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1. Abstract

Background: Corona Virus Disease 2019
(COVID-19) is an acute respiratory infectious disease
caused by severe respiratory syndrome coronavirus 2
(SARS-CoV-2). The primary pathogenesis is over-
activation of the immune system. SARS-CoV-2 continues
to mutate and spread rapidly and no effective treatment
options are yet available. Mesenchymal stem cells (MSCs)
are known to induce anti-inflammatory macrophages,
regulatory T cells and dendritic cells. There are a rapidly
increasing number of clinical investigations of cell-based
therapy approaches for COVID-19. Objective: To
summarize the pathogenic mechanism of SARS-CoV-2,
and systematically formulated the immunomodulation
of COVID-19 by MSCs and their exosomes, as well as
research progress. Method: Searching PubMed, clinical-
trials.gov and Chictr.cn for eligible studies to be published
or registered by May 2021. Main keywords and search

strategies were as follows: ((Mesenchymal stem cells)
OR (MSCs)) AND (COVID-19). Results: MSCs regulate
the immune system to prevent cytokine release syndrome
(CRS) and to promote endogenous repair by releasing
various paracrine factors and exosomes. Conclusions:
MSC therapy is thus a promising candidate for COVID-19.

2. Introduction

According to real-time WHO network data, the
worldwide number of confirmed COVID-19 cases to April
22, 2021 was 143,488,236 and 3,055,587 deaths, posing an
unprecedented threat to the global economy and to human
health [1]. The International Committee on the Taxonomy
of Viruses named the COVID-19 pathogen as SARS-CoV-
2. This virus gains phagocytic entry into AT2 via inter-
action with angiotensin-converting enzyme 2 (ACE2) (See
Fig. 1). It increases Angiopoietin-2 (Ang-2) levels, lead-
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Fig. 1. The pathological processes of COVID-19 (blue arrows) and multiple therapeutic mechanisms of MSCs and their exosomes in COVID-19
(green arrows). (a) SARS-CoV-2 gains entry into AT2s via ACE2. (b) Immune cells recognize SARS-CoV-2 via TLRs. (c) T cells are polarized into
pro-inflammatory phenotypes. (d) Excessive activation of M1 causes CRS. (e) Inflammation and oxidative damage cause lung fibrosis and remodeling.
MSCs reduce fibrosis by various paracrine factors. (f) MSCs force T cells to polarize into Tregs. (g) MSCs and MSC-exosomes increase the number of
anti-inflammatory M2 macrophages. (h) MSCs restore microvascular permeability. (i) MSCs activate the Na+/K+ pump to remove lung fluid and reduce
pulmonary edema. Abbreviations: ECM, extracellular matrix; PGE 2, Prostaglandin E 2; COX, Cyclooxygenase; HGF, hepatocyte growth factor; KGF,
keratinocyte growth factor.

ing to long-term and intense activation of pro-inflammatory
Ras-related pathways. A high concentration of Ang-2 in
the lung interstitium promotes cell apoptosis, releases pro-
inflammatory cytokines and triggers the inflammatory re-
sponse, thereby causing immune-induced tissue damage
and increased vascular permeability [2, 3]. In patients with
severe disease, the development of CRS is an abnormal sys-
temic inflammatory response that manifests clinically as a

rapid and sharp rise in the level of cytokines. These include
C-X-C Motif Chemokine Ligand 10 (CXCL10), monocyte
chemo-attractant protein-1 (MCP-1/CCL2), macrophage
inflammatory protein-1 (MIP-1), platelet-derived growth
factor (PDGF), tumor necrosis factor-α (TNF-α) and vas-
cular endothelial growth factor (VEGF) [4]. This mecha-
nism results in an imbalance between tissue damage and
repair, leading to respiratory failure. Patients may eventu-
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Table 1. The potential roles and mechanisms of MSC-exosomes in various diseases.
Functions Involved genes/factors/pathways Diseases References

(+) Immunomodulatory activities (+) re-
pair (+) angiogenesis (–) fibrosis

miR-21, miR-24, miR-124, miR-145, miR-122, KGF,
VEGF, HGF, VE-cadherin, Occludin-1, Claudin-1, PCNA,
Cyclin D1, IDO, Wnt/β-catenin signalling, TGF-β1/Smad 2

COVID-19 [17–22]

(–) EMT miR-182-5p, miR-23a-3p (-) NF-κB, Hedgehog LPS induced lung injury [23]
(–) Inflammation, proliferation miR-34a, miR-122, miR-124, miR-127 IPAH [24]
(–) Leukocyte infiltration ICAM-1 ARDS [25]
Anti–viral COX-2, PGE2 Influenza [26]
(–) Airway hyperresponsiveness miR-146a-5p Allergic airway inflammation [27]
(–) Autophagy, apoptosis miR-125b, Bcl-xL, Bcl2, and BIRC8 (-) Caspase1, Caspase

8, lymphotoxin α
Myocardial infarction, acute
kidney injury.

