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1. ABSTRACT

We took an experimental database mining
analysis to determine the expression of 28 co-signaling
receptors in 32 human tissues in physiological/
pathological conditions. We made the following
significant findings: 7) co-signaling receptors are
differentially expressed in tissues; 2) heart, trachea,
kidney, mammary gland and muscle express co-
signaling receptors that mediate CD4*T cell functions
such as priming, differentiation, effector, and memory;
3) urinary tumor, germ cell tumor, leukemia and
chondrosarcoma express high levels of co-signaling
receptors for T cell activation; 4) expression of
inflammasome components are correlated with the
expression of co-signaling receptors; 5) CD40, SLAM,
CD80 are differentially expressed in leukocytes from
patients with trauma, bacterial infections, polarized
macrophages and in activated endothelial cells; 6)
forward and reverse signaling of 50% co-inhibition
receptors are upregulated in endothelial cells during
inflammation; and 7) STAT1 deficiency in T cells
upregulates MHC class Il and co-stimulation receptors.
Our results have provided novel insights into co-
signaling receptors as physiological regulators and
potentiate identification of new therapeutic targets for
the treatment of sterile inflammatory disorders.

2. INTRODUCTION

Co-signaling receptors including
co-stimulation receptors (CSRs) and co-inhibition
receptors (CIRs) have a pivotal role in T cell biology,
as they determine the functional outcome of T cell
receptor (TCR) signaling (1). Previously we reported
that TCR and T cell co-stimulatory receptor CD28
play important roles in T cell co-stimulation and T cell/
CD4* regulatory T cell (Treg) survival (2-9). Recently,
we and others identified non-T cell functions (reverse
signaling) (10) of co-signaling receptors such as CD40/
CD40L (11-15), CD70/CD27 (16, 17), 4-1BBL (18)
and CD48 (19). Furthermore, co-signaling receptors
can be expressed in non-antigen-presenting cells
including T-cells. Despite the recognition of functions
of co-signaling receptors in regulating T cell activation
and their presence in non-antigen presenting cells,
understanding of whether reverse signaling of these
co-signaling receptors play roles in tissue physiology
(20) and pathology (17, 21) remains unclear. One of
the reasons for the lack of knowledge in this area is
that we do not know the overall expression patterns of
these co-signaling receptors in tissues and in diseased
conditions.

Pathogen-associated molecular patterns
(PAMPs) and danger associated molecular patterns
(DAMPs) generated during microbial invasion or
tissue injury act as sensors and activate the innate
immune system to respond to infection or injury (22).
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The key cellular receptors, that recognize the “threat”
signals initiated by PAMPs and DAMPs, are referred
to as pattern recognition receptors (PRR). One of the
receptor families that is highly characterized as PRRs
is cytosolic sensing receptors NLRs (NOD (nucleotide
binding and oligomerization domain)-like receptors)
to recognize DAMPSs, particularly in inflammation
privileged tissues where inflammasome component
genes that activate pyroptosis are not constitutively
expressed (23, 24). Previously, using endogenous
metabolite lysophospholipids (LPLs) as a prototype,
we proposed that certain metabolites that regulate
homeostatic functions at physiological levels, can
adapt as pro-inflammatory mediators at elevated
concentrations (25). We named such metabolites as
“conditional DAMPs” and their endogenous receptors
as “conditional DAMP receptors”. The new conditional
DAMP receptors covered significant loopholes in the
current danger model, which identify only the 6 PRRs
mentioned above as DAMP receptors. We named these
6 categories of PRRs as “classical DAMP receptors”
(25). Along the line, we recently reported a series of
significant findings on the expression and roles of
caspase-1 in NLR pathway in vascular inflammation
(11, 23, 25-35). However, the issues of how these
innate immune receptors regulate the expression
of tissue co-signaling receptors and mediate T cell
activation remain unknown.

