
[Frontiers in Bioscience, Landmark, 25, 893-911, Jan 1, 2020] 

893 

The role of iron in viral infections 

Sophie Marion Schmidt1 

1Department of Anesthesia, Pain Management and Perioperative Medicine, Faculty of Medicine, 

Dalhousie University, NS, Canada 

TABLE OF CONTENTS 

1. Abstract 

2. Introduction 

2.1. Human iron homeostasis 

2.2. Iron and the immune system 

2.3. Damaging effects of cellular iron 

3. Iron in viral infections 

3.1. Role of iron in HBV infection 

3.2. Role of iron in HCV infection 

3.3 Role of iron in HCMV infection 

3.4. Role of iron in HIV infection 

4. Conclusion 

5. References 

1. ABSTRACT 

Crucial cellular processes such as DNA 

synthesis and the generation of ATP require iron. 

Viruses depend on iron in order to efficiently replicate 

within living host cells. Some viruses selectively infect 

iron – acquiring cells or influence the cellular iron 

metabolism via Human hemochromatosis protein (HFE) 

or hepcidin. During infection with human 

immunodeficiency virus (HIV), hepatitis B virus (HBV) or 

hepatitis C virus (HCV) iron overload is associated with 

poor prognosis for the patient and enhanced 

progression of the disease. Recent findings still lack to 

fully describe the viral interaction with the host iron 

metabolism during infection. This review summarizes 

the current knowledge of the viral regulation on the host 

cell iron metabolism in order to discuss the therapeutic 

option of iron chelation as a potential and beneficial 

adjuvant in antiviral therapy. 

2. INTRODUCTION 

2.1. Human iron homeostasis 

Iron is an essential nutrient for humans with 

critical functions in many cellular processes (1), 

including DNA – synthesis, replication, repair and 

transcription (2). Iron deficiency affects the activity of 

iron - dependent enzymes and disrupts the proper 

function of different cellular processes (3). Iron 

functions as a redox catalyst and occurs as ferrous 

(Fe2+) or ferric (Fe3+) iron inside the cell. 

Viruses depend on host cell survival 

during replication. The cellular metabolism is 

enhanced in order to support the necessary factors 

for replication and protein synthesis (2). These 

processes also require iron and therefore, iron 

chelation could improve antiviral treatment. 

Iron uptake functions through divalent 

metal – iron transport protein 1 (DMT1) in the 

proximal duodenum or the heme carrier protein 1 

(HCP1) in the jejunal enterocytes (4). In the 

duodenum ferric iron is reduced by ferric 

reductases present in the apical brush border of 

enterocytes. The correct subcellular location relies 

on a transport mechanism via ferritin. On the 

basolateral side the iron export is controlled by the 

membrane transporter ferroportin (FPN1) (5–7). In 
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the extracellular space iron is oxidized to ferric iron 

by the ferroxidase. By binding to transferrin (Tf), 

ferric iron can then be transported to special target 

cells. The iron loaded transferrin enters the target 

cells via receptor-mediated endocytosis. Inside the 

cells iron takes part in the biosynthesis of heme in 

mitochondria. Its tetrapyrrole form can serve either 

as a prosthetic group for metalloenzymes or as 

oxygen – binding part of hemoglobin. Furthermore, 

ferritin can also act as a storage for cellular iron 

(1). 

The cellular level of iron is regulated by 

iron regulatory proteins (IRP1/IRP2), which bind to 

iron – response elements (IRE). IREs are RNA 

hairpin structures in the untranslated region (UTR) 

of several cellular mRNAs like in the mRNA 

encoding ferritin or DMT1 (8). Systemically the 

peptide hormone hepcidin, which is itself produced 

in the liver, regulates the activity of FPN1 by binding 

to it and therefore inhibiting the cellular iron export. 

During an iron overload the hepcidin synthesis is 

increased leading to the internalization and 

degradation of FPN1. Despite the cellular 

homeostasis hepcidin also controls the export of 

iron into the plasma (9) (Figure 1). 