[28, 29]

(–) Fibrosis (-) Col-I, Col-III, TGF-β1/Smad Liver fibrosis [30, 31]
(+) M2 macrophage polarization miR-1260b (-) Wnt5a/RANKL Periodontitis, Tendon healing [32, 33]
(+) Treg cell induction, T–cell apoptosis FASL/FAS Acute colitis [34]
(–) Dendritic cell maturation a blockade in G0/G1 phase of the cell cycle LPS intervention [35]
(+) Autophagy AMPK/ /mTOR, Akt/mTOR Myocardial I/R [36]

(+) indicates stimulation. (–) indicates inhibition.

ally die from multiple organ failure. Disruption of matrix
metalloproteinases (MMPs) during the inflammatory stage
causes complex damage to the alveolar epithelium and to
the pulmonary vascular endothelium [5]. Moreover, per-
sistent stimulation of epithelial cells results in senescence-
related phenotypes. Consequently, abnormal interactions
between fibroblasts and epithelial cells generate irreversible
damage and fibrosis [6].

Although the efficacy of vaccines in preventing
COVID-19 ranges from 50% to 95%, an increasing num-
ber of COVID-19 cases still require effective treatment op-
tions [7, 8]. There is currently no standard drug therapy for
COVID-19. Antiviral, anti-malarial and anti-inflammatory
drugs are unable to repair or regenerate lung tissues, espe-
cially in patients with severe complications such as acute
respiratory distress syndrome (ARDS) [9–11]. Since the
outbreak of COVID-19, a number of studies have been car-
ried out on MSCs and MSC-exosome therapy for this dis-
ease. MSCs have good safety for the treatment of COVID-
19 and show particular clinical efficacy in shortening the
course of disease, alleviating lung injury and reducing the
level of inflammatory factors [6, 12, 13]. This is expected
to provide a new approach for the treatment of severe and
critical COVID-19. MSC-exosomes also show promise as
a cell-free substitute for COVID-19 [14–16] (Table 1, Ref.
[17–36]). The potential mechanisms of action of MSCs and
MSC-exosome therapy are shown in Figs. 1,2.

3. MSCs regulate immune cells in COVID-19

3.1 MSCs interfere with the differentiation,
maturation, and function of antigen-presenting cells
(APCs) in COVID-19

Once SARS-CoV-2 infects the human lung epithe-
lium and is internalized (Fig. 1a), SARS-CoV-2 RNA acti-

vates the intracellular receptors TLR3/7 and membrane re-
ceptors TLR2/4. TLR3 in dendritic cells (DCs) specifically
recognize dsRNA, an intermediate product of viral repli-
cation, thereby activating nuclear factor kappa-B (NF-κB)
and interferons (IFNs). TLR2 and TLR4 located on the sur-
face of macrophages and DCs can activate interferon reg-
ulatory factors (IRFs) and NF-κB, resulting in the produc-
tion of different cytokines and chemical activators. TLR2
can mediate DCs to express interleukin-8 (IL-8) and IL-23
(Fig. 2b), while TLR4 mainly mediates DCs to produce IL-
12 and IFN-γ-induced protein 10 (IP-10). IP-10 in turn
stimulates T cells to secrete IFN and promotes the differ-
entiation of T helper-type (Th) cells into Th1 cells (Fig. 1c)
[24].

MSCs can interfere with the antigen-presenting
function, differentiation and maturation of DCs by
paracrine IFN-γ, indoleamine 2,3-dioxygenase (IDO),
transforming growth factor-β (TGF-β), IL-10 and
prostaglandin E2 (PGE2) [37]. Consequently, this reduces
the activation of DCs and their pro-inflammatory secretions
[38, 39]. Leng et al. [40] observed a significant increase
in the number of CD14+CD11c+CD11mid low-activity
phenotypic DCs on day 6 after MSC transplantation. This
prevented the excess proliferation of T cells in COVID-19
patients. The interaction between MSCs and DCs also
leads to an indirect conversion of pro-inflammatory Th1 to
anti-inflammatory Th2 immunity [41].

