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1. ABSTRACT

In this review, we highlight the specific 
metabolic effects of fructose consumption that are 
involved in the development of metabolic syndrome 
non-alcoholic fatty liver disease and its association 
with obesity. The specifics effects of fructose on the 
liver are particularly germane to the development 
of a vicious cycle that starts with liver steatosis 
driving insulin resistance. These effects include 1) 
increased de novo lipogenesis, 2) increased liver fat, 
3) dyslipidemia 4) increased uric acid production which 
feeds back on increased fructose metabolism and, 5) 
increased methylglyoxal and Maillard reaction that may 
affect adenosyl-monophosphate-dependent kinase 
Fructose increases cortisol activation especially in 
visceral fat. The hormones involved in satiety control 
are affected by fructose consumption. Fructose derived 
advance glycation end-products may also induce a 
state of inflammation by engaging its receptor, RAGE. 
Directionality for the effect of fructose on metabolic 
syndrome is becoming clear: fructose drives hepatic 
fat, which in turn drives insulin resistance. There is 
an urgent need for more clinical and educational 
interventions to regulate/reduce fructose consumption 
in our population, especially in children and adolescents.

2. INTRODUCTION

Obesity is a global health problem that is 
increasing in prevalence around the world, affecting 
adults as well as children and adolescents. One out of 
three adults and three out of ten children or adolescents 
are obese or overweight (1,2). Obesity is a risk factor 
for the development of type 2 diabetes mellitus (T2DM), 
cardiovascular disease (CVD) (3), metabolic syndrome 
(MetS) (4–6), and is related to various chronic 
conditions including: high blood pressure (7), insulin 
resistance (IR) (8), dyslipidemia, atherosclerosis, a 
low-grade chronic inflammation, non-alcoholic fatty 
liver disease (NAFLD) and cancer (9).

Both obesity and metabolic syndrome are 
associated with various factors including genetics, 
physical activity, environment, and diet (6,10). Diet, a 
component of lifestyle, plays a significant role in this 
epidemic specifically diets rich in fats, protein, sodium, 
and sugar (11). Since the past century, as the intake of 
added sugar has increased, at par, the effect of sugar 
on health has also been studied (12,13). In 1900, 
sugar had already been shown to be related to various 
diseases (14). Currently, a large body of evidence has 
defined sugar as a toxic substance that contributes 
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largely to non-communicable diseases, mainly due to 
the metabolic effects of fructose and its components 
(13,15,16). Despite the known metabolic effects of 
fructose, its dietary intake has continued to increase 
in recent years (17–19). Evidence is increasing for 
a key role of hepatic fructose metabolism leading to 
liver and visceral fat accumulation as a key factor 
that generates insulin resistance, which dovetails and 
generates MetS and ends up in obesity (20). Therefore, 
the purpose of this review is to highlight the specific 
metabolic effects of fructose consumption (beyond the 
caloric content) in the development of MetS, NAFLD 
and their association with obesity. Other aspects such 
as fructose’s addictive potential and central nervous 
system (CNS) actions will not be discussed at large 
and the reader is referred to other comprehensive 
reviews in these areas.

3. FRUCTOSE METABOLISM

3.1. Fructose is an isomer of glucose, but their 
metabolisms are quite different

Fructose is a monosaccharide found mainly 
in sucrose (50% glucose and 50% fructose), fruits, 
honey as well as in processed forms like fructose-
containing caloric sweeteners (FCCS), high fructose 
corn syrup (HFCS) and employed in processed foods 
and beverages called sugar-sweetened beverages 
(SSBs) (21). Epidemiological studies have related 
fructose consumption (in sugar, or HFCS form) with 
obesity (22), MetS, T2DM (23), CVD (24) and NAFLD 
(6,25–27). The correlation with SSBs is particularly 
strong (28,29). The mechanism of how fructose 
participates in these pathologies is not completely 
clear yet, however, different studies in both animals 
and humans (30,31) has allowed the dissection of 
some of its metabolic effects. 

Free fructose is absorbed directly in the 
intestinal lumen, whereas from larger molecules like 
sucrose, both glucose and fructose are acquired by 
the cleavage of sucrase (invertase), an enzyme found 
in the brush border of the villi or enterocyte of the 
small intestine (32,33). Intestinal fructose is mostly 
transported via the glucose transporter 5 (GLUT5) via 
diffusion on the luminal side and glucose transporter 
2 (GLUT2) on the basolateral side (33,34). Fructose 
enters the liver from the portal circulation (32,35). 
The liver contains two glucose and two fructose 
transporters, GLUT 2 and GLUT 8 respectively 
(Figure 1). Fructose transport and metabolism 
within hepatocytes is regulated by GLUT 8. (36,37). 
Fructose is metabolized mostly in the liver (more than 
80% undergoes first pass extraction), whereas when 
consumed in isolation, approximately 50% is converted 
to glucose, 15-20% into hepatic glycogen and 15-25% 
into lactate or fatty acids (FA) which are secreted as 
very low-density lipoproteins (VLDL) triglycerides (TG) 
or stored as intrahepatic fat (38–40).

In the liver, three key enzymes metabolize 
fructose. First, fructose is phosphorylated to 
fructose 1 phosphate (fructose-1-P) by the enzyme 
fructokinase C (FFK C), also named ketohexokinase 
(KHK). Fructose-1-P is then converted into di-
hidroxyacetone-phosphate (DHAP) by the enzyme 
aldolase B and glyceraldehyde-3-phosphate (G-3-P) 
via thiokinase (TKFC). These trioses participate in 
other metabolic pathways: glycolysis, lipid synthesis, 
gluconeogenesis, and glycogenesis (41,42) (Figure 
1). It is important to note that fructose enters glycolysis 
more directly, and consequently is not tightly regulated 
as glucose (19).