2.2. Iron and the immune system 

Hence pathogens require iron as a 

nutrient, iron deprivation serves as an innate 

immune mechanism against invading pathogens 

(1). One of the most important regulators is 

hepcidin, which is upregulated during inflammation 

by pro inflammatory cytokines, Toll like receptors 

(TLR) and the induction of endoplasmatic 

reticulum unfolded response. Hepcidin limits the 

extracellular iron through the internalization and 

degradation of FPN1 (10). 

The iron homeostasis regulating cyto-

kines either function via hepcidin or directly 

modulate iron metabolism in immune cells, e.g. pro 

inflammatory cytokines like IFN–γ downregulate 

transferrin receptor (TfR1) expression in 

macrophages, leading to a decrease of 

intracellular iron in these immune cells (11, 12). 

In the reticuloendothelial system 

macrophages acquire iron through TfR – mediated 

endocytosis of holo – Tf from senescent 

erythrocytes (1). Macrophages and other immune 

cells like neutrophils are capable of regulating the 

iron homeostasis via hepcidin (13). Through 

downregulating TfR, macrophages limit the iron 

intake in order to reduce iron availability to 

intracellular pathogens (1). In addition, via pattern 

recognition receptor (PRR) binding and induction 

of pro inflammatory cytokines, the TfR expression 

is decreased in phagocytes during infection. 

Additionally, DMT1 expression is increased, 

directing the cellular iron into the late endosomes 

and lysosomes, to induce cell death. 

The two glycoproteins haptoglobin and 

hemopexin also play a role in iron limitation by 

scavenging liberated hemoglobin and heme (1). 

Furthermore, free extracellular iron is limited by 

binding to transferrin with high affinity. If the 

capacity for binding free iron is exceeded, iron is 

as well able to bind to other plasma proteins like 

albumin, citrate and amino acids (14). Besides the 

named proteins lactoferrin has a high affinity for 

binding free iron, which is being released at 

infectious sites. Because of its pH – optimum in low 

levels lactoferrin takes function in acidotic 

infectious foci (15). 

2.3. Damaging effects of cellular iron 

Despite being an essential nutrient, iron 

also bears damaging potential for the cell. During the 

Fenton reaction hydroxyl radicals are being 

generated by reducing ferrous to ferric iron. The 

generated hydroxyl radicals damaging lipids, DNA 

and proteins (1). Iron accumulation and overdose 

therefore also leads to increased oxidative stress and 

DNA damage, genetic instability and carcinogenesis 

(16). The reactive oxygen species (ROS) produced 

at high levels of cellular iron or rather hydroxyl 

radicals lead to destabilization and breakdown of the 

phospholipid membrane. This process leads to 

ferroptosis, an iron-dependent cell death mechanism 

(17, 18). ROS can attack cellular components and 

are further able to induce systemic damage like 

hepatic, cardiovascular and pancreatic dysfunctions 

(19, 20). 
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3. IRON IN VIRAL INFECTIONS 

3.1. Role of iron in HBV infection 

The hepatitis B virus (HBV) is a partially 

double - stranded DNA – virus (21, 22), and belongs 

to the family of Hepadnaviridae (23). HBV causes 

chronic liver diseases, like chronic hepatitis B (CHB), 

liver cirrhosis (LC) and hepatocellular carcinoma 

(HCC). Approximately 240 million people are affected 

by hepatitis B infections and associated diseases 

worldwide (24, 25). 

In 40% of patients with CHB elevated levels 

of iron in liver tissue were detected and linked to 

severity of the corresponding liver disease (26). 

Higher serum iron levels correlated with worse 

outcomes and prognosis for patients with CHB (27). 

Wei et al. showed that serum iron levels 

were lower in HBV – related HCC patients compared 

to CHB and HBV – related LC – patients. In the 

named study iron levels negatively correlated with 

tumor size. It was suggested that the concentration 

of functional iron in the peripheral blood is low or 

normal, while the concentration of functional iron in 

tissue is high. Elevated iron levels were associated 

with enhanced progression of chronic HBV – 

infection and poor prognosis for the patient. 