3.2 MSCs regulate the polarization of macrophages in
COVID-19: from M1 to M2

Pro-inflammatory macrophages were reportedly
more abundant in the bronchoalveolar lavage fluid from se-
vere compared to mild COVID-19 cases [42]. Zhang et
al. [43] proposed that CRS in severe COVID-19 is mainly
a virus-triggered macrophage activation syndrome. Viral
RNA stimulates macrophages to produce various soluble
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Fig. 2. MSCs act on COVID-19 through multiple mechanisms and specific secretory products (light yellow squares). (a) SARS-CoV-2 causes
immune-induced tissue damage via pro-inflammatory Ras-related pathways. (b) TLRs of immune cells recognize SARS-CoV-2, leading to CRS. (c)
MSCs have powerful anti-inflammatory and immunomodulatory functions. (d) MSCs repair microvascular permeability and alleviate pulmonary edema.
(e) MSCs secrete substances to inhibit the hyperplasia of fibrin and collagen, thereby alleviating PF. + indicates stimulation. – indicates inhibition.

factors via the activation of TLRs. These factors include
IFN-γ, IP10, MCP1, MIP10, granulocyte colony stimu-
lating factor (G-SCF), IL-2, IL-6, IL-7 and TNF-α. In
particular, IL-6 and TNF-α cause macrophages to differ-
entiate into M1 (Fig. 1d), thus causing an imbalance in
M1/M2. In addition to direct stimulation by viral RNA,
ATP is released by the dead cells as DAMPs and binds to
the P2X7 receptor (P2X7R). This in turn activates NOD-
like receptor protein 3 (NLRP3) inflammasomes and in-
creases macrophage-derived IL-1β and IL-18 [37]. The
loss of alveolar macrophages is a major underlying cause of

refractory respiratory failure in COVID-19 and it has been
reported they are almost entirely depleted in severely in-
fected patients [44].

MSCs regulate macrophage polarization to limit
inflammation and to promote tissue healing following in-
jury. Anti-inflammatory soluble factors and two main in-
hibitory molecules secreted or expressed by MSCs trigger
the immune system’s inhibitory response. MSCs are stim-
ulated to produce IL-10, thyrotropin-releasing hormone-6
(TRH-6), human leukocyte antigen (HLA), human growth
factor (HGF), heme oxygenase-1 (HO-1) [45], superoxide
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dismutase (SOD), cyclooxygenase-2 (COX-2), PGE2 and
IDO [46]. Meanwhile, MSCs are induced by IFN-γ to up-
regulate the expression of other inhibitory molecules, in-
cluding PD-1/PDL-1 and FAS-FASL [47–49]. These sol-
uble factors and molecules inhibit pro-inflammatory path-
ways such as the NF-κB signaling pathway and also polar-
ize M1 macrophages into the anti-inflammatory M2 phe-
notype [50, 51]. In this way, MSCs reduce the production
of inflammatory cytokines by macrophages in COVID-19
[52].

3.3 MSCs regulate lymphocyte subsets and apoptosis in
COVID-19

Flow cytometry analysis has shown that the num-
ber of CD4+ and CD8+T cells in the peripheral blood of
COVID-19 patients was significantly reduced, with the de-
gree of reduction being related to the severity of COVID-
19 [53]. This phenomenon may be related to the re-
cruitment of T cells from peripheral blood to lung tis-
sue, and to the apoptosis of T cells induced by the virus
[54]. COVID-19 patients present with lymphocyte defi-
ciency and over-activation of T cells. These effector T cells
are stimulated by pro-inflammatory mediators produced by
DCs, macrophages and neutrophils [55, 56]. A significant
rise in HLA-DR+CD38+ cell levels can manifest in the
over-activation of T cells. The proportion of highly pro-
inflammatory CCR4+CCR6+ Th17 cells amongst CD4+ T
cells then increases [57]. High expression of IL-17A in
Th17 induces the migration of inflammatory white blood
cells, leading to inflammatory infiltration and destruction
of lung tissue. Additionally, the major histocompatibility
complex 1 (MHC-1) of infected cells presents viral anti-
gens, thus activating CTLs to produce high levels of cyto-
toxic granules such as perforin and granzymes. This implies
that over-activation of T cells and the elevated cytotoxic-
ity of CD8+T cells leads to an excessive immune response.
T cell-derived cytokines and chemokines such as TNF-α,
IFN-γ, IL-2, IL-12, CCL2, IL-18, CCL9, CXCL10, IL-6
and IL-17 are released in large quantities and damage the
lung tissue [58]. When the T cell count falls to its lowest
level, the concentrations of serum IL10, IL2, IL4, TNF-α
and IFN-γ reach their peak on days 4–6. Moreover, the
levels of IL-6, IL-7, G-CSF, IP-10, monocyte chemotactic
protein-1 (MCP-1) and MIP1a increase significantly, thus
causing CRS [59].

Leng et al. [40] reported that on day 4 after MSC
transplantation, the absolute lymphocyte count increased
to 0.58 × 109/L and lymphocytopenia improved signifi-
cantly. On days 3 to 6 after transplantation, the level of
TNF-α decreased whereas that of IL-10 increased. Similar
reversals were reported in another study [60]. T cell counts
were also analyzed in a non-randomized, open-label cohort
study of COVID-19 patients [18]. This indicated thatMSC-
exosome therapy significantly improved the absolute neu-
trophil count by amean of 32% [p value< 0.001] in patients

with severe COVID-19. Moreover, the mean CD3+, CD4+
and CD8+ lymphocyte counts increased by 46% (p< 0.05),
45% (p < 0.05) and 46% (p < 0.001), respectively.