Most of the ingested fructose is extracted 
from the portal blood via first pass hepatic metabolism 
while only a small fraction of the ingested fructose will 
eventually enter the systemic circulation (40). It needs 
to be said that we rarely consume pure fructose, 
rather, it is co-ingested with glucose and this makes 
all the difference. To better highlight these differences, 
Figure 1 A and B compares what happens with a load 
of glucose (from pasta, for instance) and the same 
load of sucrose (fructose and glucose).

Some studies in animals (43,44) and humans 
(45,46) have shown that fructose, compared with 
glucose or starch in diets with the same number of 
calories, is able to increase food intake, visceral fat, 
circulating TGs, blood pressure and reduces fatty acid 
oxidation, insulin sensitivity and energy metabolism 
(47,48). All of these characteristics are related to the 
presence of MetS and various scientific evidence 
shows that drinks sweetened with fructose or HFCS 
have a role in the pathogenesis of MetS and its 
components (6,11,23).

It is noteworthy that while glucose generates 
energy in the form of ATP during its metabolism, 
fructose consumption is able to the decrease the 
levels of intracellular ATP due to the quick process of 
phosphorylation by FFK C (Figure 1B). As we show 
further below, replenishing of the ATP increases AMP 
leading to its catabolism into uric acid. The lack of 
ATP in turn generates a mitochondrial oxidative stress 
that favors an increase of lipogenesis, blockade of the 
oxidation of FA (46) and stimulates gluconeogenesis 
(49–51) as we further elaborate in section 3.2. On the 
other hand, while the metabolism of glucose is limited 
by the amount of ATP and insulin, the metabolism of 
fructose is not limited by these factors.

As previously mentioned, the result of 
fructose ingestion (Figure 1) may first be evidenced 
by an increase in hepatic glucose production and the 
conversion to lactate in the liver which can be measured 
in the blood. After this, an increase in plasma lipids is 
observed due to the production of fat from fructose in 
the liver. As reported by multiple authors, high fructose 
concentrations converts pyruvate to acetyl-CoA by 
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Figure 1. It’s not all about the calories nor about all carbohydrates but a specific one. This diagram shows the comparison of the major pathways for 
the fate of either A) 100 g of glucose (from starch) or B) 100 of sugar (50% glucose and 50% fructose). A). After digestion of starch 1), glucose enters 
the portal vein 2). In the liver it is converted, in part, to glycogen 3) and most of it goes into the bloodstream 4) to feed the tissues as it increases insulin 
secretion 5) and glucose enters muscle and adipose tissues 6). The rest is used to fuel the liver itself via glycolysis 7) leading to Acetyl coenzyme A 
(AcCoA) 8) which generates energy in the mitochondria. Very little is converted to fat 9) via the process of de novo lipogenesis (DNL). B). After digestion 
of sugar 1), glucose and fructose enter the portal vein in equal amounts 2). In the liver, glucose will be turned, in part, into glycogen 3). Most of it enters 
the bloodstream 4) to feed the tissues as it increases insulin secretion 5) and glucose enters muscle and adipose tissues 6). Fructose does not leave the 
liver for the most part. Instead, it is quickly phosphorylated by FFK C, bypassing regulatory steps in glycolysis and flooding the system 7), 8). The trapped 
metabolites have one fate: they are turned into fat by de novo lipogenesis 9) and 10). This process impairs FA oxidation by the mitochondrion because 
malonylCoA inhibits carnitine palmitoyl transferase I (CPT I) and FA transport into the mitochondrion 9). Some of the trioses are also transformed into 
the toxic metabolite methylglyoxal (MG), which can be detoxified to D-lactate 11). These processes have dire consequences as explained in the next 
figures. Finally, as further developed in other diagrams, quick phosphorylation of fructose leads to energy depletion and uric acid production, which in 
turn stimulates fructose metabolism 12).
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the reaction of pyruvate dehydrogenase. The flux of 
pyruvate dehydrogenase from increased entry into 
the TCA cycle also results in an increased acetyl-CoA 
and citrate cycled in the synthesis of fatty acids (52) 
which are stored as intrahepatic fat and/or secreted 
into the bloodstream as VLDL triglyceride. Liver fat 
accumulation is a key link to IR, an entity linked to 
MetS and NAFLD (53–55).

There is a close relationship between fructose 
consumption, DNL (FA and TG synthesis) and NAFLD. 
Fructose increases hepatic FFK C and induces DNL 
(25) which is increased in NAFLD (56,57), a process 
characterized by an imbalance between the lipids 
synthesized via DNL or lipolysis and lipid oxidation or 
VLDL export from liver (58). The excess fat in the liver 
may lead to the development of hepatic IR (59) as well 
as nonalchoholic steatohepatitis (NASH), a stage that 
predisposes to cirrhosis (60,61) and its complications 
(32,35,62). 

Isotopic studies have shown that people with 
NAFLD produce 2 times more liver fat and secrete 
more VLDL-triglycerides via DNL compared to IR obese 
subjects and 3 times more compared with healthy 
subjects (9,32). Moreover, prolonged exposure of lipids 
in the liver causes oxidative stress in the endoplasmic 
reticulum ER and this alters apolipoprotein B100 
degradation as well as VLDL secretion (63), a condition 
described in people with NASH (61).

