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regulate gene expression, and we discuss the 
physiological role of this new class of molecular 
regulators in neurobiology, cardiology, 
endocrinology, metabolism, muscle biology, 
and female reproductive disorders.

2. INTRODUCTION

Over the past several decades, the 
indispensable roles of RNA in numerous 
biological processes have been demonstrated, 
but it has only been recently that a small number 
of functional RNAs have attracted significant 
attention. A particularly striking finding is that the 
genomes of complex organisms contain large 
amounts of non-protein-coding sequences 
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1. ABSTRACT

Accumulating data from large-scale 
transcriptome studies have identified a class 
of poorly understood non-protein-coding 
RNAs, including microRNAs, piwi-interacting 
RNAs (piRNAs), and long non-coding RNAs 
(lncRNAs), and a number of studies suggest 
that lncRNAs modulate the expression of 
protein-coding genes in a variety of tissues 
and organs by altering chromatin modification, 
transcription, mRNA decay, protein subcellular 
localization, and other key processes. Although 
much work still remains to identify the roles of 
lncRNAs in reproduction-related systems, they 
are likely to exert widespread effects during 
these processes. In this review, we highlight 
our emerging understanding of how lncRNAs 
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Figure 1. Cis-regulation of local gene expression by lncRNAs. A. lncRNAs may influence chromatin architecture and/or transcription by 
interacting with transcription factors or chromatin-modulating proteins. B. Enhancer RNAs (eRNA) expanded the regulatory capacity of 
cis-regulatory lncRNAs by coordinating transcriptional activation or stabilizing enhancer-promoter looping. Pol II, RNA polymerase II; TF 
transcription factor.

that scale consistently with developmental 
complexity (1). These previously so-called 
“transcription noise” sequences are now known 
to have specific roles in multiple biological 
processes and are referred to as noncoding 
RNAs (ncRNAs). The amount of ncRNAs in 
eukaryotes is quite vast and exceeds that of 
protein-coding genes (2). Among different 
types of ncRNAs, classes of transcripts longer 
than 200 nucleotides that lack any distinct open 
reading frames are defined as long non-coding 
RNAs (lncRNAs).

The identification of ncRNAs has 
increased dramatically in recent years, and 
it is now known that one class of ncRNAs 
termed microRNAs plays diverse roles in 
both physiological (3, 4) and pathological 
processes (5, 6), and this is likely to also be the 
case for lncRNAs. The principles behind their 
mechanisms of action are presented here using 
a selection of lncRNAs whose functions have 
been evaluated via the most robust methods 
available. In this review, we will summarize 

our current understanding of lncRNA functions 
in molecular biology and specifically in female 
reproductive systems.

3. LncRNAs ARE INVOLVED IN GENE 
REGULATION THROUGH DIFFERENT 
MECHANISMS

Although only a small number of 
lncRNAs have been well characterized to 
date, they have been shown to play vital 
roles in molecular, cellular, physiological, 
and pathological functions by fine-tuning the 
expression of protein-coding genes (7, 8). It 
is clear that lncRNAs usually function through 
interactions with DNA, other RNAs, and 
proteins, either through direct base pairing 
with complementary sequences or through 
secondary structure generated by RNA folding. 
Here, we will classify these regulatory non-
coding transcripts into those that regulate local 
gene expression in cis (Figure 1) versus those 
that function far from the transcription site and 
perform their regulatory roles in trans (Figure 2).
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3.1. Cis-regulation by lncRNAs
Numerous lncRNAs have been shown 

to play a cis-regulatory role in the expression 
of nearby genes. A portion of these lncRNAs 
can influence chromatin architecture and/or 
transcription by interacting with transcription 
factors or chromatin-modulating proteins 
and thus promoting their recruitment to 
nearby gene loci where they control the 
transcriptional activity of these genes. For 
instance, the lncRNA ANRIL binds to SUZ12, 
one of the histone methyltransferase polycomb 
repression complex 2 (PRC2) subunits, and 
depletion of ANRIL disrupts SUZ12 occupancy 
on the p15INK4B locus and thus increases 
its gene expression (9). Similar to that, the 
lncRNRA linc-HOXA1 in mouse embryonic 
stem cells has been shown to repress Hoxa1 
gene expression, which is located 50 kb away 
from linc-HOXA1, by recruiting PURB as a 
transcriptional regulator (10). In another study, 
the lncRNA HoxBlinc was reported to promote 
hematopoietic development by up-regulating 
Hoxb gene expression. HoxBlinc acts as 
a regulator of chromatin loop structures by 
guiding Set1/MLL1 to the Hoxb gene locus to 
control lineage-specific transcription (11).

