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1. ABSTRACT 

Diabetes causes diabetic nephropathy 

(DN) which is associated with increased morbidity 

and mortality in diabetic patients. We tested whether 

Resveratrol (Res) reverses the systemic effect of 

Streptozotocin (STZ) induced diabetes and DN. Res 

treatment opposed the effect of STZ on kidney 

weight, 24 h urinary albumin excretion, blood urea 

nitrogen (BUN) and serum creatinine (Scr). Res also 

decreased DN induced mTOR/ULK1-mediated 

autophagy and apoptosis and significantly reduced 

STZ mediated lipid deposition in nephrons, likely by 

decreasing the levels of lipogenic related proteins 

(SREBP-1c, ACS) and increased lipidolysis related 

proteins (PPARα, CPT-1). Together, these findings 

show the potential of Res in prevention of diabetic 

nephropathy. 

2. INTRODUCTION 

Diabetic nephropathy (DN) is the leading 

cause of end-stage renal disease in diabetes mellitus 

(1). Current interventions for reducing the DN include 

preventing the increase the blood level of blood sugar 

and lipid, and blood pressure. However, such 

remedies have not decreased the risk and health 

burden of DN, requiring strategies that can directly 

reduce the impact of diabetes on kidney. In patients 

with type 2 diabetes, dyslipidemia is a reversible risk 

factor for the progression of kidney disease and 

hence its prevention can restore lost kidney function 

(2). In patients with type 2 diabetes, the serum level 

of lipids including total cholesterol (TC), triglyceride 

(TG), and free fatty acid (FFA) is increased. In these 
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patients, the expression of lipid metabolism genes 

is dysregulated and lipids progressively 

accumulate in the DN kidneys (3-5). Another 

process involved in the pathogenesis of DN is 

autophagy, an intracellular degradation system 

that normally delivers cytoplasmic constituents to 

lysosome to maintain intracellular homeostasis (6-

8). Among the Mechanistic Target of Rapamycin 

(mTOR) members, Mammalian Target of 

Rapamycin Complex 1 (mTORC1) suppresses 

autophagy by modulating ULK1 phosphorylation 

and has been reported to reduce type 1 and type 2 

DNs (9, 10). Here, we tested the effects of 

Resveratrol (3,4’,5-trihydroxystlben (Res) in a 

Streptozotocin (STZ) induced DN. Res is a 

polyphenolic compound, derived from fruits with 

multiple bioactivities, including amelioration of 

renal insufficiency (11). 

3. MATERIAL AND METHODS 

3.1. Animal models 

Male, 6-week-old Sprague–Dawley (SD) 

rats were obtained from Animal center of The First 

People’s Hospital of Wenling. All animal 

experiments were performed according to the 

guidelines of Institutional Animal Care and Use of 

Laboratory Animals and were approved by Animal 

Research Ethics Committee of The First People’s 

Hospital of Wenling. Rats were housed individually 

under controlled temperature (23 °C) and humidity 

(55%) with an artificial light cycle and had free 

access to food and water and. Streptozotocin 

(STZ, Sigma-Aldrich, St Louis, MO, USA) was 

used to induce DN in rats. Rats (n=10), were 

injected intraperitoneally with 55 mg/kg STZ for 2 

weeks. Rats were considered to have diabetes 

when their blood glucose levels exceeded 16 

mmol/L. The experimental rats received either 5 or 

20 mg/kg of Res (Sigma Chemical Co. MO, USA) 

diluted in sterile saline. The Res was administered 

orally by daily gavage received for 8 weeks. The 

control animals (n=10), instead of receiving STZ, 

were administered with saline injection. Kidneys, 

urine and blood samples were collected at the 

times indicated in the text. One hour before 

modeling, rats were intraperitoneally given 

autophagy inhibitor 3-MA (10 mg/kg) 

3.2. Assessment of renal function 

Renal function was assessed by 

determining the total body weight and weights of 

kidneys, the concentration of the albumin in the urine 

by ELISA (Nanjing Jiancheng Bioengineering 

Institute, Nanjing, China) according to the 

manufacturer’s instructions and by measuring the 

blood urea nitrogen (BUN) and serum creatinine 

(Scr) using an automatic biochemistry analyzer 

(Olympus AU2700, Japan). 

