
[Frontiers in Bioscience, Landmark, 25, 1828-1838, June 1, 2020] 

1828 

Beyond the coding genome: non-coding mutations and cancer 

Kaivalya Walavalkar1, Dimple Notani1 

1Department of Cellular Organization and Signaling, National Centre for Biological Sciences, Tata 

Institute for Fundamental Research, Bangalore 560065, India 

TABLE OF CONTENTS 

1. Abstract 

2. Introduction 

3. Link between mutations in enhancers and cancer 

4. Mutations in insulators/boundaries 

5. Mutations in chromatin architecture proteins 

6. Mutations in transcriptional machineries 

7. eRNAs in cancer 

8. Conclusions 

9. Acknowledgments 

10. References 

1. ABSTRACT 

Latest advancements in genomics 

involving individuals from different races and 

geographical locations has led to the identification 

of thousands of common as well as rare genetic 

variants and copy number variations (CNVs). 

These studies have surprisingly revealed that the 

majority of genetic variation is not present within 

the coding region but rather in the non-coding 

region of the genome, which is also termed as 

“Medical Genome”. This short review describes 

how mutations/variations within; regulatory 

sequences, architectural proteins and 

transcriptional regulators give rise to the aberrant 

gene expression profiles that drives cellular 

transformations and malignancies. 

2. INTRODUCTION 

Unlike other patho-physiologies, 

understanding the role of mutations in cancer 

requires the knowledge of both germline as well as 

somatic mutations in the given cancer type. To this 

regard, several consortia have extensively 

catalogued both germline and somatic mutations 

using a variety of tools like genotyping arrays, 

exome-sequencing and whole-genome 

sequencing (WGS). To identify the functional 

mutations amongst the thousands of mutations 

discovered from such studies, the presence of 

mutation being in coding or non- coding region is 

crucial further, knowledge of chromatin signatures 

is necessary in case of non-coding mutations as, 

the functional mutations in the non-coding genome 

affect coding gene regulation. Towards this, there 

are ever-growing and evolving tools to assess 

such signatures including but not restricted to, 

DNase-hypersensitivity (DHS-seq), histone marks, 

transcription factor binding alterations (ChIP-seq), 

transcriptional changes (RNA- seq and GRO-seq) 

and involvement of chromatin looping (ChIA-PET 

and 3C-based tools) are routinely used. Further 

functional characterization by which these variants 

mediate their effects on target genes is done using 

several tools such as reporter assays in mouse or 

relevant cell lines and/or genetic manipulations of 

target sequences to decipher the mechanism in 

which the variant affects target gene expression. 

Systems approaches have also been undertaken 

on these mutations obtained from GWAS and they 

been linked to core metabolic processes which can 

help understand the underlying principles of 

cancer progression and design therapeutic 
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approaches (1,2). The latest advances in 

sequencing techniques have allowed the genome-

wide profiling of regulatory regions and associated 

protein cargos, accelerating the identification of 

functional mutations that was otherwise 

synonymous to “finding a needle in a haystack”. 

3. LINK BETWEEN MUTATIONS IN 

ENHANCERS AND CANCER 

Employment of such tools on several 

cancers has revealed that enhancers carry the 

highest density of variants. For example, in 

prostate cancer, less than 20% of the variants 

were present in promoters or the coding region (3) 

and 88% of the SNPs fell in putative enhancers (4). 

Enhancers are at the heart of regulated gene 

transcription; they mediate the transcriptional 

regulation of genes in a spacio-temporal manner 

to drive cell fate during development. Numerous 

enhancers are born, erased, activated, repressed 

during the cell fate choices to give rise to tightly 

controlled gene expression pattern in a committed 

lineage (5). It is believed that enhancers undergo 

similar transitions as oncogenes, during the 

cellular transformation from “normal” to “cancer-

like”. Thus, perturbations in enhancer functions 

can have potentially harmful pleiotropic effects on 

the cell. Although coding variation is more 

deleterious as it can directly affect the protein in 

terms of its stability, composition, localization, 

interacting partners, function and activity, the 

variations within enhancers may affect the 

transcription rate of several genes in response to 

an environmental stimuli or developmental 

stage(s) resulting in the dysregulation in protein 

levels. Several reports now have strongly linked 

malignancies with mutation in enhancers (6). 