The mechanism of action of MSCs in reversing
lymphocytopenia and reducing inflammatory mediators in
COVID-19 is mainly attributed to the more than 30 solu-
ble paracrine factors such as PEG2, IDO and COX-2 [61].
These have been shown to inhibit the proliferation of CD4+
Th1 and Th17 cells as well as CD8+T cells, and to in-
duce Foxp3+ Treg differentiation (Fig. 1f). They also in-
directly inhibit excessive T cell proliferation by interact-
ing with APCs and other immune cells. IL-10 is a critical
negative regulator of T cell responses and directly inhibits
the ability of T cells to produce pro-inflammatory media-
tors. IL-10 also reduces the antigen presenting capacities
and co-stimulation of macrophages and DCs, thereby de-
creasing T cell-derived IL-6 and TNF-α, which is one of
the essential mechanisms by which MSCs alleviate inflam-
mation [62, 63]. This was demonstrated in a recent clinical
report by Meng et al. [64] which showed that patients who
received MSCs had lower IL-6 levels than those who re-
ceived placebo [65].

Through their expression of PD-L1 and FasL,
MSCs can inhibit abnormally activated Th1 cells, thus
inhibiting IL-γ release from Th1. This prevents fur-
ther macrophage activation in a vicious loop and restores
Th1/Th2 balance. Long-term FasL interaction can induce
apoptosis of cytotoxic T cells [66].

At the same time,MSCs release TGF-β which pro-
motes the proliferation of CD4(+) CD25(+) FoxP3(+) Treg,
CD3(+) CD8(+) CD28(–) T-suppressor cells (Ts), and IL-
10-producing B cells [67]. MSCs also up-regulate IDO and
PGE2, which have synergistic inhibitory effects on NK and
Th17 cells. MSCs inhibit B cells through cell cycle stagna-
tion in the G0/G1 phase rather than by inducing apoptosis.
With regard to cellular immunity, MSCs reduce the produc-
tion of immunoglobin M (IgM), IgG, and IgA, and down-
regulate the expression of CXCR4, CXCR5 and CXCR7 in
B cells, thereby altering their chemotactic properties [68].

4. MSCs improve ARDS in COVID-19

ACE2 is down-regulated following the entry of
SARS-CoV-2 into alveolar epithelial cells, resulting in
an imbalance of ACE/Ang II/AT1R and ACE2/Ang 1-
7/MASR. Elevated Ang-2 levels then lead to cell apoptosis
and trigger inflammatory responses, giving rise to immune-
induced tissue damage and increased vascular permeability
[69–71] (Fig. 2b).

In COVID-19 patients the average time from
symptom onset to dyspnea is 5 days, the average hospital
stay is 7 days, and the average time for onset of ARDS
is 8 to 9 days [72]. By day 8 to 14 of disease onset, the
overexpression of cytokines such as IL-2, IL-6, IL-7, IP10,
MCP1, MIP1A and TNFα causes activation of lympho-
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cytes and macrophages, leading to an excessive inflamma-
tory response [73]. The integrity of alveolar walls and pul-
monary capillaries are destroyed, resulting in edema that
impairs oxygen exchange and respiration and inevitably de-
velops into ARDS [74, 75].

MSCs and MSC-exosomes can effectively allevi-
ate COVID-19-induced ARDS in a dose-dependent manner
by increasing alveolar fluid clearance and by improving air-
way and hemodynamic parameters [76]. MSC-exosomes
have been used as intravenous infusion therapy for ALI
and pulmonary fibrosis (PF) [23, 77, 78]. An earlier study
showed the exosomes release keratinocyte growth factor
(KGF) and Lipoxin A4 which act to prevent long-term lung
damage caused by COVID-19 and to promote tissue re-
pair by activating Na+/K+ pumps [79] (Fig. 2d). Impor-
tantly, MSCs have been shown to restore epithelial protein
permeability, stabilize endothelial fluid leakage, and main-
tain alveolar-capillary barrier function by secreting Ang-1
[80–82]. In addition, MSCs can inhibit cellular signaling
pathways mediated by TLRs or PRRs, as well as reduc-
ing local immune cell recruitment (Fig. 2c). miRNA-126,
VEGF-α, phosphoinositide-3-kinase regulatory subunit 2
(PIK3R2) and high mobility group box chromosomal pro-
tein 1 (HMGB1) can each restore the vascular endothelial
cadherin-catenin (VE-Cadherin) complex and reduce en-
dothelial barrier permeability to relieve ARDS.