3.3. HE staining 

Kidney tissues were fixed in 4% 

formaldehyde for 24 hours. After decalcification in 

20% ethylenediamine tetra acetic acid (EDTA), the 

kidneys were cut into 5-μm slices, dehydrated in 

ascending series of alcohol and embedded in paraffin 

and sectioned into 4 mM thickness. After dewaxing in 

xylene, sections were stained in hematoxylin-eosin 

(H&E)-stained sections using an optical microscope 

(BX51; Olympus Corp., Tokyo, Japan). Morphologic 

changes, infiltration of the tissues by inflammatory 

cell and extent of fibrosis were examined in the H&E 

sections. 

3.4. Blood lipid measurement 

The concentrations of total cholesterol 

(TC), Triglyceride (TG), low density lipoprotein (LDL-

C) and high-density lipoprotein (HDL-C) were 

measure by an automatic biochemistry analyzer 

(Olympus AU2700, Japan). 

3.5. Western blotting 

Cell proteins were extracted in RIPA Lysis 

Buffer (Beyotime Institute of Biotechnology, 

Shanghai, China). Proteins were quanitified by 

Bradford assay. Equal amounts of protein were 

separated in 10% SDS-PAGE gel and then 

transferred to PVDF membranes. After blocking in 

skim milk for 1 hour at room temperature, the 

membranes were incubated with primary antibody 

overnight at 4 °C. The antibodies to PPARα, CPT-1, 

ACS (Abcam, Cambridge, UK); SREBP-1c (Thermo 

Scientific, Rockford, IL, USA); Beclin1, LC3 I / II, 

mTOR, p-mTOR , ULK1, p-ULK1 (Cell Signaling 
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Technology, Beverly, MA, USA) were used at 1:1000 

dilution. Membranes were washed three times with 

TBST and then incubated with goat anti-rabbit or mouse 

IgG peroxidase (HP)-conjugated secondary antibody 

(Thermo Scientific, Rockford, IL, USA). The peroxidase 

was detected using enhanced chemiluminescence 

(ECL, PerkinElmer, Boston, MA, USA). 

3.6. Immunohistochemistry (IHC) and 

immunofluorescence (IF) assays 

Renal tissues were cut into 5-μm slices, fixed 

in 4% paraformaldehyde, dehydrated in ascending 

series of alcohol and embedded in paraffin and 

sectioned into 4 mM thickness. After dewaxing in 

xylene, sections were rehydrated in increasing 

gradients of ethanol and hydrated in a citrate solution. 

Sections were blocked with a buffer with normal serum 

and then incubated with primary monoclonal antibodies 

(Caspase-3, #9662, 1:1000, CST, USA; LC3, #3868, 

1:200, CST, USA) overnight at 4 °C and then they were 

washed with TBST three times. For IHC of Caspase-3, 

sections were incubated with peroxidase labeled 

secondary antibody at room temperature for 30 min. 

Peroxidase activity was revealed by staining with 

SignalStain® DAB (#8059, CST, USA). For 

immunofluorescence assessment of LC3, the sections 

were incubated with a rhodamine-conjugated 

secondary antibody. Sections were counterstained in 

DAPI (#8961, CST, USA) and covered with ProLong® 

Gold Antifade Reagent. Images were captured using a 

fluorescence microscope (Nikon Corporation, Tokyo, 

Japan). 

3.7. Statistical analysis 

Data was expressed as the mean ± standard 

deviation (SD) of at least three independent 

experiments. All statistical analysis were performed with 

SPSS 19.0. Group comparisons were conducted using 

Student’s t test or One-way ANOVA. The difference was 

considered statistically significant at P < 0.05. 

4. RESULTS 

4.1. Res reverts physical and biochemical 

alterations in the serum inducible by STZ 

As compared to the control group, there 

was a significant increase in body weights, 24 h urine 

protein (PRO), and serum BUN and creatinine in 

animals that received STZ (Figure 1A-C). While STZ 

induced DN was associated with higher serum levels 

of TC, TG, LDL-Chol and lower levels of HDL-Chol, 

treatment with Res prevented such changes (Figure 

1D-G). 