The main deleterious effects of fructose at the 
hepatic and systemic level include: insulin resistance, 
inflammation, stress hepatic, ATP depletion (64), 
DNL (triglyceride and fatty acid synthesis) (65–69), 
NAFLD, nonalcoholic steatohepatitis (NASH) (67,70), 
acid uric production (47,71), endoplasmic reticulum 
stress (ER), fibrosis (9)(71). These will be explored 
further in the following sections. In addition, we 
have proposed that the increase in trioses flux that 
increases lipogenesis should also greatly increase the 
generation of methylglyoxal (MG) and its detoxification 
product, D-lactate (72,73). The importance of fructose 
metabolism in fatty liver disease is highlighted clearly 
by the fact that Pfizer is developing (phase 1) PF-
06835918 a FK C inhibitor.

3.2. Fructose may be deleterious via methylglyox-
al and the Maillard reaction

Fructose participates in formation of 
methylglyoxal compound (MG), a powerful precursor 
of advanced glycation end products (AGEs) formed 
in vivo (which are described in another section of this 
review). MG is detoxified as D-lactate. Trioses formed 
in the unregulated metabolism of fructose may increase 
the MG production in the liver (74,75). This increase of 
MG generates dicarbonyl stress, which is characterized 
by modification/dysfunction of proteins (MG attacks 

especially arginine residues) and DNA (76–78). We 
have advanced the hypothesis that MG inactivates the 
enzyme adenosyl-monophosphate-dependent kinase 
(AMPK), which under normal conditions would activate 
the catabolic pathways in the liver. However, MG may 
have affinity for the three arginines of the subunit 
gamma of AMPK. When coupled to them, AMPK is 
inactivated thereby favoring the anabolic processes 
including lipogenesis and IR which are widely related 
to obesity, metabolic syndrome and NAFLD (73). 

AMPK is a master regulatory enzyme that 
controls the cellular energy state (79–81). A decrease 
in energy activates AMPK by initiating catabolic 
pathways and inhibiting anabolic pathways (79,82). 
AMPK is comprised of three sub units: alpha, beta and 
gamma (its allosteric site). The epsilon subunit is linked 
to AMP by 3 Arginine residues (79,82). The allosteric 
regulation is influenced by the AMP/ATP ratio and 
blocking the allosteric site of AMP can inhibit activation 
of AMPK. Related to this, as previously described, the 
particular metabolism of fructose leads to the formation 
of triose (catalyzed by FFK C), a process that favors 
a rapid depletion of ATP (51,83), while at the same 
time, AMP production forms uric acid. This change in 
proportion of ATP/AMP should activate AMPK with its 
consequent effects, however, under the consumption 
of fructose this does not happen. To explain this 
flagrant metabolic paradox, as shown in Figure 2.

It has been demonstrated that MG is 
metabolized by the glyoxalases system which is 
diminished in the presence of clinical obesity and 
glyceroneogenesis (74–76,85). Large loads of fructose 
can alter the metabolism of MG (86) increasing the 
excess of triose, MG and D-Lactate. D-lactate is of 
particular interest since its plasma levels have been 
used as a surrogate marker of MG flux (87–89). 
In support of our contention, Thornalley has found 
increased MG and D-lactate in obese adults (74,76) 
and we have shown the same in adolescents in a 
cross sectional study (Reyna Rodriguez, Claudia 
Luevano, Sergio Solorio, Russell Caccavello, Yasmin 
Bains, Ma. Eugenia Garay and Alejandro Gugliucci, 
CCLM, in press 2018). Further, in an intervention 
study, fructose restriction resulted in a 38% decrease 
in D-lactate levels in just 10 days) (Yasmin Bains, 
Caccavello Russell, Michael Wen, Susan Noworolski, 
Kathleen Mulligan, Viva Tai, Jean-Marc Schwarz, Ayca 
Erkin-Cakmak, Robert Lustig and Alejandro Gugliucci 
unpublished results 2018).

Therefore, fructose, by increasing MG (and 
its product D-lactate) may play a key role in obesity 
and metabolic syndrome through the MG postulated 
mechanism on AMPK (73). More research is needed 
to ascertain this contention. It has also been proposed 
that the dicarbonyl stress promoted by MG (acting on 
many other proteins) can play an important role in the 
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development of IR in obesity and increase the risk of 
developing DMT2 and NAFLD (76).

3.3. Fructose increases uric acid formation and 
has hypertensive effects

Uric acid, produced from the AMP generated 
by the metabolism of fructose, activates the renin-
angiotensin system and inhibits endothelial nitric 
oxide (NO) a vasodilator, causing an increase in 
blood pressure (45,90–92) which, together with 
the mitochondrial effects of fructose contribute to 
MetS development (45,93–95). The fluxes of uric 
acid generated by fructose are a result of transient 
energy deficits generated by quick unregulated 
phosphorylation of fructose as depicted in Figure 1B. 
In Figure 3, we expand on the details of this process. 

Since uric acid is a consequent product of ATP 
depletion and increased AMP in fructose metabolism, 
it has been used as a marker of hepatic decrease of 
ATP (100,101). Studies have reported that acid uric 

induces oxidative stress and inflammation increasing 
lipogenesis, decreasing FA oxidation as well as AMPK 
activity (49,50,100) similar to what happens when 
systems such as nicotinamide adenine dinucleotide 
phosphate-oxidase (NADPH oxidase) and nuclear 
factor-kappa B (NF-kB) are activated (102,103).

