and the turquoise module, and 1 gene (SPI1) in both DEGs
and the yellow module (Supplementary Fig. 7A). These 8
genes were observed based on the average functional simi-
larity (Supplementary Fig. 7B).
4.7 Screening of diagnostic biomarkers

The diagnostic efficiencies of 8 hub genes were
evaluated by ROC curve analysis (Fig. 4). The AUC
of ROC curves were 0.902, 0.790, 0.797, and 0.808 for
HNRNPA2B1, interleukin 10 (IL-10), RAD51, and ubiq-
uitin A-52 residue ribosomal protein fusion product 1
(UBA52), respectively (Fig. 4A). The AUC of ROC curves
were 0.827, 0.818, 0.865, and 0.763 for NHP2, riboso-
mal protein L13a (RPL13A), fibrillarin (FBL), and Spi-1
proto-oncogene (SPl1), respectively (Fig. 4B). AUC values
within the range of 0.700–0.900 were considered to have
moderate accuracy. Thus, HNRNPA2B1, IL10, RAD51,
UBA52, NHP2, RPL13A, FBL, and SPI1 were the hub
genes with higher diagnostic value.

4.8 Expression of the hub genes after methylation
analysis

Using GSE44132 dataset, we investigated the re-
lationship between methylation levels of 8 genes and PPD
susceptibility, and explored the possible mechanism of PPD
occurrence. Data from 36 whole blood samples (11 PPD
samples and 25 healthy controls) passed quality control in-
dicators and were analyzed. In the GSE45603 dataset, HN-
RNPA2B1 was down-regulated, and RPL13A and UBA52
were significantly up-regulated in the PPD group, com-
pared with the control group (Fig. 5A). It’s worth noting
that, highly differentiated methylation sites were found in
HNRNPA2B1, RPL13A, and UBA52 genes: cg19062098
(p-value = 0.036), cg18208268 (p-value = 0.039), and
cg25699533 (p = 0.012) (Fig. 5B).

4.9 GSEA analysis of hub genes
Because HNRNPA2B1, RPL13A, and UBA52

had highly significantly differentiated methylated posi-
tions, we selected the three genes for follow-up studies. To
identify the potential functions of these hub genes, GSEA
was conducted to identify enriched biological processes
in the samples. Geneset enrichment analysis (GSEA) for
gene sets related to HNRNPA2B1, RPL13A and UBA52
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Fig. 6. Gene set enrichment analysis (GSEA) for gene sets related to HNRNPA2B1, RPL13A and UBA52 expressions. (A) HN-
RNPA2B1 was lowly expressed in the gene set of “OLFACTORY_TRANSDUCTION”, “BUTANOATE_METABOLISM”, and “MELANOMA”.
(B) RPL13A was highly expressed respectively in the gene sets of “AMINOACYL_TRNA_BIOSYNTHESIS”, “LYSINE_DEGRADATION”
and “BUTANOATE_METABOLISM”. (C) UBA52 was highly expressed in the gene sets of “AMINOACYL_TRNA_BIOSYNTHESIS”, “LY-
SINE_DEGRADATION” and “BUTANOATE_METABOLISM”.

expressions. Our results found that, compared with healthy
control, HNRNPA2B1 was down-regulated and RPL13A
and UBA52 were up-regulated in the PPD samples, respec-
tively (Fig. 5A), thus we considered that lowly expression
of HNRNPA2B1 and highly expressions of RPL13A
and UBA52 were involved in which pathways. Results
suggested that HNRNPA2B1 was lowly expressed in

the gene set of “OLFACTORY_TRANSDUCTION”,
“BUTANOATE_METABOLISM”, and
“MELANOMA” (Fig. 6A). RPL13A and UBA52
were highly expressed in the gene sets of
“AMINOACYL_TRNA_BIOSYNTHESIS”,
“LYSINE_DEGRADATION” and “BU-
TANOATE_METABOLISM” (Fig. 6B,C).
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5. Discussion