4.2. Res reverts alterations in kidney 

inducible by STZ 

As compared to the control group, there 

was a significant increase in kidney in animals that 

received STZ. However, treatment with Res, in a 

dose dependent manner, inhibited a such change 

(Figure 2A). Consistent with increase in kidney 

weight, histologically, sections of the kidneys of STZ 

treated animals revealed evidence of edema, 

necrosis and apoptosis, inflammatory infiltrate, 

glomerular sclerosis, increased mesangial matrix and 

fibrosis, and thickening of the basement membranes. 

These pathologic features including apoptosis all 

subsided, in a dose-dependent manner, by the 

treatment with Res (Figure 2B-C). 

The PPARs (PPARα, PPARβ, and PPARγ) 

are involved in the transport of TG in the blood, 

uptake of cellular fatty acid and oxidation of 

mitochondrial beta (12). PPARα plays an important 

role in regulating the oxidation of mitochondrial and 

peroxisomal fatty acid, including modulation of 

downstream targets, such as CPT-1 (13). SREBP-1c 

is a transcription factor that activates many genes 

involved in lipid synthesis and deposition (14). ACS 

is an enzyme involved in the metabolism of acetic 

acid. The expression of several key genes including 

lipogenic related proteins (SREBP-1c, ACS) was 

increased and expression of lipidolysis related 

proteins (PPARα, CPT-1) was diminished in the 

kidneys of STZ treated animals (Figure 2D-E). Res, 

a dose-dependent manner decreased the extent of 

such changes (Figure 2D-E). 

4.3. Res reverts alterations in kidney 

inducible by STZ by inhibiting autophagy 

Among members of mTOR, mTORC1, by 

stimulating biosynthetic pathways, promotes cell 

growth, while it inhibits cellular catabolism through 

repression of the autophagic pathway (15). It was 
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suggested that Ulk1 is primarily responsible for 

induction of autophagy since the single knockdown of 

Ulk1 is able to inhibit this process (15, 16). To this 

end, we examined the role of mTORC1, ULK1 and 

 
 

Figure 1. Res reverts physical and biochemical alterations in the serum inducible by STZ. (A) Level of 24h PRO in each group. (B) Level of 

BUN in each group. (C) Level of Scr in each group. (D-G) Levels of TC, TG, LDL-Chol and HDL-Chol in each group.Bars showed means ± SD 

of three independent experiments. **P < 0.01 vs. Healthy control group, #P < 0.05, ##P < 0.01 vs. DN model group. 
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autophagy-related proteins (Beclin1, LC3I/II). Res 

treatment also significantly down-regulated the p-

mTOR/mTOR and up-regulated the p-ULK1/ULK1 

(Figure 3A-B). While STZ diminished the number of 

 
 

Figure 2. Res reverts alterations in kidney inducible by STZ. (A) Kidney weight/body weight in each group. (B) Pathological damage of kidney 

tissue was measured by HE staining in each group. (C) Expression of caspase-3 was measured by immunohistochemistry in each group. (D-

E) Relative protein levels of PPARα, CPT-1, SREBP-1c and ACS were detected by western blot. Bars showed means ± SD of three 

independent experiments. **P < 0.01 vs. Healthy control group, #P < 0.05, ##P < 0.01 vs. DN model group. 
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cells in the kidneys that were stained positive for 

autophagy-related proteins (Beclin1, LC3I/II) Res 

treatment significantly increased the number of these 

cells in the kidneys (Figure 3C). 

 
 

Figure 3. Res reverts alterations in kidney inducible by STZ by inhibiting autophagy. (A-B) Relative protein levels of Beclin1, LC3 I/II, mTOR, 

p-mTOR, ULK1 and p-ULK1 were detected by western blot. (C) LC3+ puncta were measured by immunofluorescence assay. Bars showed 

means ± SD of three independent experiments. *P < 0.05 vs. Healthy control group, #P < 0.05 vs. DN model group. (D) Relative protein levels 

of Beclin1 and LC3II/I were detected by western blot in each group. (E) Relative protein levels of CPT-1 and ACS were detected by western 

blot in each group. (F-G) Levels of Scr and HDL-Chol in each group. (H) Relative protein levels of mTOR, p-mTOR, ULK1 and p-ULK1 were 

detected by western blot in each group. Bars showed means ± SD of three independent experiments. *P < 0.05 vs. Healthy control group, #P 