Therefore, it was recommended to investigate iron 

chelation as a novel adjuvant for HCC therapy (28). 

Additionally, a study performed in 2016, showed that 

 
 

Figure 1. Iron Homeostasis. Iron uptake functions through the divalent metal – iron transport protein 1 (DMT1). In the duodenum ferric iron is 

reduced by ferric reductases present in the apical brush border of enterocytes. The correct subcellular location relies on a transport mechanism 

via ferritin. On the basolateral side the iron export is controlled by the membrane transporter ferroportin (FPN1). In the extracellular space iron 

is oxidized to ferric iron by the ferroxidase. By binding to transferrin (Tf), ferric iron can be transported to special target cells. Inside the cells 

iron takes part in the biosynthesis of heme in mitochondria. Iron can be transported into endosomes via DMT-1. Furthermore, ferritin also acts 

as a storage for cellular iron. The peptide hormone hepcidin regulates the activity of FPN1 by binding to it and therefore inhibiting the cellular 

iron export. Intracellularly Iron responsive proteins control iron metabolism by binding to iron – response elements (IRE). 
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the combination of Sorafenib with the iron chelator 

deferasirox led to a higher rate of apoptosis in HCC, 

compared to single drug treatment (29). 

A study by Felton et al. in 2006 also showed 

that elevated serum iron levels are associated with a 

higher prevalence of HBV infection (30). Gao et al. 

found in 2018 that serum iron and serum ferritin 

levels were elevated in patients with CHB. In this 

study they saw decreased serum transferrin levels 

and total binding capacity and increased transferrin 

saturation, findings that were supported by several 

other studies (22, 23, 28, 29). It was postulated that 

increased iron release from infected and damaged 

hepatocytes is responsible for that. Additionally, 

persistent HBV carriers showed significantly higher 

levels of serum iron compared to patients with 

cleared viral infection (33). 

Ohkoshi et al. showed in 2008 that in 

patients with HBV and LC the success of lamivudine 

treatment correlated with reduction in serum ferritin 

levels. The findings also showed that a successful 

antiviral therapy resolved the illness-related iron 

overload in these patients (34). Supporting Mao et al., 

2015 found a positive correlation between serum 

iron, ferritin and alanine aminotransferase (ALT) 

levels. It was suggested that in cirrhotic patients HBV 

related liver injury, but not the HBV infection itself 

may be cause changes in serum iron markers (32). 

Furthermore, mean hepcidin levels were elevated in 

patients with CHB, leading to iron overload (35, 36). 

In patients with CHB iron overload could be due to 

liver injury (30), viral activity (30, 37), micro 

ribonucleic acid -122 (38), ROS (39), IL-6 (35) or 

other inflammatory factors (35). Mutations in the 

hemochromatosis gene (HFE), which lead to the 

following amino acid changes C282Y and H63D have 

shown deleterious effects in patients with CHB, 

causing iron overload and leading to steatosis and 

liver fibrosis (40). 

The depletion of iron in HepG2 cells shows 

a decrease in HBV production (41). The question 

whether iron is promoting or inhibiting HBV 

replication is highly controversial. Several studies 

have shown the promoting effects of iron on HBV 

replication (42, 43), while others have shown 

detrimental effects (44, 45). The differing effects of 

iron could rely on the different stages of liver disease 

focused in the listed studies (Figure 2). 

3.2. Role of iron in HCV infection 

The hepatitis C virus (HCV), a member of 

the Hepacivirus C species, is a small, enveloped, 

positive-sense single-stranded RNA virus of the 

family Flaviviridae (46). HCV is the cause of hepatitis 

C and several types of cancer such as HCC and 

lymphomas (47, 48) affecting approximately 177 

million people worldwide (49). 

Iron liver deposits have been observed in 7 

– 61% of patients with chronic hepatitis c (CHC) and 

are associated with severity of the liver disease (50–

52). Studies suggest, that a high level of iron in the 

liver plays a crucial role in the progression of liver 

disease and increasing the risk for liver cancer (53). 