5. MSCs promote lung regeneration and
reverse PF in COVID-19

PF is a refractory lung disease that develops due to
persistent alveolar injury, repeated destruction, repair, re-
construction, and excessive deposition of extracellular ma-
trix (ECM) [83]. Current studies have determined that only
1% of AT2 cells can regenerate following SARS-CoV-2-
induced lung injury [84, 85].

High expression of IL-17A by Th17 in COVID-
19 can induce the migration of inflammatory leukocytes,
leading to inflammatory infiltration and the destruction of
lung tissue [86]. High levels of TNF-α induce the recruit-
ment of immune cells and reduce antioxidant molecules
in parenchymal and endothelial cells, causing lung fibro-
sis and remodeling (Fig. 1e). MSCs improve angiogene-
sis mainly through paracrine release of pro-angiogenic/anti-
apoptotic agents such as Ang, IL-3, MMP-1 and VEGF
[87]. They also secrete ECM regulators such as fibrob-
last growth factor, HGF and MMPs to regenerate damaged
tissues [88]. Moreover, MSCs express or secrete ADAM,
metallopeptidase with thrombospondin Type 1 Motif 2
(ADAMTS2), basic fibroblast growth factor (bFGF), col-
lagen 15A1 (COL15A1), COL16A2, COL18A1, HGF,
high temperature requirement A1 (HTRA1), lipoxyge-
nase (LOX), and tissue inhibitor of metalloproteinases 2
(TIMP2). These regulate the expression of collagen, fi-
bronectin and elastin fibrilaments in lung tissue, thereby

alleviating PF [89]. MSCs can also reverse PF by over-
expressing MMP-P1 and decreasing collagen-1 (COL-I)
production during TGF-β1-induced fibrosis. In conclu-
sion, MSCs can promote angiogenesis and the regenera-
tion of alveolar epithelial cells, prevent the apoptosis of en-
dothelial cells, reduce the levels of TGF-β, TNF-α, COL-I,
COL-III, Hydroxyproline and serum ceruloplasmin, inhibit
myofibroblast growth, and thereby alleviate or reverse PF
(Fig. 2e).

Human embryonic stem cells (hESCs) derived
from immune and stromal regulatory cells (IMRCs) have
been used to treat lung injury and fibrosis in vivo. IMRCs
have superior efficacy to FDA-approved pirfenidone [14]
and show excellent efficacy and safety in both mice and
monkeys [90].

6. MSC-exosomes for the treatment of
COVID-19

MSC-exosomes are able to transfer cargoes such
as mRNA, miRNA, proteins, lipids and even mitochon-
dria to target cells and tissues, resulting in changes to gene
expression and in the behavior of target cells. Hence,
MSC-exosomes could have a therapeutic role in COVID-
19 [91, 92]. Preclinical studies have confirmed that MSC-
exosomes are able to serve as acellular alternatives [78].

6.1 Comparison of MSC-exosomes and MSCs

6.1.1 Can MSC-exosomes effectively replace MSCs?

A growing number of studies have established
that the healing, nutritional, immunoregulation, and anti-
inflammatory effects of administered MSCs are due to the
exosomes they release. These effects of MSCs have been
observed in vitro after the addition of MSC-exosomes [37].
MSCs were cleared from the circulation within 24 hours,
but MSC-exosomes were detected in lung parenchymal
cells and macrophages just 1 hour after injection and re-
mained there for up to 7 days [93]. The efficacy and safety
of a single intravenous injection of MSC-exosomes were
recently assessed in 24 COVID-19 patients who presented
with moderate to severe ARDS. The clinical symptoms,
oxygenation, serum markers of acute inflammation, neu-
trophil and lymphocyte counts all improved in patients who
receivedMSC-exosomes, with no side effects reported [18].

The immunomodulatory effects of MSC-
exosomes have also been attributed to their anti-
inflammatory cargo, such as IDO, HLA-G, PD-L1,
galectin-1, IL-10, TGF-β1 and HGF. These factors inhibit
IL-1, IL-6, NK cells, effector and cytotoxic T cells, while
activating M2 macrophages and Treg to further suppress
the over-activated immune system [94, 95]. Importantly,
MSC-exosomes also transfer miRNAs that play a role in
COVID-19, including miRNA-145, miRNA-126, miRNA-
199a, miRNA-221, miRNA-27 and Let-7f [88, 96, 97]. In
coronavirus pneumonia and influenza, mi-RNAs carried by
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MSC-exosomes inactivate cytoplasmic mRNA encoding
proteins and change nuclear DNA through methylation
[26]. Thus by changing the expression of cell receptors and
directly preventing the entry of RNA viruses. In addition,
MSCs have comparable immunoregulatory activity.

MSC-exosome-transferred miRNAs cause APCs
to produce fewer Ag/MHC molecules on their surface, thus
resulting in reduced activation of effector T cells. miR-
NAs carried by MSC-exosomes also mediate the function
of macrophages, NK cells, T cells and B cells to inhibit in-
fection [98].