Studies where the uric acid synthesis inhibitor 
allopurinol has been used, have shown that a decrease 
in uric acid improves the MetS induced by fructose 
(93) and that this decrease in uric acid has a beneficial 
impact on both blood pressure and IR in humans 
(104–106), besides, acid uric promotes to NALFD due 
it effect of increase lipogenesis (49,50,107). 

The group of Lustig et al has shown that SSBs 
have an impact on uric acid levels and blood pressure 
even in adolescents (90), highlighting the need for 
timely interventions in this age group to prevent future 
complications. Furthermore, these authors have 
highlighted that in addition to a regulation of salt intake, 
a regulation in sugar consumption, and therefore 

Figure 2. Some of the deleterious actions of fructose on the liver may be due to the actions of methylglyoxal on master regulatory enzyme AMPK. As 
shown in Figure 1 B, fructose metabolism is largely hepatic. we have proposed that a surge of fructose (40 g in liquid form which is not uncommon 
in our diet), through unregulated metabolism, generates MG 1), which can be detoxified to D-lactate 2), and we use as a marker of this flux (76), a 
process that may be overwhelmed. MG is very reactive and may bind to the 3 key arginine residues in the allosteric site of AMPK, rendering it non 
responsive 3). AMPK favors energy generation, its cumulative actions may be summarized as anti-diabetic. If rendered inactive, the processes favored 
are gluconeogenesis 4), increasing hepatic production of glucose even in the fed state, lipogenesis 5) and cholesterol synthesis 6). These are precisely 
the processes which research has shown are stimulated by fructose, with the consequences of ectopic fat accumulation 7), hyperlipidemia 8), insulin 
hypersecretion 9) and therefore insulin resistance (53,84). Further research is needed to fully establish the above as a clinically relevant mechanism.
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Figure 3. Some of the deleterious actions of fructose on the liver may be due to ATP depletion and uric acid formation. As depicted in Figure 1B, fructose 
bypasses the 2 key regulatory steps in glycolysis because The liver has the very active FFK C 1), that floods the cytosol with trioses and AcCoA 2), which 
lead to lipogenesis 3), fatty liver 4) and hyperlipidemia 5), especially because fructose is co-ingested with glucose which is used for glycogen production 
(instead of fructose, Figure 1 A) vs 1 B)). This drives insulin secretion which enhances lipogenesis 3). The rapid, unregulated phosphorylation of fructose 
leads to quick cytosolic ATP depletion 6). In order to replenish the cytosolic ATP the cells use adenylate kinase 7) to generate 1 ATP and 1 AMP from 
2 ADP 8). AMP is an endproduct that is degraded into uric acid. Uric acid quenches NO, leading to impaired vascular tone and hypertension 10). One 
important feature of uric acid is that it has been shown to be a FFK C activator, and therefore a perpetuator of this cycle (93). Actually, the mutation by 
which we lost uricase during evolution has been proposed as an evolutionary advantageous feature, facilitating fruit fructose assimilation in times of 
plenty (96). Uricase expression in experimental animals reduces fructose deleterious effects (97). The importance of FFK C is further evidenced by recent 
studies showing that its activity is enhanced in both obese humans with NASH (98) and fructose-fed mice (99). Its knockdown prevents fructose-induced 
steatosis and IR 11) (45,93).

fructose, should be a treatment goal to prevent both 
hypertension and the metabolic syndrome (91).

3.4. Fructose and cross-talk between visceral adi-
pose tissue and hepatocytes. The role of cortisol

Fructose exerts effects on both adipose 
tissue and liver, including adipogenesis, oxidative 
stress, inflammation, and glucocorticoid activation 
(71,108,109) which induces an increase in proliferation 
and differentiation of adipocytes (110).

The activation of inactive glucocorticoids such 
as cortisone in humans and 11-dehydrocorticosterone 
in rodents to their active forms, cortisol and 
corticosterone respectively (110) refers to an increase 
in bioavailability of these active forms within cells 
(7,111). This glucocorticoid transformation is exerted 
by the enzyme 11 beta-hydroxysteroid dehydrogenase 
(11-beta-OHSDH), which is expressed both in the liver 
and in adipose tissue (and in other tissues such as the 
kidney and skeletal muscle) and is found in the luminal 
membrane of the endoplasmic reticulum (ER) (110,112).

This enzyme is crucial for glucocorticoid 
activation via its reductase activity, which is dependent 

on NADPH (7,71,113). This reductase activity is 
increased in the presence of hexose 6 phosphate 
dehydrogenase (H6PDH), which forms NADPH in the 
ER lumen and therefore maintains the reducing power 
(109,114–116). In addition to these cofactors, 11-beta-
OHSDH is induced in the presence of pro-inflammatory 
cytokines (114,117–119). Thus, the way in which 
fructose activates glucocorticoids is via stimulating an 
inflammatory state and activating NADPH, which in 
turn induces 11-beta-OHSDH (110). In addition, studies 
have shown that fructose is capable of affecting the 
gene expression of 11-beta-OHSDH (120,121). We 
summarize these data in Figure 4. 