Additionally, elevated iron levels were associated 

with poor response to interferon and ribavirin therapy 

(54). Effective interferon therapy has been shown to 

be capable of a significant decrease in iron liver 

deposits (51). Further the reduction of excess liver 

iron and body iron storages by phlebotomy 

ameliorated the course of chronic HCV among 

patients incapable of receiving interferon therapy 

(55). Phlebotomy was an approved antiviral therapy 

in the United States and Japan before the emerge of 

direct – acting antiviral agents (56–58). 

Furthermore, a study by Di Bisceglie et al. 

in 1992 showed that HCV patients displayed elevated 

levels of serum ferritin, correlating with iron overload 

and inflammation of the liver (59). Ferritin levels have 

been described as strong predictors of severe liver 

fibrosis and steatosis and necro-inflammatory activity 

(54, 60). Studies showed, that high ferritin levels are 

correlated with ALT, aspartate transaminase (AST) 

and gamma-glutamyl transferase (GGT) levels (61). 

Iron supplementation in hemodialysis patients with 

HCV infection significantly increased transaminase 

levels after three months of therapy (62, 63). 

Mesenchymal hepatic iron overload in the 

course of HCV infection has been suggested to be 

caused by hepatocyte necrosis, leading to the 

release of ferritin and iron uptake of macrophages 

and Kupffer cells (55). These events may contribute 
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to cytokine release triggering inflammation and 

fibrosis of the liver (53). 

On a cellular level, the hemochromatosis 

gene (HFE) seems to play a role in promoting iron 

overload in HCV infected patients. Studies found, 

that homozygous and heterozygous mutations in 

HFE C282Y caused hepatic iron overload promoting 

steatosis and liver fibrosis in HCV – infected patients 

(40, 64–66). 

Recent works have shown the beneficial 

role of iron on HCV translation in different HCV 

genotypes (67), but it remains unclear whether iron is 

suppressing or promoting HCV replication. By 

enhancing the function of the eukaryotic initiation 

factor elf3 and the La protein, iron seems to promote 

the translation of HCV mRNA (67, 68). 

It was also investigated, that HCV is able to 

reduce the level of hepcidin through its core proteins 

E1, E2, NS3, NS4A, NS4B and NS5A by signal 

transduction and activation of the transcription, 

mitogen – activated protein kinase (MAPK), Bone 

morphogenetic proteins (BMP)/SMAD signaling 

pathways and an increased histone deacetylase 

(HDAC) activity (69, 70). These findings are further 

supported by Tumban et al., 2009 showing that the 

HCV – genome contains a RNA – structure mimicking 

iron responsive elements on its internal ribosome 

entry site, indicating that HCV has the ability to 

modulate the cellular iron metabolism (71). Low 

hepcidin levels lead to an increased ferroportin 

activity in the duodenum, upregulating intestinal iron 

 
 

Figure 2. Iron and Hepatitis B virus. 40% of patients with CHB displayed elevated tissue iron. Furthermore, studies found elevated serum iron 

levels and elevated serum ferritin levels in infected patients. Additionally, studies found decreased serum transferrin level and elevated 

transferrin saturation. Several studies investigated the correlation between elevated serum iron and ferritin levels and ALT levels. Furthermore, 

patients with CHB had elevated Hepcidin levels. 
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absorption (72). In conclusion, HCV proteins seem to 

directly increase iron absorption, macrophage iron 

release and hepatic iron accumulation (73). 

Recent discussions elucidate whether iron 

is a promoting factor for HCV replication in liver cells. 

Several studies have found that HCV replication is 

enhanced in iron overloaded macrophages 

compared to physiological iron level. This could be 

the result of high oxidative stress in the macrophages 

and an impaired immune function (74). A study by 

Kakizaki et al., 2000 showed that FeSO4 in 

concentrations of 50 – 100µM enhanced HCV 

replication 10-fold in cultured human hepatocytes 

within 48 hours respectively to the untreated control 

(75). Nevertheless, other studies working with the 

neoplastic cell line Huh7 found that supra- 

physiologic iron concentrations induced by halmin 

inhibited HCV replication by inactivating RNA – 

polymerase NS5B (76, 77). Fillebeen et al., showed 

that HCV infection caused cellular iron depletion in 

Huh7 cells by increasing IRP activity and 

suppressing TfR1 and DMT -1 expression (78) 

(Figure 3). 