In addition to the mechanism described 
above, the discovery of enhancer RNAs 
(eRNAs), a class of lncRNAs synthesized 
at enhancers, has greatly expanded our 
understanding of the regulatory capacity of cis-
regulatory lncRNAs (12). There is direct evidence 
that eRNAs play functional roles in nearby gene 
expression (13, 14), and the regulatory action of 
eRNAs requires both the sequences that mediate 
transcription factor binding and the specific 
sequences that encode the eRNA transcript, 
although the critical determining factors for 
this specificity have not been identified (13). In 
human breast cancer cells, induced eRNAs play 
important roles in the induction of target coding 
genes by increasing the strength of specific 
enhancer looping that is initiated by ERα binding 
(14). These enhancer-like functions show a 
more complex role for cis-regulatory lncRNAs 
in transcription factor binding and subsequent 
gene transcription and provide a novel field for 
the study of lncRNAs in gene regulation.

3.2. Trans-regulation by lncRNAs
LncRNAs were initially reported to 

be cis-regulatory factors that interact with 
neighboring genes, but now extensive numbers 

Figure 2. Trans-regulation of unlinked gene expression by lncRNAs. A. lncRNAs may regulate distant gene expression by recruiting 
chromatin-modifying proteins, transcription factors and also by influencing nuclear structure to regulate DNA transcription, RNA processing. 
B. Trans-acting lncRNAs could interact with proteins and/or other RNA molecules. Pol II, RNA polymerase II; TF transcription factor.
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of both cis- and trans-acting lncRNAs have 
been identified. HOTAIR was the first lncRNA 
shown to operate in trans on chromosomes 
other than its original site of transcription. 
Chromatin immunoprecipitation followed by 
hybridization to tiling microarrays interrogating 
all human promoters (ChIP-chip) showed 
that HOTAIR recruits the PRC2 complex to 
specific target genes genome-wide, leading to 
H3K27 trimethylation and epigenetic silencing 
of metastasis suppressor genes (15). Thus 
lncRNAs such as HOTAIR regulate chromatin 
states and gene expression in regions far away 
from their transcription sites.

In addition to recruiting chromatin-
modifying proteins, trans-regulating lncRNAs 
also influence nuclear structure and 
organization or interact with proteins and/or 
other RNA molecules. Some lncRNAs influence 
nuclear architecture in order to regulate DNA 
transcription, RNA processing, and other steps 
during the process of gene expression. MALAT1 
is a well-known nuclear speckles-retained 
lncRNA that is recruited to nuclear speckles 
by directly interacting with multiple splicing-
associated proteins (16). In addition, MALAT1 
acts as a scaffold that helps to position nuclear 
speckles at active gene loci (17). Also, trans-
acting lncRNAs can function by interacting with 
proteins and other RNAs. Traditionally, proteins 
have been thought to be the major scaffolds 
in biological processes, but recent evidence 
suggests that lncRNAs can play a similar role. 
For example, the lncRNA NORAD functions as 
a molecular decoy for the RNA-binding proteins 
PUMILIO1 and PUMILIO2 and accelerates 
mRNA decay and translational inhibition of these 
mRNA targets (18). Also, the p53-responsive 
lncRNA GUARDIN has been identified as an RNA 
scaffold between BRCA1 and BARD1 and thus 
plays an important role in maintaining genomic 
stability in cells exposed to genotoxic stress 
as well as under steady-state conditions (19). 
Taken together, these observations show that 
lncRNAs are capable of functioning through 
multiple mechanisms at different points in the 
process of gene expression.

4. LncRNAs REGULATE NORMAL 
BIOLOGICAL PROCESSES AND 
DEVELOPMENT

Recently, lncRNAs have been implicated 
in numerous cellular processes ranging from 
embryonic stem cell pluripotency (20, 21) 
to immune responses (22, 23), cell cycle 
regulation (24), cell proliferation, and cell death. 
The roles of lncRNAs in the regulation of the 
endocrine system, reproductive system, and 
other systems have also been explored, among 
which the best characterized are the nervous 
and cardiovascular systems.