6.1.2 MSC-exosomes are safer than MSCs for COVID-19
treatment

In the context of COVID-19, MSCs are known
to aggregate in the peripheral microvasculature and ex-
acerbate vascular clots, causing central or peripheral vas-
cular dysfunction. This is probably because MSCs ex-
press procoagulant tissue factor (TF/CD142) on their sur-
face [99, 100].

The small size and low immunogenic effect of
MSC-exosomes allows them to pass through small blood
capillaries without triggering a blood clot [101]. Because of
their strong ability for self-replication and differentiation,
the carcinogenicity of MSCs is also another clinical chal-
lenge. MSC-exosomes cannot replicate and hence there is
no risk of endogenous tumor formation [102].

6.2 Unique advantages of MSC-exosomes over MSCs
for COVID-19 treatment

6.2.1 Advantages of MSC-exosomes for COVID-19:
practical considerations

The challenges surrounding the use of MSCs for
COVID-19 that still need to be overcome include their
immuno-compatibility, stability, heterogeneity, differenti-
ation and migration. The low homing rate of MSCs is
also the focus of current research. Although Xiao et al.
raised the possibility that CD90 binding to the specific inte-
grins b3 and b5 could to some extent promote MSC homing
[103], MSC-exosomes have an important advantage in their
homing ability. Due to their nanosized dimension, intra-
venously injected MSC-exosomes accumulate in COVID-
19-damaged organs through blood circulation [104]. MSC-
exosomes from allogenic sources can also be used immedi-
ately after thawing and without washing. In addition, MSC-
exosomes are easier to use routinely in hospitals compared
toMSCs. Finally, the cost of usingMSC-exosomes is much
lower than that of MSCs.

6.2.2 MSC-exosome as a drug and miRNA delivery
system for COVID-19

Designing miRNAs that specifically bind to the
SARS-CoV-2 genome could allow disruption of SARS-
CoV-2 without any side effects on human gene expression
[105]. Thus, MSC-exosomes that carry miRNAs may be
a promising new approach to COVID-19 therapy. MSC-

exosomes can be loaded with miRNAs either by direct
insertion of the nucleic acids, or by collecting the exo-
somes from genetically-modified MSCs [106]. For exam-
ple, miR-32, the first miRNA found to target viral RNA,
binds to retrovirus PFV-1 transcripts to reduce viral replica-
tion [107], while miR-146a has been shown to specifically
inhibit COX-2 in lung epithelial cells. miR-375 inhibits the
trans-differentiation of myofibroblasts and their synthesis
of collagen by blocking P38 [108].

MSC-exosomes are thus a novel intervention tool
for COVID-19 treatment that can successfully deliver ex-
ogenous miRNAs to exert antiviral function. When com-
bined with antiviral drugs such as Remdesivir, MSC-
exosomes can therefore serve as an effective drug delivery
system [109].

6.2.3 Potential of MSC-exosomes for vaccine development

Spike protein is one of the structural proteins of
SARS-CoV-2 that facilitates viral entry into the host cells.
Therefore, spike protein is a good target for the develop-
ment of anti-SARS coronavirus vaccines. Seraphin et al.
showed that MSC-exosome-based vaccines containing the
SARS-CoV-2 spike protein could induce high levels of neu-
tralizing antibodies [17, 110–112].

7. Clinical trials of MSCs and MSC-exosome
therapy for COVID-19

Current treatment trials for COVID-19 include
corticosteroids, PD-1/PD-L1 checkpoint inhibitors, cy-
tokine absorption devices, convalescent plasma [113] and
anti-malarial and antiviral drugs [114]. Definite clinical
benefits from these treatments have yet to be established
and their safety and efficacy still need to be validated
through Phase II and III clinical trials.

However, clinical trials have shown that MSC
therapy and its derivatives are promising candidates for
COVID-19 with known safety and efficacy. The United
States FDA has approved MSCs for severe COVID-19 pa-
tients as compassionate use and progress has been made
in this field. A study from Spain involving 13 COVID-19
patients requiring mechanical ventilation reported that no
treatment-related adverse events (TRAEs) were observed
[115]. After the first intervention with MSCs, clinical im-
provements were observed in 9 patients (70%) after a me-
dian follow-up of 16 days. Seven patients were extubated
and discharged, while 4 patients continued intubation (2
with improved ventilation and radiological parameters, and
2 with stable conditions). The research team compared the
clinical progress and mortality rates of their study cohort
with similar cases in the intensive care unit (ICU). The mor-
tality rate of patients who received MSC therapy dropped
from 70–85% to 15% (2/13). Only 2 patients died during
the study, one from massive gastrointestinal bleeding unre-
lated to the MSC treatment, and the other from secondary
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Table 2. Completed clinical trials of MSCs and MSC-exosomes for the treatment of COVID-19.
NCT Number Phase Interventions Outcome measures Enrollment Allocation