3.3 Role of iron in HCMV infection 

The human cytomegalovirus (HCMV) is an 

enveloped, double – stranded DNA – virus and 

belongs to the group of β – Herpesviruses (79). 

HCMV remains a major health burden with the 

world´s seroprevalence ranging between 40 – 99% 

depending on the geographical and socioeconomic 

background (80). Whereas HCMV infections remain 

mostly asymptomatic or display only mild symptoms 

in immunocompetent hosts, severe life – threatening 

symptoms are described for patients with an impaired 

adaptive immune system (81). 

Studies have shown that the HCMV 

replication could be inhibited by the iron chelators 

deferoxamine (DFO) and calcium trinatrium 

diethylenetriaminepentaacetic acid (DPTA) (82, 83). 

A study by Sun et al. discovered a correlation 

between the HCMV protein pUL38 and the 

prevention of premature cell death due to 

antagonization of cellular stress response. It was 

shown that HCMV influences the iron metabolism in 

order to ensure cellular survival during viral 

replication. Through activating the ubiquitin – specific 

protease 24 (USP24), and thus reducing the release 

of free iron, pUL38 suppresses ferritinophagy. The 

cell death induced by infection with pUL38 – deficient 

HCMV could be inhibited by treatment with iron 

chelators like ciclopirox olamine or tiron (84). 

Furthermore, another study found a 

connection between HCMV – infection and the 

nonclassical class I major histocompatibility complex 

molecule HFE. HFE is mutated in autosomal 

recessive iron overload disease hereditary 

hemochromatosis leading to a reduced iron intake via 

the transferrin receptor (85). The expression of the 

HCMV protein US2 interferes with the stability and 

assembly of hHFE complexes. US2 targets HFE 

specifically for proteasomal degradation leading to a 

decreased iron uptake. It remains unclear if this viral 

mechanism is used to alter cellular metabolism in 

order to escape immune response (86). 

However, a study by Kaptein et al., 2006 

identified the anti – malaria drug artesunate as a 

potential new antiviral drug, suggesting that its 

antiviral activity is enhanced by increased 

intracellular iron concentrations. Iron overload incre-

ases the production of reactive oxygen intermediates 

(ROI) and negatively influences signal transduction 

pathways like NF-κB which are crucial for HCMV’s 

replication (87) (Figure 4). 

3.4. Role of iron in HIV infection 

Even after the establishment of highly 

active antiretroviral therapy (HAART), HIV – 

infections remain a major cause of mortality 

worldwide (88). The United Nations estimate that 

currently 33 million individuals are infected with HIV 

worldwide (2). 

Iron is important for DNA synthesis and 

repair (89). During an HIV – infection the body is set 

into a systemic inflammatory state (90, 91). HIV 

modulates cellular and systemic iron homeostasis 

(12, 92, 93), leading to lower hemoglobin (Hb) levels 

(94). Findings by Banjoko et al., in 2009 described 

elevated iron levels in antiretroviral therapy ART – 

naive HIV – positive patients (95), leading to the 

question whether HIV alters the iron homeostasis. 
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Studies have shown that anemia is associated with 

worse outcomes of HIV – infection (2). In contrast to 

that iron overload is also a risk factor for rapid 

progression of the disease (96). High cellular iron 

levels in macrophages lead to an increased HIV – 

transcription (97, 98). A study by Sappey et al. in 

2009 revealed that the treatment with the iron 

chelator DFO led to a downregulation of NFκB in 

monocytes. The downregulation of NF-κB correlates 

with a decrease in HIV-1 reactivation probably 

caused by emerging oxidative stress (99). However, 

this effect was not seen in other studies examining 

the effect of iron chelation on NFκB – expression 

(100). 