Regarding the inflammation caused by fructose 
(122), studies have reported that its consumption 
can lead to infiltration of macrophages in adipocytes, 
which promotes release of pro-inflammatory cytokines 
and increased inflammation (116,119,123–125). In 
addition, fructose also participates in the development 
of inflammation and insulin resistance which induces 
ER stress in adipocytes (122) which depletes the 
expression of endoplasmic reticulum oxidoreductase 
1 alpha (ERO-1alpha), an ER chaperon responsible 
for regulating the secretion of adiponectin, adipokine 
considered anti-inflammatory and insulin sensitizer 
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(126). This state of inflammation caused by fructose 
stimulates 11-beta-OHSDH and elevates cortisol 
within cells with its consequent effects involved in 
different metabolic alterations including components 
of MetS (113,124,127,128).

A close relationship has been reported 
between 11-beta-OHSDH, cortisol, obesity and MetS 
(127–130) since the cellular bioavailability of cortisol 
induces processes involved in the components of 
MetS. In fact studies have reported that people with 
metabolic syndrome show an increased expression 
of 11-beta-OHSDH and intracellular cortisol (131), a 
state similar to key metabolic processes present in 
Cushing’s syndrome, which is characterized by an 
excess of glucocorticoids (132).

In regards to the effects of glucocorticoids 
active in adipose tissue, it has been documented 
that there is an increase of intracellular cortisol in 
subcutaneous adipocytes (110) (where 11-beta-
OHSDH activity is doubled) (133,134). This can be 
induced by the effects of fructose, resulting in insulin 
resistance in subcutaneous adipocytes, thereby 
inhibiting the entry of FA and promoting greater flow 
and storage of unesterified FA in visceral deposits, 
mainly liver and visceral adipose tissue (VAT) 
(110,130,135–137).

11-beta-OHSDH also has an effect on 
hypertension since it is expressed in vascular tissue 
and can influence the homeostasis of blood pressure. 
It has been described that glucocorticoids produce 
a vasoconstrictor effect (138) which can induce 
endothelial dysfunction (139).

It is important to note that unlike glucose, 
fructose induces this glucocorticoid activation; in 
vitro studies have reported that glucose-6-phosphate 
(G6P) and fructose-6-phosphate (F6P) stimulate 
the reductase activity of 11-beta-OHSDH (71,110) 
both in liver microsomes and in adipose tissue 
microsomes. In the latter, the presence of ER-luminal 
F6P isomerase forms G6P through the formation 
of NADPH dependent of hexose-6-phosphate 
dehydrogenase (H6PDH) (109). In addition, studies 
have reported that fructose compared to glucose 
generates more ER-luminal NADPH since fructose is 
easily transported through the plasma membrane and 
F6P through the ER membrane compared to glucose 
and G6P (71). 

Finally, although more studies are required, 
it has been suggested that cortisol effects induced 
by fructose can be mediated by the activity of FFK-C 
from the liver through a metabolic crosstalk and 
inflammation (126).

Figure 4. Fructose and cross-talk between visceral adipose tissue and hepatocytes. The role of cortisol. Fructose in hepatocytes (over 90% percent of 
intake) or visceral adipose tissue (minor but non-negligible concentrations) also induces local inflammation and activation of G6PDH 1). This leads to 
activation of 11βOHSDH which turns inactive cortisone into cortisol 2). Cortisol stimulates fat synthesis 3) in both tissues as well as deposit of ectopic 
fat 4). Visceral adipose tissue cross-talks via portal circulation with inflammatory molecules as well as FA which enhance liver IR. Cortisol stimulates 
gluconeogenesis and hepatic glucose output 7), as wells as hyperlipidemia 8).
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Therefore, when 11-beta-OHSDH increases 
cortisol within the cells, it plays a role in the increase 
of visceral fat, inflammation, IR, hyperlipidemia and 
hypertension; characteristics of MetS.

3.5. Dietary AGEs, role of fructose ages preformed 
on food and generated in the intestine

Fructose-mediated advanced glycation 
endproducts (AGEs) formation via the Maillard reaction 
in foods may also be implicated in inflammation and MetS 
(140). Though well known by food chemists for decades, 
the Maillard reaction by fructose at physiological 
temperatures and pressures was studied starting only 
in the 80’s (141). These early studies helped establish 
the potential harmful effects of fructose on proteins as 
far more potent than those from glucose. The Maillard 
reaction (adduct formation between reactive carbonyls 
in glucose, fructose and their metabolites-such as 
methylglyoxal or deoxyglucosone-with amino groups in 
protein, DNA and lipids) has been implicated in diabetes 
complications. Fructose is 8 to10 times more reactive 
than glucose for Maillard reaction product formation as 

a result of the higher stability of its open chain form 
and its keto group. It does not form the Amadori but the 
Heyns product (141). The common methods employed 
for glucose glycation do not detect the Heyns products 
and/or other fructose-mediated adducts which has 
slowed down research on the potential role of fructose 
glycation in the pathogenesis of chronic disease in 
humans. Fructose-AGE concentration was measured 
in more than 100 commercial products (142). The 
highest levels of Fructose-AGE were shown in yoghurt 
beverages. Glycation adducts in food can be absorbed 
(up to 10% of dietary AGEs are absorbed) and exert 
their deleterious effects via engagement of the pro-
inflammatory receptor for advanced glycation end 
products (RAGE) (141). In Figure 5 we summarize two 
pathways by which fructose may exert pro-inflammatory 
effects by yet another mechanism. 