4.1. lncRNAs in the nervous system and 
their role in neural development

Neural development is a highly 
stereotyped process that requires precise 
spatiotemporal regulation of cell proliferation 
and differentiation, and lncRNAs appear to 
function as a regulatory mechanism to fine-tune 
neuronal development and function. LncRNAs 
are abundantly expressed in the central nervous 
system (25), and several lncRNAs have been 
implicated in neuronal development and in the 
differentiation of neurons (26). For instance, the 
lncRNA RMST is regulated by the transcription 
factor REST, which is known as a master 
negative regulator that controls neurogenesis. 
And RMST then drives the recruitment of 
the neural transcription factor SOX2 to key 
neurogenesis-promoting genes. Loss of RMST 
blocks exit from the embryonic stem cell state 
and the initiation of neural differentiation (27). 
Another recent study has reinforced the 
important role that lncRNAs play in the brain by 
means of a collection of 18 lncRNA knockout 
mouse lines, three of which exhibit peri- or post-
natal lethality and two of which show distinct 
developmental defects (28).

4.2. lncRNAs in the cardiovascular system
Epigenetic regulation is crucial during 

cardiovascular development, and lncRNAs play 
important roles in this process. Transcriptome 
analyses in the AC16 immortalized adult 
ventricular cardiomyocyte cell line identified a 
wide array of transcripts and found that lncRNAs 
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are involved in cardiac development, physiology, 
and pathology (29). Fendrr, for instance, is 
essential for heart development in mice and 
likely exerts its functions by binding to PRC2 
chromatin-remodeling complexes, and mouse 
embryos lacking Fendrr display upregulation 
of several transcription factors – such as Foxf1 
and Pitx2 – that control lateral plate and cardiac 
mesoderm differentiation (30). Another example 
of a lncRNA required for cardiomyocyte 
lineage commitment is Braveheart (Bvht), 
which is necessary for the activation of a core 
network of cardiovascular genes and functions 
upstream of mesoderm posterior 1 (MesP1) 
and is thus indispensable for the development 
of cardiovascular progenitor cells. This function 
is carried out through a similar mechanism as 
Fendrr described above (31). Other lncRNAs 
have also been identified specifically in the 
heart and shown to be directly related to 
cardiac biology. For example, the lncRNA Mhrt 
is likely to protect the heart from pathological 
hypertrophy by antagonizing the activity of 
Brg1, a chromatin-remodeling enzyme that 
promotes aberrant gene expression and 
cardiac myopathy in response to stress (32).

4.3. lncRNAs in the endocrine system
The identification of a growing set of 

lncRNAs in endocrine organs – including the 
pancreas, pituitary, hypothalamus, thyroid, and 
parathyroid glands – has provided new insights 
into the properties of lncRNAs. For example, 
gonadotropin-releasing hormone (GnRH) is 
secreted by neurons of the hypothalamus, which 
is crucial in the regulation of normal reproductive 
development and function. Dysregulation of 
the GnRH gene Gnrh1 has been implicated 
in the incorrect timing of puberty, reproductive 
deficiencies, and infertility. A mouse Gnrh1 
enhancer-derived noncoding RNA, GnRH-E1 
RNA, is considered to be an inducer of Gnrh1 
transcription in GnRH neuronal cell lines, thus 
GnRH-E1 RNA is suggested to participate 
in the development and maturation of GnRH 
neurons (33). Pancreatic islets serve a critical 
role in metabolic homeostasis through insulin 
secretion (34), and a comprehensive strand-
specific transcriptome map of the human 

pancreatic islets and β cells identified more 
than 1,100 intergenic and antisense islet-
cell lncRNA genes. These islet lncRNAs are 
dynamically regulated and have been shown to 
be an integral part of the β cell differentiation 
and maturation process. Moreover, 42% of 
mouse orthologous transcripts are found 
in islet cells and are regulated in a similar 
manner as their human counterparts (35). 
Profiling analyses have shown that lncRNAs 
are widely expressed in the endocrine-related 
system; however, there is little knowledge on 
the function of lncRNAs in endocrine-related 
organs, which needs to be further explored.