PPD is a major public health concern, affecting 10
to 15 percent of mothers worldwide [25]. Investigations are
being performed to develop a non-invasive and quantitative
clinical test to support PPD diagnosis, nevertheless, no spe-
cific or sensitive biomarkers in whole blood are currently
available for the diagnosis of PPD [26, 27]. Thus, we per-
formed several bioinformatic methods to identify the exact
pathological mechanisms and effective diagnostic biomark-
ers of PPD. In the first part of our study, we determined
the hub genes and pathways associated with PPD within
whole blood samples. A total of strictly screened 673DEGs
(|LogFC|>0.5 was used as a cutoff, with the p value< 0.05
regarded as statistically significant, 163 upregulated genes
and 510 downregulated genes) and 30 hub genes were ex-
plored from the GSE45603 dataset. Next, we applied a new
approach, WGCNA, to validate gene co-expression mod-
ules related to the molecular mechanisms underlying PPD.
GEO2R identified 8979 genes which were analyzed to con-
struct a co-expression network and generate a highly cor-
related co-expression gene group. There were three highly
correlated modules (turquoise, yellow, and green modules)
obtained from the WGCNA analysis. We regarded the top
three hub genes (HnRNPA2B1, FBL, and SPI1), both in
the PPI network and co-expression network, as “real” hub
genes, which may function as important regulators in the
pathogenesis of PPD.

Recently, it has been widely accepted that en-
docrine [28], immune response [29], and genetic and epi-
genetic factors [30], are all involved in the pathogenesis
of PPD. Our study found that genes in the three modules
identified by WGCNA (turquoise, green, and yellow mod-
ules) were mainly enriched in innate immune response, sig-
nal transduction, intracellular signal transduction, inflam-
matory response, and viral processes. The green mod-
ule was enriched in the regulation of transcription (DNA-
templated), gene expression, response to ionizing radiation,
and RNA processing.

According to the cross-validation of data from the
three modules and DEGs, eight genes acted as high de-
gree genes. Among these eight genes, we were interested
in the HnRNPA2B1, Fibrillarin (FBL), and Spi-1 proto-
oncogene (SPI1). HnRNPA2B1, an RNA-binding protein
and one member of the heterogeneous nuclear ribonucleo-
protein family, initiates and amplifies the innate immune re-
sponse. HnRNPA2B1 dimerization is required for nucleo-
cytoplasmic translocation and initiation of IFN-α/β expres-
sion [31]. Furthermore, hnRNPA2B1 is also involved in
the pathogenesis of several devastating neurodegenerative
diseases. Mutations in prion-like domains of hnRNPA2B1
play a causal role in multisystem proteinopathy (MSP) and
may be involved in the pathogenesis of amyotrophic lateral
sclerosis (ALS) [32]. Fibrillarin (FBL), a molecular marker
of transcriptionally active RNA polymerase I, catalyzes the

2’-O-methylation of ribosomal RNAs. FBL plays an impor-
tant role in ribosome biogenesis, particularly in the methy-
lation of ribosomal RNAs and rDNA histones [33, 34].
Recent work has indicated that FBL may be an important
component of ribosome size, life duration in multicellular
organisms, and ribosomal RNA production, all of which
are correlated with age in healthy humans [35, 36]. Spi-
1 proto-oncogene (SPI1), the E26 transformation-specific
(ETS) family transcription factor PU.1, serves as a master
regulator of myeloid and lymphoid development and is pri-
marily expressed in monocytes/macrophages, neutrophils,
mast cells, B cells, and early erythroblasts [37, 38]. The
function of SPI1 is closely related to microglial viability
and phagocytic capability. The targets of SPI1 demon-
strate a significant relationship with the pathways defined
as “Endocytosis”, “Fcγ receptor-mediated phagocytosis”,
“Chemokine signaling pathway”, and “MAPK signaling
pathway” [38, 39]. UBA52, a ubiquitin-ribosomal fusion
gene and located in chromosome 19, is a major source
of ubiquitin protein for covalent modification of proteina-
ceous substrates recycled by ubiquitin-proteasome system
(UPS) [40]. UBA 52 encodes a fusion protein comprising
ubiquitin at the N-terminus and RPL40 at the C-terminus
[41]. Upon translation, ubiquitin and RPL40 are imme-
diately cleaved from the translated product [42]. RAD51
has the function of discovering and invading homologous
DNA sequences, and can be repaired accurately and timely
[43]. NHP2 gene is a member of the H/ACA snoRNPs
(small nucleolar ribonucleoproteins) gene family. snoRNPs
are involved in various aspects of rRNA processing and
modification [44]. RPL13A encodes a member of the ri-
bosomal protein L13P family and is a component of the
60S subunit. The protein encoded as a component of the
IFN-γ activated translational inhibitor (gait) complex also
plays a role in inhibiting inflammatory genes [45]. How-
ever, the functions of RAD51, NHP2, and RPL13A in
PPD did not study in detail. Interestingly, the pathway en-
richment analysis indicated that genes in the three mod-
ules were enriched in “neurotrophin signaling pathway”
and “chemokine signaling pathway”, which partly coin-
cided with SPI1 targets. The neurotrophin signaling path-
way includes several neurotrophic factors, largely a fam-
ily of secreted proteins that benefit in the growth, survival,
and differentiation of neurons. Due to its beneficial and
therapeutic effects on the neuronal physiology, researchers
have intensively studied neurotrophic factors for decades
[43]. Recently, neurotrophic factors have been consid-
ered as having significant links with the pathophysiology
of neurological and neuropsychiatric disorders. Emerging
evidence has demonstrated that brain-derived neurotrophic
factor (BDNF), a well-known neurotrophic factor, is in-
volved in PPD and its treatments. Clinical studies have ob-
served a link between PPD symptoms and single nucleotide
polymorphisms (SNPs) in BDNF [44]. Postpartum female
mice induced by chronic unpredictable stress exhibited low
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expression of BDNF mRNA in the mPFC region [45]. In
the serum of patients with PPD at admission and during de-
velopment, BDNF levels were lower than healthy individ-
uals. Fluoxetine, a classic treatment for women with PPD,
may mediate its antidepressant effect in PPD by upregu-
lating BDNF expression [46]. Second, to protect the fe-
tus against pathogens and receive the semi-allogenic mark-
ers as the fetus, the immune system of the mother would
go through a tremendous adaptation during pregnancy [47].
Inflammatory cytokine levels may obviously increase in the
periphery during cervical ripening [48]. Furthermore, since
the mother’s immune system recovers to the previous non-
pregnant state after delivery, subsequently, the change in
inflammatory cytokine levels may affect mood [49]. Brew-
ster et al. [50] reported that there was a close relationship
between chemokines and PPD, which is manifested by in-
creased levels of pro-inflammatory cytokines, such as IL-
18 and C-X-C motif chemokine 1 (CXCL1). PPD was
positively correlated with multiple genes in the immune
response of an immobilization stress-induced mouse PPD
model. The neurotrophin signaling pathway and chemokine
signaling pathway may be deeply involved in the mecha-
nisms of PPD; however, it remains a major challenge that
required continued exploration.