4. FRUCTOSE AND WEIGHT GAIN

Different scientific evidence has shown 
a positive association between sugar-sweetened 
beverages (SSBs) and weight gain or obesity, and 

Figure 5. Fructose-derived advanced glycation products: the role of dietary AGEs in inflammation and insulin resistance. The Maillard reaction between 
carbonyls and proteins has been implicated in the pathogenesis of diabetic complications. Fructose (10 times more reactive than glucose) forms AGEs 
in processed foods. 1) Preformed AGE proteins in food (processed food is very high in fructose) results in intestinal digestion and absorption of AGE 
peptides 2) which bind to RAGE and are pro-inflammatory and generators of IR 3). Another putative pathway, for which epidemiological evidence 
(143,144) and our own in vitro (145,146) data vouch for is intestinal formation of AGEs 5) and 6) when excess fructose and amino acids or peptides are 
found in the intestinal lumen as a result of the co-ingestion of sugar and proteins 4). These AGEs, when absorbed, will generate the same effects as 
shown in 3). More evidence should be forthcoming on the relative role of these processes in fructose-induced pathogenesis of IR.
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concluded that this type of beverages or free consumption 
of sugar in people who ingest them influence body 
weight by increasing both intake energy through its 
consumption and increasing appetite (113,147,148). 
Indeed, more than 80% of the studies without conflicts of 
interest with the food industry find a positive correlation 
between SSBs and obesity. The way in which fructose 
increases appetite or decreases satiety is through 
inducing an insulin and leptin resistance (44,149–151) 
state as shown in Figure 6. This has deleterious effects 
promoting metabolic diseases such as obesity, MetS, 
and cardiovascular disease (152).

Leptin is a hormone synthesized mainly in 
adipose tissue which circulates in proportion to body 
fat. This hormone is a key regulator of energy intake 
via its interaction with hypothalamic centers, increasing 
satiety and energy expenditure (44,153). However, both 
obesity and fructose consumption induce an alteration 
in the function of leptin, called leptin resistance (44,154) 

where the hypothalamic centers become resistant to its 
action, consequently the satiety response that should 
be produced is inhibited resulting in greater food 
consumption (6). Studies have reported that a chronic 
consumption of fructose is associated with increased 
plasma leptin levels and insulin alteration (155–158), 
however under an acute consumption of fructose there 
are contrasting results (44,155).

In addition to the effects on leptin, unlike 
glucose or starch, fructose has also an effect on 
intestinal hormones related to satiety, where it may 
not inhibit the release of ghrelin from the intestine 
leading to an orexigenic effect and releases, to a 
lesser extent, satiety hormones such as glucagon-like 
peptide 1 (GLP-1) and peptide YY (PPY) (13,157). 
Further studies are required to establish these effects 
of fructose on intake since most of the related studies 
are based on indirect markers of control of food intake 
(13) and studies with direct measures of consumption 

Figure 6. Main pathways of fructose metabolism that lead to insulin resistance, metabolic syndrome and obesity. This diagram summarizes the key 
mechanisms at the whole body level. Surges of fructose 1) (together with glucose that increases insulin secretion) increase DNL 2) and liver fat 3). These 
in turn generate hepatic IR 4). Hyperinsulinemia ensues as a compensating mechanism 5). Subcutaneous fat, less resistant to insulin, accumulates fat 6) 
but also increases output of FFA 7). Visceral fat uptakes fatty acids and accumulates TG 8), increases in size and is inflamed. In situ cortisol production 
enhanced by fructose increases the effect 9). The mass of visceral fat uploads its inflammatory molecules as well as FFA to the portal vein which then 
increases hepatic IR 11). Subcutaneous fat increase leptin secretion (which would lead to decreased appetite and more energy expenditure) 12). 
However, hyperinsulinemia leads to CNS leptin resistance. This leads to less satiety, more food intake and the cycle goes on. 
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intake or satiety have not been able to establish 
differences between fructose and other sugars in 
humans (159). 

Some authors have indicated hunger can be 
stimulated when ATP concentrations are reduced in the 
liver by blocking FA oxidation, (160) a characteristic of 
fructose metabolism fructose. They suggest increased 
energy intake compensates for ATP levels but when 
intake is from sugar, the consequences include an 
accumulation of fat which may increase corporal 
weight (161). 

Another mechanism involved in the weight 
gain associated with fructose consumption could 
be the effect that sugar has on inducing pleasurable 
responses by stimulating dopamine in the nucleus 
accumbens and midbrain (150,162). A repeated 
stimulation of dopamine by sugar could alter the 
function of dopaminergic receptors, this has been 
demonstrated in obese subjects through image 
studies, while animal studies show signs of abstinence 
when removing sugar (43,163). 

Therefore, weight gain and obesity induced 
by fructose could be related to the addictive response 
to sugar consumption (150,151), reduced ATP in liver 
as well as a promotion of resistance to leptin (6,164). 

5. OVERALL EFFECTS OF FRUCTOSE ON 
HUMAN METABOLISM

Although there are different epidemiological 
studies that evaluate the consumption of fructose 
in humans, causal relationships are more difficult to 
infer because it is challenging to separate the impact 
of the confounding variables that participate in these 
processes (13). However, among the main associations 
found in prospective studies is the associated fructose 
consumption (either through FCCS, SSBs or HFCS) 
with body weight gain (165), increased energy intake 
(166,167), dyslipidemia, IR, T2DM (168), gout (169), 
chronic kidney disease (170), MetS (20) and NAFLD 
(9), and CVD (171).

In addition to weight, or fat mass, the total 
intake of energy is a confounding variable in these 
studies that evaluate the effects of fructose, however, 
studies where excess energy has been compared 
with diets high vs low in fructose have shown excess 
fructose can increase body fat and body weight in a 
few days (171), increase liver glucose production 
(53,155,172), increase TG (155,172) intrahepatic 
fat accumulation (173), and increased uric acid 
concentrations (13,172,174).