4.4. lncRNAs in other systems
Adipose tissue plays multiple roles in 

energy storage and expenditure, endocrine 
signaling, and immune-metabolic crosstalk. 
There are two principal types of adipose tissues 
in mammals, namely brown adipose tissue 
(BAT), which is specialized in producing heat 
and consuming energy as a defense against 
cold and obesity (36), and white adipose 
tissue, which is in charge of storing chemical 
energy in the form of triglycerides. To a certain 
extent, lncRNAs are involved in adipocyte 
differentiation, development, and function. 
Whole-transcriptome RNA-Seq identified 175 
lncRNAs that are specifically regulated during 
adipogenesis in mice, most of which are 
required for adipocyte differentiation (37). More 
recently, RNA-Seq analysis of transcriptomes 
in different adipose tissues identified 127 
BAT-restricted lncRNAs. One of them, lnc-
BATE1, is implicated in the establishment and 
maintenance of BAT and has been shown to play 
a role in thermogenesis. Further experiments 
showed that knockdown of lnc-BATE1 impaired 
the differentiation of brown adipocytes, as 
revealed by decreased expression of brown fat 
markers and mitochondrial markers (38).

LncRNAs are also involved in muscle 
differentiation. The lncRNA H19 is abundantly 
expressed in fetal tissues and in adult muscles. 
H19 can produce microRNAs miR-675-3p and 
miR-675-5p, which are able to down-regulate 
anti-differentiation transcription factor SMAD 
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to promote differentiation and regeneration of 
skeletal muscle. H19-deficient mice display 
abnormal skeletal muscle regeneration, which 
can be rescued by ectopic expression of 
miR-675-3p and miR-675-5p (39). In addition, 
H19 also functions as a molecular sponge to 
modulate the microRNA let-7 family and thus to 
control muscle differentiation (40).

5. LncRNAs AND FEMALE REPRODUCTIVE 
DISORDERS

Although the functions of lncRNAs in 
normal biological processes and development 
such as neurobiology, endocrinology, 
cardiology, and muscle biology as described 
above have been well-characterized, the 
challenge remains to determine the roles of 
lncRNAs in the reproductive system (41). From 
a regulatory perspective, lncRNAs are very 
likely to be involved in the development of the 
female reproductive system and in regulating 
fertility (42).

5.1. lncRNAs in folliculogenesis
Folliculogenesis is a complex process 

that is regulated by a broad molecular network, 
and the mammalian ovarian follicle consists 
of germ cells, somatic cells (both cumulus 
and granulosa cells), and follicular fluid (43). 
The identification of lncRNAs in the follicular 
microenvironment and their expression in the 
different compartments of the ovary would 
improve our understanding of oocyte growth 
and maturation. Well-characterized lncRNA 
H19 and Xist transcripts are expressed in 
bovine transzonal projections, which control 
the connection between the oocyte and the 
surrounding somatic cells in follicles, and it 
is through these projections that the somatic 
compartment of the follicle continues to nurture 
the oocyte after it becomes transcriptionally 
quiescent and through which they act 
during folliculogenesis. H19 is a maternally 
imprinted gene, whereas Xist is known to 
regulate transcriptional inactivation of the 
X-chromosomes in females (44). Another 
study showed that expression of the lncRNA 
AK124742 was up-regulated in cumulus cells 

from mature oocytes that later developed into 
high-quality embryos, whereas its expression 
was much lower in those from oocytes that 
resulted in poor-quality embryos. Therefore, 
AK124742 is believed to be significantly 
correlated with oocyte maturation, as well 
as with fertilization, embryo quality, and 
clinical pregnancy outcomes (45). Similarly, a 
microarray analysis identified a total of 20,563 
lncRNAs expressed in human cumulus cells. 
Among them, 124 lncRNAs were consistently 
upregulated in high-quality cumulus cells, while 
509 lncRNAs were downregulated. Those 
lncRNAs expressed in cumulus cells might 
be involved in oocyte development and early 
embryogenesis by regulating neighboring 
protein-coding genes (46). Another group 
updated the existing data on differentially 
expressed genes between granulosa cells 
and cumulus cells by identifying a number of 
lncRNA transcripts in parts of the genome other 
than coding regions (47).