Variations within the disease-causing 

enhancers could be of different types namely, an 

insertion or a deletion (indel), rearrangements or 

single nucleotide mutations. All these types of 

variations can lead to the loss of existing enhancer 

or de novo formation of an enhancer or can lead to 

a gain or loss of transcription factor binding sites 

resulting in alteration in enhancer activity 

(Figure 1). For example, it has been reported that 

individuals with single nucleotide deletions in the 

c-myc gene desert gains MYB binding site leading 

to the formation of a super enhancer to activate the 

TAL1 expression in T-cell acute lymphoblastic 

leukemia (T-ALL) (7). This study suggests, how an 

organism can gain a new enhancer during 

evolution to target the expression of important 

genes. Not only the deletion but also enhancer 

duplications aberrantly activate or represses target 

genes associated with monogenic diseases. For 

instance, duplication of an enhancer element 

upstream of the myc oncogene leads to the gain of 

a super enhancer (8). In gliomas, small somatic 

rearrangement hijack myb enhancer thus leading 

to the over expression of myb (9). 

 
 

Figure 1. Structural mutations in enhancers: (i) IGFBP5 gene is 

regulated by its enhancer. When a small stretch in the enhancer is 

deleted which harboured the CTCF motif, the enhancer activity from 

the region is lost and gene is down-regulated. IGFBP5 being a 

tumour-suppressor gene leads to increased risk of cancer. (ii) An 

oncogene TAL1, has some basal expression in the wild type 

condition. Mutations lead to the gain of Myb motifs which facilitate 

the birth of a super-enhancer which up-regulates TAL1 expression 

and thus leading to increased susceptibility to cancer. (iii) Mutations 

in the enhancer of AR gene lead to the amplification of the region 

harbouring the enhancer which leads to increased expression of 

androgen receptor leading to increased prostate cancer risk. (iv) An 

enhancer is present physically far from the TERT gene. 

Rearrangement places the enhancer in close physical proximity to 

the TERT oncogene leading to its activation. 
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The third kind of variation, single nucleotide 

polymorphisms (SNPs) within the enhancers is the 

most interesting but least understood. The risk SNP 

often affects the transcription factor binding in the 

core region of an enhancer which is where the eRNA 

transcription machinery also assembles. Thus lack or 

gain of TF binding on an enhancer, can not only affect 

the polII loading but also the rate at which eRNA is 

transcribed. Together, they affect the magnitude of 

target gene activation associated with a disease 

pathogenesis (Figure 2). For example, the gene 

desert region beside myc is a hotspot for genetic 

variation associated with several cancers in different 

human races and many GWAS have identified SNPs 

in this region which ultimately increases the 

expression of myc or numerous lncRNAs such as 

PCAT1, PRNCR1, CCAT1 and PVT1 within the same 

TAD as myc. The lncRNA PCAT1 in 8q24 is 

upregulated by rs7463708 which gains the binding 

for ONECUT2 transcription factor leading to 

activating metastatic genes in trans (10). Similarly, 

risk SNP rs11672691 allows for the switching from 

PCAT19 lncRNA’s short to long isoform which 

increases the prostate cancer susceptibility (11). 

Similarly, there are plenty of examples now to 

conclude that common genetic variation within the 

enhancer constitutes a significant portion of 

functional genomics that is linked to malignancies 

(Table 1). 

4. MUTATIONS IN 

INSULATORS/BOUNDARIES 

The genome is compartmentalized into 

megabase-sized bins known as topologically 

associating domains (TADs). Generally, TADs exhibit 

two functional features namely, high intra-TAD 

interactions and low inter-TAD interactions. The low 

inter-TAD interactions are the result of the presence 

of a strong physical barrier between the TADs known 

as boundaries or insulators. During evolution, it has 

been seen that break points around syntenic regions 

are enriched at boundaries suggesting that the break 

points within TADs are strongly selected against, 

indicating the self-regulated or modular nature of 

TADs. Experimental deletions or mutations at 

boundaries merging two neighboring TADs results in 

the dysregulation of genes in the affected TADs. 