There were two previous studies to find biomark-
ers of PPD based on GSE45603 dataset. Lauren et al.
[51] reported that the objective of this study was to in-
dependently replicate their previously published prediction
model of postpartum depression and women without a his-
tory of psychiatric disorders, and to further investigate the
DNAmethylation status of postpartum depression biomark-
ers associated with changes in pregnancy hormone levels
and the timing of major hormonal changes. Maria et al.
[52] focused on whether abnormal patterns of circulating
levels of cytokines and chemokines may offer a suitable
biomarker for disease development and/or therapeutic re-
sponse. The objective of the present study and the previ-
ous two study were both searching for biomarkers of PPD.
However, there were several differences among these stud-
ies. Our present study only observed the postpartummental
state and healthy controls. Lauren et al. collected different
gestation process samples and used their ownmodel to iden-
tify biomarker, their key point was changes in hormone lev-
els. The emphasis of Maria’ study was chemokines levels.
Our present study did not classify genes, we put all DEGs
into WGCNA and obtained hub genes, and the functions of
genes were involved in various aspects of cell.

There were several limitations to our present
study. First, in order to comprehensively determine dys-
functions related to PPD, both brain tissue and blood sam-
ples would need to be integrated. However, our present
study did not perform an analysis of brain tissue. Second,
only onemicroarray was included in the computerized anal-
ysis, and likely leading to one-sided results and a high false-
positive rate. Third, our present study only performed data

mining and data analysis and did not conduct any exper-
iments to validate the results. Finally, there were only 5
healthy control samples and 16 PPD samples selected for
analysis; thus, it is necessary to increase the sample size to
validate the accuracy of the results in a follow-up study.

6. Conclusions

Based on our knowledge, we for the first time used
the system biology-based WGCNA method to predict sev-
eral potential biological pathways and diagnostic biomark-
ers involved in PPD. WGCNA and co-expression network
analysis identified key biological processes and signal-
ing pathways, especially the neurotrophin signaling path-
way, chemokine signaling pathway, Fcγ receptor-mediated
phagocytosis, and the MAPK signaling pathway, which
may contribute to the elucidation of the pathogenesis and
progression of PPD. The potential diagnostic biomarkers
included HNRNPA2B1, IL10, RAD51, UBA52, NHP2,
RPL13A, and FBL. Finally, in-depth molecular biological
experiments are required to determine the exact functions of
the biological pathways and diagnostic biomarkers of PPD.
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