Anti-Müllerian hormone (AMH) is an 
important hormone regulating folliculogenesis 
in the ovary, and the Amhr2 protein is a pivotal 
molecule in mediating AMH signaling (48). In 
addition, lncRNA-Amhr2 has been shown to 
activate the Amhr2 gene in mouse ovarian 
granulosa cells. Global transcriptome 
sequencing between compact cumulus 
cells from germinal vesicle cumulus oocyte 
complexes and expanded cumulus cells from 
metaphase II cumulus oocyte complexes 
showed differential expression of numerous 
lncRNA molecules. Interestingly, 12 of these 
differentially expressed lncRNAs are encoded 
within introns of genes, including ADAMTS9, 
AQP2, AQP5, CACNA1C, CHRM3, DPP4, 
FABP6, GPC5, HAS2, HSD11B1, ITGA6 and 
WNT5A, which are known to be involved in 
proliferation, steroidogenesis, and apoptosis 
in granulosa cells (49). These observations 
emphasize the importance of lncRNAs in 
oocytes and peripheral somatic cells. The 
identification of lncRNAs in cumulus cells and 
granulosa cells provides new clues as to how 
lncRNAs participate in the differentiation of 
follicular somatic cells. However, further studies 
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are still required to characterize their biological 
functions during folliculogenesis.

5.2. lncRNAs in ovulation and corpus 
luteum formation

Mammalian ovulation triggers the 
reorganization of follicular somatic cells through 
hypertrophy and hyperplasia, leading to the 
ovulation of a mature ovum and subsequent 
corpus luteum formation and progesterone 
secretion. However, little is known about 
the effects of lncRNAs on ovulation. A high-
throughput RNA-seq assay was performed 
to identify differentially expressed lncRNAs 
between the ovaries of multiparous and 
uniparous goats. Combined with cis role 
analysis, 24 lncRNAs were predicted to 
overlap with cis-regulatory elements involved 
in the four ovulation-related pathways of 
progesterone-mediated oocyte maturation, 
steroid biosynthesis, oocyte meiosis, 
and GnRH signaling. This expanded our 
understanding of lncRNA biology and provided 
clues for how lncRNA mediates the regulation 
of goat ovulation and lambing (50). In another 
study, it was shown that Neat1 knockout mice 
fail to become pregnant due to corpus luteum 
dysfunction and low progesterone levels. 
Neat1 is a well-characterized lncRNA that 
exclusively localizes to the subnuclear domain 
paraspeckles and induces the relocation of Sfpq, 
one of the core paraspeckle proteins, from gene 
promoter regions to the paraspeckles (51, 52). 
Also, Neat1 sequesters Sfpq in paraspeckles 
in luteal cells, and together these observations 
suggest that Neat1 is essential for the formation 
of the corpus luteum and for the subsequent 
establishment of pregnancy. However, the 
precise molecular mechanism through which 
Neat1 functions remains to be determined (53).

5.3. lncRNAs in female reproductive 
disorders

Folliculogenesis is a primary 
determinant of female fertility, and dysregulation 
of different steps in the process can lead to 
multiple female reproductive disorders such as 
infertility, miscarriage, and adverse pregnancy 
outcomes. LncRNAs have recently been 

explored as epigenetic regulators in the female 
reproductive system and have shed new light 
on the etiology of numerous reproductive 
disorders. Here we mainly focus on the current 
evidence for the involvement of lncRNAs 
in polycystic ovary syndrome (PCOS) and 
premature ovarian insufficiency (POI).

5.3.1. lncRNAs and PCOS
The roles that miRNAs in follicular 

somatic cells and the follicular fluid play in 
oocyte maturation and the etiology of PCOS 
have been investigated (54, 55), and thus it 
is likely that the lncRNA expression profile 
might also reveal a role for these molecules in 
the pathological events in granulosa cells and 
cumulus cells that are associated with PCOS.

Several lncRNAs that are expressed 
in granulosa and cumulus cells have been 
specifically associated with PCOS, including 
PWRN2 and HCG26 (56, 57). A microarray 
analysis was performed on cumulus cells 
isolated from five patients with PCOS and five 
healthy women, and 627 differentially expressed 
lncRNAs were identified, of which five were 
confirmed to be consistent with the microarray 
data by qRT-PCR. Notably, approximately 
20 lncRNAs were co-expressed with a type 2 
diabetes mellitus candidate gene, neuropeptide 
Y1 receptor (NPY1R), and the co-expressed 
lncRNAs might play a vital role in the etiology of 
PCOS. Furthermore, the up-regulated lncRNA 
PWRN2 and its co-expressed gene ATP6V1G3 
are likely to cause oocyte dysplasia in PCOS 
by down-regulating the pH level of the follicular 
microenvironment (56). Another independent 
microarray analysis was performed to compare 
lncRNA expression in granulosa cells from 
seven women with PCOS and seven matched 
healthy women, and this showed that a lncRNA 
named HCG26 is up-regulated in PCOS 
patients. Functional analysis showed that 
knockdown of HCG26 inhibits cell proliferation 
while promoting aromatase gene expression 
and estradiol production. These findings 
indicate that HCG26 is involved in granulosa 
cell proliferation and steroidogenesis and thus 
contributes to the pathogenesis of PCOS (57).
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In addition to lncRNAs in granulosa 
cells, significantly increased expression 
of the lncRNAs SRA and CTBP1-AS in 
peripheral blood leukocytes of patients with 
PCOS have also been observed. Also, serum 
levels of lncRNA GAS5 has been shown to 
be decreased in PCOS patients with insulin 
resistance (58-60). Taken together, these 
studies provide compelling evidence that 
aberrantly expressed lncRNAs in granulosa 
cells or peripheral blood might underlie the 
pathophysiology of human PCOS, and they 
expand the database of diagnostic biomarkers 
and therapeutic targets for PCOS.