< 0.05 vs. DN model group, &P < 0.05 vs. DN + 3-MA group. 
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To examine whether Res directly impacts 

DN through regulating autophagy, we used 3-

Methyladenine (3-MA) which inhibits autophagy by 

the inhibition of phosphatidylinositol 3-kinases (PI3K) 

(17). The effect of STZ on the protein levels of 

Beclin1 and LC3II/I was reduced in the kidneys of the 

animals that were treated with 10 mg/kg 3-MA (Figure 

3D). 3-MA (10 mg/kg) also reduced serum levels of 

creatinine, CPT-1, a downstream target of PPARα, 

and HDL-Chol while it increased the serum levels of 

lipogenic related protein in STZ treated animals 

(Figure 3E-G). Treatment of animals that received 

STZ and 3-MA was counteracted with Res (20 mg/kg) 

(Figure 3E-G). Res treatment (20 mg/kg) also 

reduced mTOR phosphorylation as compared to 

those that were treated with STZ and 3-MA, while it 

increased the phosphorylation level of ULK1. (Figure 

3H). 

5. DISCUSSION 

Diabetes is a major cause of chronic kidney 

nephropathy (DN). STZ induces diabetes and we 

used this model to induce DN changes in the kidneys 

in rats. STZ induced DN is characterized by the 

enlargement of kidneys, proteinuria manifested by 

increase in 24 h urinary albumin excretion, and in 

increases in blood urea nitrogen (BUN) and serum 

creatinine (Scr) (18-20). STZ induced DN also leads 

to mTOR/ULK1-mediated autophagy and apoptosis 

in the kidneys and significantly reduces STZ induced 

lipid deposition in nephrons (21). In the present study, 

we demonstrated that Res treatment significantly 

improved the systemic effects of STZ induced DN, 

and reduces its impact on the weight, structural 

changes including apoptosis and fibrosis. Res also 

improves the kidney function involved by DN as 

evidenced by reduced albuminuria and reducing the 

serum level of creatinine and BUN. Consistent with 

such results, others have shown that Res treatment 

relieved albuminuria and alleviated oxidative stress 

and inflammation in the kidneys of db/db mice (22, 

23). 

DN induced disturbances in lipid 

metabolism are manifested by changes in serum lipid 

levels and heavy lipid deposition in tissues such as 

kidney, and lipotoxicity (5, 24). The lipid metabolism 

is disturbed in kidneys involved by DN and deposition 

of lipid in such kidneys leads to lipotoxicity which is 

displayed by cell dysfunction and tissue injury (25-

28). As shown here, Res reduced the serum levels of 

TC, TG and LDL-Chol in DN animal models, while it 

increased the serum level of HDL-Chol. These 

findings suggest that Res alleviates lipid 

dysregulation by increasing the level of lipidolysis 

related proteins (PPARα, CPT-1), and by decreasing 

the level of lipogenic related proteins (SREBP-1c, 

ACS) in DN. 

To maintain homeostasis, by the process of 

autophagy, cells eliminate the long-lived proteins and 

damaged organelles (29). Here, we showed data that 

support that Res normalizes lipid metabolism in STZ-

induced DN by inducing AMPK/mTOR-mediated 

autophagy (30, 31). Res treatment significantly 

down-regulated the p-mTOR/mTOR and up-

regulated the p-ULK1/ULK1. While STZ diminished 

the number of cells in the kidneys that were stained 

positive for autophagy-related proteins (Beclin1, 

LC3I/II), Res increased the expression of Beclin1, 

and also increased the ratio of LC3II/LC3I. Res 

alleviates STZ-induced DN by ameliorating lipid 

metabolism, inhibiting apoptosis and inducing 

autophagy in DN. Consistent with such results, 

others have shown that Res also improves the DN by 

increasing miRNA-18a-5p mediated autophagy (23). 

Together, these findings show the potential of Res in 

prevention of diabetic nephropathy and in its 

treatment. 
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