Likewise, the mutations within and around insulator 

regions are enriched in tumors resulting from 

alterations in TADs and ultimately gene dysregulation 

(12). Most TAD boundaries have two-fold higher 

binding of the transcription factor CTCF and CTCF 

knockdown severely affects the functions of 

boundaries. Thus, it is not surprising that a loss or 

gain of CTCF binding site(s) at TADs affects the 

genes in the TADs as evident in some cancers 

(Figure 3) (13). 

5. MUTATIONS IN CHROMATIN 

ARCHITECTURE PROTEINS 

A precise chromatin structure is the key 

to regulated transcription. Just like the mutations 

in boundary elements cause activation or 

 
 

Figure 2. Single nucleotide polymorphism in enhancers: (i) A Single 

nucleotide polymorphism (SNP) leads to the birth of an enhancer. In 

the non-risk allele, the target gene is not regulated by any enhancer, 

but upon the gain of the risk allele of the SNP, an enhancer is born 

which targets the gene leading to its higher expression than normal 

levels. When such a gene is an oncogene, its upregulation might 

prove to be tumorigenic. (ii) An enhancer which targets its cognate 

gene possesses a SNP, the risk allele of which leads to the death of 

the enhancer and heterochromatinization of the enhancer region. 

This leads to the down-regulation of the gene and when this gene is 

a tumour-suppressor gene, it increases the susceptibility to cancer. 

(iii) An enhancer which targets its cognate gene, if possesses a risk 

SNP which leads to the gain of binding of a transcription activator 

leading to an up-regulation of the oncogene hence, susceptibility to 

cancer. (iv) An enhancer which targets its cognate gene, if 

possesses a risk SNP which leads to the gain of a different 

transcription factor than the one which was binding when the wild-

type allele of the SNP was present. The new transcription factor is 

more potent in its activation of the enhancer and the target oncogene 

gets upregulated leading to cancer susceptibility. 
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repression of key tumor suppressors or activators, 

mutations in architectural proteins contribute to 

genome-wide modifications in chromatin 

arrangement affecting regulation of several genes. 

Table 1. Examples of reported mutations in regulatory regions, their target genes and associated cancer 

Type of Mutation Gene Cancer type Reference 

Gain of super enhancer TAL1 T-cell Acute Lymphoblastic Leukemia 18 

rs339331 RFX6 Prostate 19 

rs8072254/rs1859961 SOX9 Prostate 20 

rs67491583 MYC Colorectal 21 

Enhancer Translocation MYB-QK1 Glioma 9 

rs7463708 PCAT1 lncRNA Prostate 10 

Insulator deletions TAL1 Lymphoblastic Leukemia 12 

rs965513 FOXE1 and PTCSC2 Thyroid 22 

rs554219, rs78540526, rs75915166 CCND1 Breast 23 

rs6983267 MYC Colorectal 24 

Enhancer deletion MLH1 Colorectal 7 

Enhancer amplification AR Castrate-resistant prostate cancer 25 

Enhancer invasion MYCN-target genes Neuroblastoma 26 

Enhancer amplification, translocation MYC Pediatric neuroblastomas 27 

Super-enhancer translocation MYB Cystic carcinoma 28 

rs1167291 PCAT19 lncRNA Prostate 11 

rs2981578, rs35054928, rs45631563 FGFR2 Breast 13 

rs920778 HOTAIR Esophageal squamous cell carcinoma 29 

rs12203592 IRF4 Acute Lymphocytic Leukemia 30 

Super-enhancer rearrangements TERT Pheochromocytomas 31 

 

 
 

Figure 3. Mutations and insulator: An insulator separates two TADs; one active and the other repressed, harbouring active and repressed genes 

respectively. When there is a mutation in the insulator and/or a transcription factor (like CTCF) which binds to the insulator such that the 

insulator function is lost, the adjacent TADs merge and all the genes show a similar pattern of expression, active expression in this case. 
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For example, mutations in the STAG2 subunit of the 

cohesin complex, which along with CTCF establishes 

the insulated neighborhood of TADs, has been 

reported in AML, Ewing-Sarcoma, bladder, 

melanoma, cervical and glioblastoma malignancies 

(14). Cohesin also plays a role in enhancer:promoter 

looping and thus mutations in these proteins could 

lead to pleotropic effects. Since STAG2 is located on 

ChrX, a single mutation could lead to the loss of 

protein. Similarly, CDK8, CYCLIN C, MED12, MED13 

and MED23 subunits of mediator complex are also 

frequently mutated in several cancers (15, 16). 