The role of lncRNAs has also been 
studied in rodent models of PCOS. For 
instance, deep sequencing in the ovaries of a 
letrozole-induced PCOS rat model revealed the 
lncRNA expression profile, and a joint pathway 
analysis was constructed of the vital lncRNA-
miRNA-mRNA networks in order to determine 
the competitive endogenous RNA mechanism 
involved in the PCOS model (61). In addition to 
rat models, results in mice have indicated that 
abnormally elevated SRA expression promotes 
cell proliferation, inhibits cell apoptosis, induces 
the secretion of estradiol and progesterone in 
granulosa cells, and might be a risk factor for 
developing PCOS (62).

5.3.2. lncRNAs and POI
The causative genes of POI have been 

extensively studied in coding regions (63), and 
recently ncRNAs have begun to be explored 
as epigenetic regulators in the ovaries. Similar 
to PCOS, a fair number of studies have 
addressed the association of miRNAs with 
POI (64), but our understanding of lncRNAs in 
the pathophysiology of POI is still quite limited.

One of the few studies that have been 
performed showed expression of lncRNAs 
FMR4 and FMR6, which are transcribed from 
the fragile X-associated POI-correlated FMR1 
gene locus, in the granulosa cells of FMR1 
premutation carriers and control groups. There 
was a significant nonlinear association between 
the number of CGG repeats and the levels 

of FMR6. In addition, a significant negative 
correlation was observed between the number 
of oocytes retrieved and the expression level of 
FMR6 in granulosa cells (65).

Another recent study showed that 
overexpression of the lncRNA-Meg3-p53-p66Shc 
pathway in mice might be the main mechanism 
for cyclophosphamide-induced ovarian injury 
and POI and that knockdown of lncRNA-Meg3 
can effectively reduce the activation effect of 
cyclophosphamide on follicles (66). Despite 
these studies, our current understanding of the 
association between lncRNAs and POI is still at 
an early stage, and the contribution of this class 
of regulatory factors in the etiology of human POI 
has yet to be determined.

6. CONTROVERSY AND FUTURE 
ORIENTATION

Evidence that lncRNAs are involved 
in female reproductive disorders and for 
their potential roles in folliculogenesis has 
been provided and further verified (Table 1). 
However, only a small number of identified 
lncRNAs have been thoroughly studied 
mechanistically, and the publications available 
to date have been biased toward lncRNAs 
with observable functions in the female 
reproductive system. In addition, studying the 
functions of lncRNAs is difficult because of their 
relatively low expression levels and unusual 
evolutionary properties (67). For example, 
lncRNA promoters show greater sequence 
conservation than the background DNA, and 
they are almost as conserved as protein-coding 
gene promoters (68). While it appears that many 
lncRNAs detected in one species may not be 
transcribed in another species. Along with the 
temporally and spatially restricted expression 
patterns of lncRNAs (69), likely explains why 
our understanding of lncRNA function is where 
the microRNA field was a decade ago.

In the post-genomic era, the door has 
been opened for us to see the greater potential 
of the dark matter of the genome using both 
new technologies and updated databases. 
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LncRNAs will advance science and medicine 
as biomarkers, therapeutic targets, and 
diagnostic indexes in human disorders. Thus, 
continued studies are warranted to elucidate 
their physical properties, their molecular 
mechanisms of action, and their biological roles 
in both physiological ovarian function and in the 
pathogenesis of female reproductive disorders.
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