It must be noted that fructose can be produced 
endogenously in the liver (and other tissues during 
hyperglycemia) and exerts its consequent metabolic 

effects through diets with high glycemic index and 
diets high in sodium that stimulate the enzyme aldose 
reductase and therefore an endogenous fructose 
secretion and contributing to MetS (175) (MA Lanaspa, 
Andres-Hernando, M Kuwabara, N Li, C Cicerchi, T 
Jensen, DJ Orlicky, C Roncal-Jimenez, T Ishimoto, T 
Nakagawa, et al. unpublished results, 2017).

As previously mentioned, is noteworthy 
that while glucose generates energy in the form of 
ATP during its metabolism, fructose consumption is 
able to the decrease the hepatic levels of ATP due 
to the quickly phosphorylaton by FFK C (Figure 1B), 
stimulating gluconeogenesis (49–51), lipogenesis, 
mitochondrial oxidative stress that alters the oxidation 
of fat and at the same time promotes depletion of ATP 
(46). Related to this it has been reported these effects 
can be observed after an oral ingestion of fructose 
equivalent to that containing a soft drink (64). A clinical 
study compared the effects of the consumption of 
glucose versus fructose sweetened beverages (which 
covered 25% of the total energy requirements) after 
10 weeks in overweight and obese participants. The 
noteworthy results show that weight gain was similar 
with both beverages, but only the fructose beverage 
group showed DNL and, lipid in VAT, dyslipidemia 
and insulin resistance were augmented in overweight/
obese participants (71,172).

Summarizing the effects at the adipose tissue 
level, fructose can conduce adipogenesis, oxidative 
stress, inflammation, adipokine production, adipocyte 
hypertrophy, and as in the liver, fructose activates 
corticosteroids production through reductase activity of 
11-beta-OHSDH (71,112). Some studies have shown a 
high adipogenic potential in adipocyte precursor cells 
(APCs) related to fructose consumption that cause 
hypertrophy in adipocytes (71). An observational 
and longitudinal study evaluated changes in VAT 
after six years and evidenced that fructose may be a 
cause of insulin resistance and increased VAT found 
in consumers of major sugar-sweetened beverages 
amounts (176). However, the authors cannot clarify if 
these results were attributed only to fructose, glucose 
or both. Others related studies which compared the 
effects of fructose versus glucose have reported 
fructose excess mainly increase VAT while glucose 
excess increase subcutaneous fat (172). In addition, 
hypercaloric fructose-containing caloric sweeteners 
(FCCS) diets increase TG and acid uric levels while 
hypercaloric high-glucose or high-fat diets did not, 
without difference in weight-maintenance diet (177).

Regarding the effects of fructose on 
systemic IR, while some studies have reported 
that fructose induces IR (178–180), other studies 
report that fructose does not increase IR in muscle 
(measured by hyperinsulinemic-euglycemic clamps) 
(53,54,84,155,180). 
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Finally, regarding the effect of fructose on 
weight gain, studies have shown a stimulation of 
neural and pleasurable responses at the level of 
brain that are conducive to excessive energy intake 
(181–183), while at the hormonal level, besides insulin 
resistance, fructose can induce leptin resistance that 
can enhance hedonic responses by suppressing 
satiety (6,43,44,49,150,151,157,159) 

The evidence from animal and human 
studies reviewed in this article converges to indicate 
a specific deleterious role of fructose in metabolism 
that favors DNL, liver steatosis and insulin resistance. 
The main pathways involved are summarized in 
Figure 6. Surges of fructose 1) (together with glucose 
that increases insulin secretion) increase DNL 2) 
and liver fat 3). These in turn generate hepatic IR 
4). Hyperinsulinemia ensues as a compensating 
mechanism 5). Subcutaneous fat, less resistant 
to insulin, accumulates fat 6) but also increases 
output of FFA 7). Visceral fat uptakes fatty acids and 
accumulates TG 8), increases in size and is inflamed. 
In situ cortisol production enhanced by fructose 
increases this effect 9). The mass of visceral fat 
uploads its inflammatory molecules as well as FFA to 
the portal vein which then increases hepatic IR 11). 
Subcutaneous fat increases leptin secretion which 
would typically lead to decreased appetite and more 
energy expenditure 12). However, hyperinsulinemia 

leads to CNS leptin resistance leading to less satiety, 
increase food intake and the cycle goes on.

6. EVIDENCE SUPPORTING THE ROLES 
OF FRUCTOSE IN THE PATHOGENESIS 
PATHWAYS SUMMARIZED IN THIS REVIEW 
THAT STEM FROM OUR TEAM STUDIES ON 
HUMANS

All these observations, highlighting the 
relationship between fructose consumption and MetS, 
obesity, NAFLD, corticosteroid activation and MG and 
D-lactate production require relevant attention. Even 
organizations such as the World Health Organization 
(WHO) and the American Heart Association (AHA) 
(184,185) suggest limiting sugar consumption. Despite 
these recommendations and with the accumulating 
evidence on the role of fructose in MetS and obesity, 
there has been no unanimous opinion about the 
specificity of fructose as a few authors (many of whom 
are partially funded by the sugar industry) continue to 
claim that the effects are merely due to an increase in 
caloric intake.