NCT04713878 NA Biological: MSCs

Change of clinical symptoms as respiratory
distress or need for oxygen support

21

Randomized

Change of cytokine storm parameters Parallel Assignment

Change of pulmonary functions Open Labe

Change of clinical symptoms Primary Purpose: Treatment

NCT04288102 2

Biological: UC-MSCs Change in lesion proportion (%) of full lung
volume from baseline to day 28

100

Randomized

Biological: Saline containing 1%
Human serum albumin

Change in ground-glass lesion proportion
(%) of full lung volume

Parallel Assignment

Time to clinical improvement in 28 days Masking: Quadruple

Oxygenation index Primary Purpose: Treatment

NCT04573270 1

Biological: PrimePro Survival Rates

40

Single Group Assignment

Other: Placebo Contraction Rates Masking: Triple

Primary Purpose: Treatment

NCT04355728 1/2

Biological: UC-MSCs + Heparin
along with best supportive care.

Incidence of pre-specified infusion associ-
ated adverse events

24

Randomized

Other: Vehicle + Heparin along Incidence of Severe Adverse Events Parallel Assignment

with best supportive care Survival rate after 90 days post first infusion Masking: Triple

Ventilator-Free Days Primary Purpose: Treatment

Change in Oxygenation Index (OI)

C-Reactive Protein levels

NCT04522986 1 Biological: MSCs Safety: Adverse Event 6
Single Group Assignment

Open Labe Primary Purpose: Treatment

NCT04535856 1

Drug: allogeneic MSCs Incidence of TEAE in Treatment group

9

Randomized

Other: Placebo Survival rate Parallel Assignment

Duration of hospitalization Masking: Quadruple

Clinical improvement Ordinal scale Primary Purpose: Treatment

Clinical improvement Oxygenation index

Inflammation markers change

NCT04276987 1

Adverse reaction (AE) and severe adverse re-
action (SAE)

24

Single Group Assignment

Biological: MSCs-derived Time to clinical improvement (TTIC) Open Labe Primary Purpose: Treatment

exosomes Number of patients weaning from mechani-
cal ventilation

Duration (days) of ICU monitoring

Duration (days) of vasoactive agents usage

Rate of mortality

NCT04492501 NA

Procedure: Therapeutic Plasma
exchange

Survival

600

Non-Randomized

Biological: Convalescent Plasma Duration of hospitalization Factorial Assignment

Drug: Tocilizumab Time to resolution of cytokine release storm Masking: Open Label

Drug: Remdesivir Time of viral clearance Primary Purpose: Treatment

Biological: MSCs Complications

NCT04491240 1/2

Drug: EXO 1 inhalation Adverse Events

30

Randomized

Drug: EXO 2 inhalation Time to Clinical Recovery (TTCR) Parallel Assignment

Drug: Placebo inhalation SpO2 Concentration Masking: Double

LDH Primary Purpose: Treatment

NA, Not Applicable.
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Table 3. Clinical trials of MSCs and MSC-exosomes for Covid-19 registered in Chictr.cn
ChiCTR number Biological Interventions Phase Enrollment Registration

date 

ChiCTR2000031430 umbilical cord MSCs + Routine treatment 2 200 2020/2/5
Routine treatment

ChiCTR2000030835  umbilical cord High dose group: routine treatment + MSCs (2 × 106/kg/time) NA 20 2020/3/15
Low dose group: routine treatment + MSCs (1 × 106/kg/time)

ChiCTR2000030866 umbilical cord MSCs based on conventional treatments NA 30 2020/3/16
ChiCTR2000030261 exosomes Aerosol inhalation of exosomes NA 13 2020/2/26

Blank 13
ChiCTR2000030088  Wharton’s Jelly Iv injection of Wharton’s Jelly MSCs (1 × 106/kg) NA 40 2020/2/22

saline
ChiCTR2000030020  MSCs MSCs therapy NA 20 2020/2/20
ChiCTR2000029580 Ruxolitinib combined Ruxolitinib combined with MSCs NA 70 2020/2/5

with MSCs Routine treatment
ChiCTR2000029990 MSCs MSCs therapy 1–2 60 2020/2/18

saline 60
ChiCTR2000030116 MSCs MSCs in dose 1 NA 8 2020/2/1

MSCs in dose 2 8
ChiCTR2000030138 UC-MSCs UC-MSCs NA 30 2020/2/24

Routine treatment + placebo 30
ChiCTR2000030173 UC-MSCs UC-MSCs NA 30 2020/2/17

Routine treatment 30
ChiCTR2000030484 HUMSCs HUMSCs: intravenous infusion, 5 × 107 cells/time, once/week,

twice/course
NA 30 2020/2/2

HUMSCs: intravenous infusion, 5 × 107 cells/time, 1 time/week, 2
times/course, a total of 2 courses; Exosomes: intravenous administra-
tion, 180 mg/time, 1 time/day, 7 days/course, 2 courses in total