6. MUTATIONS IN TRANSCRIPTIONAL 

MACHINERIES 

Cancer cells employ wide arrays of 

mechanisms to alter the highly coordinated gene 

expression in normal cells which leads to 

cancerogenesis. Thus, not surprisingly, transcription 

factors, coactivators, corepressors and chromatin 

modifiers are mutated the most in cancers (12). Since 

chromatin regulators are highly cell-type specific, 

mutations in them give rise to specific cancers for 

example, mutations in nuclear receptors are specific 

Table 2. Cancer associated mutations in transcription regulators and architecture proteins. 

Gene Cancer Reference 

IRF4 Chronic lymphocytic leukemia 32 

TET2 Myeloid Cancer 33 

EZH2 Myelodysplastic syndromes 34 

DNMT3A Acute myeloid leukemia 35 

SMARCE1 Familial multiple spinal meningiomas 36 

ARID1B Childhood neuroblastoma 37 

BAF180 Breast Cancer 38 

PBRM1 Renal cell carcinoma 39 

ATRX Glioblastoma 40 

DOT1 Leukemia 41 

MLL2 and MLL3 Medulloblastoma 42 

NUP98-NSD1 Acute myeloid leukemia 43 

RUNX1 Acute myeloid leukemia 44 

JMJD3 Brainstem glioma 45 

BRD3 and BRD4 Prostate Cancer 46 

CREBBP Oesophageal Cancer 47 

EP300 Acute lymphoblastic leukemia 48 

HDAC4 Acute lymphoblastic leukemia 49 

SETD2 Leukemia 50 

MLL1 Acute lymphoblastic leukemia 51 

CTCF Acute myeloid leukemia 52 

STAG2 Several cancers 53 

RAD21 Myeloid neoplasms 54 

SPDEF Gastric cancer 55 

MYC Several cancers 56 
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to solid tumors. On the other hand, mutations in non-

cell type specific or global regulators is a common 

theme in most tumors, such as mutations in zinc 

fingers of several transcription factors, particularly of 

Kruppel associated box (KRAB) domain containing 

factors are widespread across several cancers. 

Some reported mutations in transcriptional regulators 

in various cancer types are mentioned in Table 2. 

7. eRNAs IN CANCER 

The most fundamental aspects of functional 

enhancers and their associated eRNAs is that they 

are highly cell- and tissue-type specific. Organismal 

development has also been largely governed by 

these spatially and temporally regulated enhancers 

thus clearly bringing corresponding eRNAs to the 

fore of these aspects. Though mutations in 

enhancers affect corresponding eRNA expression, 

direct link between cancer and mutations in eRNAs 

has not been established yet. eRNAs themselves can 

serve many roles or just the act of their transcription 

can also be important, for instance, divergent 

transcription from super enhancer in the gene body 

of an oncogene can create stalling of PolII whereby 

these stalled polymerases create ssDNA that are 

recognized by Activation-Induced Cytidine 

Deaminase (AID) which in turn can cause the DSB 

leading to the translocations (17). There is a further 

need of locus based as well as genome- wide studies 

to fully appreciate the breadth and depth of their 

functions. 

8. CONCLUSIONS 

At present, hundreds of thousands of 

regulatory elements have been identified by 

ENCODE, Roadmap, FANTOM5 and a very recent 

project, Blueprint/IHEC. However, large scale 

measures to unravel the functionality of these 

genomic elements in different tissues and cancers 

are still lacking. Once these enhancers and their 

functions are identified, finding the causative 

mutations can be accelerated which will then pave 

the ways for correctional enhanceropathies. 
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