As a result, some of us decided to conduct a 
human intervention study that would help dissect this 
mechanism. We summarize our published results in 
Figure 7 (68,186,187). Since overfeeding humans with 

Figure 7. Evidence supporting the roles of fructose in the pathogenesis pathways summarized in this review that stem from our group studies on humans. 
Since overfeeding humans with sugar would lead to weight increase (and therefore a major confounding factor to interpret the data), we conducted a fructose 
restriction study as depicted in the figure, keeping, calories, CHO and macronutrients at the same level, so that changes could ascribed to the changes in 
fructose intake, which was reduced about 2/3rd from the diet of obese adolescents for only 10 days. Short-term fructose restriction with isocaloric substitution 
of complex carbohydrate in obese Latino & African American children whose habitual diets were high in sugar: Improved fasting lipids, lipoprotein subclasses, 
apo CIII, Improved fasting glucose, insulin and AUC during OGTT, Decreased hepatic de novo lipogenesis, Decreased liver fat. These results suggest that 
hepatic de novo lipogenesis may be an important mechanism contributing to liver fat accumulation in children, which can be reversed by short-term fructose 
restriction. These data suggest directionality for the effect of fructose on metabolic syndrome fructose drives hepatic fat, which in turn drives insulin resistance.
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sugar would lead to a weight increase (and therefore 
a major confounding factor to interpret the data), we 
conducted a fructose restriction study as depicted 
in the figure, keeping calories, carbohydrate (CHO) 
and macronutrients constant so that changes could 
be ascribed to the changes in fructose intake, which 
was reduced by about 2/3rd from the diet of obese 
adolescents for only 10 days. Short-term fructose 
restriction with isocaloric substitution of complex 
carbohydrate in obese Latino & African American 
children whose habitual diets were high in sugar 
resulted in:

•  Improved fasting lipids, lipoprotein 
subclasses, apolipoprotein apo CIII 

•  Improved fasting glucose, insulin and area 
under curve (AUC) during oral glucose 
tolerance test (OGTT)

• Decreased hepatic de novo lipogenesis
• Decreased liver fat

These results suggest that hepatic de 
novo lipogenesis may be an important mechanism 
contributing to liver fat accumulation in children, which 
can be reversed by short-term fructose restriction. This 
data suggests directionality for the effect of fructose on 
metabolic syndrome: fructose drives hepatic fat, which 
in turn drives insulin resistance. Further research is 
needed to fully establish the above mechanism, its 
long term effectiveness and the translation to adults.

7. PERSPECTIVE

We have highlighted the main metabolic 
effects of fructose consumption (unrelated to its caloric 
content) that are involved in the development of MetS, 
NAFLD and its association with obesity.

We have made the case that the specifics 
effects of fructose (as compared with glucose) on 
the liver are particularly germane to the development 
of a vicious cycle that starts with liver steatosis. In 
addition, we have summarized the effects in adipose 
tissue, cortisol activation, and the hormones involved 
in satiety control, all of which are affected by fructose 
consumption. We put forward yet other mechanisms: 
the formation of MG and its effect on AMPK and other 
proteins, and fructose derived AGEs that induces a 
state of inflammation and oxidative stress by engaging 
RAGE and processes involved in the development of 
these aforementioned pathologies. 

These results underscore the need for 
more clinical and educational interventions within our 
population to regulate/reduce fructose consumption 
especially in children and adolescents, the main 
consumers of fructose, who have demonstrated 
significant metabolic alterations related to obesity and 
fructose consumption.
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Abbreviations: MetS: metabolic syndrome; 
NAFLD: non-alcoholic fatty liver disease; AMPK: 
adenosyl-monophosphate-dependent kinase; 
AGES: advanced glycation end products; 
RAGE: receptor for advanced glycation end 
products; T2DM: type 2 diabetes mellitus; CVD: 
cardiovascular disease; IR: insulin resistance; CNS 
central nervous system; FCCS: fructose-containing 
caloric sweeteners; HFCS: high fructose corn syrup; 
SSBs: sugar-sweetened beverages; GLUT: glucose 
transporter; FA: fatty acids; VLDL: very low-density 
lipoproteins; fructose-1-P: fructose 1 phosphate; 
FFK C: fructokinase C; KHK: ketohexokinase; 
DHAP: di-hidroxyacetone-phosphate; G-3-P: 
glyceraldehyde 3 phosphate; TKFC: thiokinase 
enzyme; AcCoA: acetyl coenzyme A; DNL: 
de novo lipogenesis; CoA: coenzyme A; CPT: 
carnitine palmitoyltransferase; TG: triglycerides; 
ATP: adenosine triphosphate; AMP: adenosine 
monophosphate; TCA; tricarboxylic acid; NASH: 
nonalcoholic fatty liver disease; ER: endoplasmic 
reticulum; MG methylglyoxal; NO: nitric oxide; ADP: 
adenosine diphosphate; NADPH: nicotinamide 
adenine dinucleotide phosphate-oxidase; NF-kB: 
nuclear factor-kappa B; 11-beta-OHSDH: 11 beta-
hydroxysteroid dehydrogenase; H6PDH: hexose 
6 phosphate dehydrogenase; ERO-1alpha: 
endoplasmic reticulum oxidoreductase 1 alpha; 
VAT: visceral adipose tissue; G6P: glucose-6-
phosphate; F6P: fructose-6-phosphate; GLP-1: 
glucagon-like peptide 1; PYY: peptide YY; APCs: 
adipocyte precursor cells; WHO: World Health 
Organization; AHA: American Heart Association; 
CHO: carbohydrate; APO: apolipoprotein; 
AUC: area under curve; OGTT: oral glucose 
tolerance test.
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