30

The same amount of placebo (stem cell solvent) 30
ChiCTR2000030944 NK cells and MSCs NK cells and MSCs + Routine treatment 1 10 2020/9/1

Routine treatment + placebo 10
ChiCTR2000031319 Human dental pulp Human dental pulp stem cells + Routine treatment 1 10 2020/4/1

stem cells Routine treatment + placebo 10
ChiCTR2000031430 MSCs MSCs + Routine treatment 2 100 2020/3/20

Routine treatment 100
ChiCTR2000031494 MSCs MSCs + Routine treatment 1 18 2020/2/1

Routine treatment 18

NA, Not Applicable.

fungal pneumonia caused by Candida spp. We searched
for “COVID-19”, AND “exosome” OR “extracellular vesi-
cles” OR “mesenchymal stem cells” up to April 22, 2021.
Clinicaltrial.gov had 83 registered trials for the clinical use
of MSCs, MSC-exosomes or MSC-exosome. Of these, 38
are ongoing and are recruiting patients. Nine trials had been
completed to that date (Table 2). Using similar methodol-
ogy, 16 registered clinical trials of MSCs for the treatment
of COVID-19 were found in the Chinese Clinical Trial Reg-
ister (Chictr).cn (Table 3). One clinical trial enrolled 101
patients with severe COVID-19 lung injury. Patients re-
ceived human umbilical cord MSCs (HU-MSCs) (4 × 107

cells per infusion) on days 0, 3 and 6 [116]. In this phase
1 trial (NCT 04252118), the researchers demonstrated that
intravenous HU-MSCs are safe and well tolerated in pa-
tients with moderate and severe COVID-19. Compared

to placebo, UC-MSCs reduced the volume of lung lesions
(median difference: –13.31%, 95% CI: –29.14%, 2.13%, p
= 0.080).

Compared with MSCs, MSC-exosomes have the
ability to transmit and exchange intracellular chemical in-
formation. However, MSC-exosomes have received less at-
tention than MSCs in COVID-19 research to date. At April
22, 2021, only two clinical trials using MSC-exosomes
to treat COVID-19 had been completed (NCT04276987
and NCT04491240; see Table 2). Preliminary results of
NCT04491240 released on 21 October 2020 showed that
compared to placebo, the clinical recovery time, C-reaction
protein (CRP) and layered double hydroxide (LDH) lev-
els were lower for 10 consecutive days after inhalation of
a solution containing 0.5–2 × 1010 nanoparticles (MSC-
exosomes) twice daily. These effects may have been me-
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diated by the contents released from the MSC-exosomes,
which included for example miRNA-126, miRNA-290,
miRNA-21, miRNA-30b-3p, let-7, miRNA-200, miRNA-
145, miRNA-27a-3p, Syndecan-1, HGF and Ang-1 [117–
119]. Clearly, the application of MSC-exosomes instead of
MSC therapy offers significant advantages [120], includ-
ing more manageable dosing, easier storage, more readily
available sources, better stability and lower immunogenic-
ity [121–123]. Moreover, its noninvasive administration
via inhalation avoids the side effects and pain that are com-
monly associated with parenteral therapy.

For these reasons, MSC-exosomes are a highly
promising, cell-free therapy for COVID-19 [124, 125]. The
U.S. Food and Drug Administration has in fact allowed the
expanded use of MSC-exosome preparations for the treat-
ment of COVID-19 [126]. These include aerosol inhalation
of MSC-exosomes, targeted drug delivery based on MSC-
exosomes, and the development of MSC-exosome-based
vaccines [127, 128]. However, a phase 3 trial is needed to
further evaluate the effects of MSC-exosomes on mortality
and long-term lung dysfunction from COVID-19.

8. Conclusions

COVID-19 treatment is currently very challeng-
ing, especially because of its complications and sequelae.
Intravenous MSC administration or inhalation of MSC-
exosomes can improve the overall prognosis for COVID-19
by a variety of mechanisms: (1) through their immune reg-
ulation, (2) by promoting tissue repair and regeneration, (3)
through their anti-fibrosis effect, and (4) by resuming nor-
mal vascular permeability. All these mechanisms can inter-
act to strengthen lung repair and to protect the organs from
damage caused by the excessive immune response. De-
spite the readily available sources, high proliferation rate,
minimally invasive or noninvasive administration, and no
ethical concerns, several challenges remain to be addressed
with MSC and MSC-exosomes therapy. In particular, the
dosing and timing of MSC and MSC-exosome therapy re-
quire careful consideration, since improper use may aggra-
vate immunosuppression and lead to an unfavorable prog-
nosis for COVID-19.
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