A different mechanism examined is the 

inhibition of the cyclin dependent kinases 2 (CDK2)/ 

Cyclin E complex axis, in order to describe the 

relation between iron deficiency and reduced HIV 

replication, although it couldn’t be verified (101). 

A study by Chang et al., 2014, showed that 

HIV – replication was enhanced in presence of higher 

iron levels. Iron supplementation increased viral 

replication and release. A decrease in cellular iron 

was protective against HIV – infection. Transferrin – 

receptor 1 (TfR-1) mRNA levels were increased due 

to HIV – infection, which led to an increased iron 

uptake and higher level of cellular iron. To examine 

whether ART was able to alter the cellular iron level, 

cells were treated with the protease inhibitor 

darunavir and nucleoside reverse transcriptase 

inhibitor tenofovir. The treatment increased TfR-1 

levels and decreased ferroportin (FPN – 1) levels 

 
 

Figure 3. Iron and Hepatitis C virus. Studies found iron liver deposits in infected patients. Furthermore, patients showed elevated serum ferritin 

level positively correlating with ALT, AST, GGT – level. Studies found that iron enhances HCV translation. Patients with CHC displayed lower 

levels of Hepcidin. 
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(88). Tenofovir also targets the mitochondrial DNA –

polymerase γ, leading to induced oxidative stress by 

altered iron levels (102, 103). In contrast the non – 

nucleoside reverse transcriptase inhibitor evafirenz 

didn’t alter cellular iron levels or the expression of iron 

regulatory genes (88). 

In HIV – positive blood samples a 

significant increase in serum iron levels, transferrin 

saturation and a decrease in unsaturated binding 

capacity was examined. These effects even 

persisted under ART (88). Although other studies 

have shown that the overexpression of HIV – 1 Nef 

protein impaired the recycling of TfR-1 to the cell 

surface, which is therefore leading to reduced cellular 

iron uptake and iron deficiency (104, 105). This could 

be a strain – specific effect (106). Especially the 

influence of HIV on hepcidin levels has to be further 

investigated. Several studies have shown increased 

hepcidin levels during an HIV infection leading to 

reduced serum iron levels (88). Even though other 

studies have shown decreased hepcidin levels in HIV 

– positive women, which could be due to increased 

iron release into the circulation (107). 

A recent study showed that HIV – infected 

 
 

Figure 4. Iron and Human cytomegalovirus. Studies found, that HCMV replication could be inhibited by iron chelators. Furthermore, HCMV 

seems to be able to suppress ferritinophagy. The virus interferes with the stability of the hHFE complex, therefore, suppressing iron intake. A 

study claimed, that ROS negatively influences crucial pathways for the HCMV. 
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adults have a disrupted CNS iron transport, leading 

to mitochondrial degradation, owed to the fact that 

cellular iron is an important co – factor for 

mitochondrial biogenesis (108) (Figure 5). 

4. CONCLUSION 

The above discussed studies indicate the 

detrimental effects of iron overload in the setting of 

viral infections. The viruses discussed in this review 

are postulated to be able of altering the iron 

homeostasis in infected individuals. The viruses 

seem to prosper in the presence of iron overload; 

therefore, iron chelation appears to be a potential and 

logical beneficial adjuvant therapy for viral infections 

in an era of multidrug resistant viruses. However, 

further studies are needed to examine the precise 

interactions between iron homeostasis and viral 

proteins in order to improve actual and develop new 

therapeutic strategies. 

 
 

Figure 5. Iron and Human immunodeficiency virus. In some studies, HIV – positive patients showed lower Hb – levels, which correlated with 

worse outcomes. Nevertheless, iron excess is also predictor for a progression of the disease. Studies found elevated serum iron levels, 

increased transferrin saturation, increased Transferrin - receptor 1 levels, leading to a higher iron intake. High iron level seems to support HIV 

– transcription, replication and release. A study investigated, that the iron chelator DFO decreased HIV – reactivation. 
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hemoglobin, ART: antiretroviral therapy, CDK2: 

cyclin dependent kinase 2 
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