In the development of immunosurveillance
against tumors/cancers, a series of checkpoints have
to overcome to implement effective anti-tumor T cell
responses. The recent development of reagents such
as monoclonal antibodies that act as checkpoint
blockade agents had had a dramatic effect on human
cancer treatment, with a marked reported success
for anti-cytotoxic T lymphocyte associated antigen
4 (CTLA-4) and programmed cell death-1 (PD-1)
in particular in clinical trials (36). However, detailed
expression changes of these immune checkpoint
molecules in normal tissues versus tumors/cancers
derived from the tissues need to be examined. The
characterization of expressional changes of immune
checkpoint receptors in normal tissues versus tumors/
cancers derived from the tissues will provide valuable
guidance for novel immune checkpoint blockade
therapeutics to cancers/tumors.

Recent reports identified many cell types
that are capable of acting as atypical antigen
presenting cells (APC) and present antigens to major
histocompatibility complex (MHC) class Il molecules
to conventional CD4* T cells (37). Of note, CD4* T
cells are among atypical APCs. We recently reported
that GATA3, HDACG6 and BCL6 regulate FOXP3+Treg
plasticity and determine Treg conversion into either
novel APC-like Treg or Th1-Treg (38). However, it is
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unknown what master regulators determine non-Treg
T cell plasticity into atypical APC.

In spite of recent significant progress in this
front, there are many aspects of T cell co-signaling
receptors that have not yet been explored: first, the
expression profile of co-signaling receptors under
physiological conditions, specifically in humans have not
been studied; second, whether the expression of certain
co-signaling receptors are modulated in pathological
conditions such as inflammation, cancer and in severe
tissue damages such as burns and trauma is not clear;
and third, mechanistically, whether pro-/anti-inflammatory
signaling is negatively/positively associated with the
expression of co-signaling receptors is not known. To
address these questions, we took a “panoramic view”
at the tissue expression patterns of 28 identified co-
signaling receptors. Our results demonstrated that co-
signaling receptors are differentially expressed among
tissues at physiological conditions. Certain tumors
including urinary tumor, germ cell tumor, leukemia
and chondrosarcoma express the highest levels of
co-signaling receptors for T cell activation, suggesting
a possibility of co-signaling receptor regulation of
their tumor immunogenicities. Finally, we also found
that signal transducer and activator of transcription 1
(STAT1) deficiency (39, 40) upregulates MHC class Il
and co-stimulation receptors in T cells, suggesting that
STAT1 inhibits T cell plasticity into atypical APCs. Our
findings provide novel insights on co-signaling receptors
as new therapeutic targets in metabolic diseases,
tumors, inflammation and tissue damages.

3. MATERIALS AND METHODS

3.1. Tissue expression profiles of genes encoding
T cell co-stimulation receptors and co-inhibition
receptors

An experimental data mining strategy (Figure
1) was used to analyze the expression profiles of
mRNA transcripts of genes encoding T cell co-
stimulation receptors and co-inhibition receptors
in 32 different human and 29mouse tissues. We
utilized experimentally verified mRNA expression in
the expressed sequence tag(EST) databases of the
National Institutes of Health (NIH)/National Center of
Biotechnology Information (NCBI) UniGene (http://
www.ncbi.nlm.nih.gov/sites/entrez?db=unigene)
to determine the transcription profile of T cell co-
stimulation receptors and co-inhibition receptors in
tissues of interest. Transcripts per million of genes
of interest were normalized to that of house-keeping
B-actin in each given tissue to calculate the arbitrary
units of gene expression. A confidence interval of the
expression variation of house-keeping genes was
generated by calculating the mean plus two times
that of the standard deviation of the arbitrary units
of three randomly selected housekeeping genes
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(PRS27A, GADPH, and ARHGDIA in human; Ldha,
Nono, and Rpl32 inmouse) normalized by B-actin in
the given tissues. If the expression variation of a given
gene in the tissues was larger than the upper limit
of the confidence interval (the mean plus two times
the standard deviation) in house-keeping genes, the
high expression levels of genes in the tissues were
considered statistically significant. Gene transcripts
where the expression level was lower than one per
million were technically considered as no expression.

3.2. Expression profiles of T cell co-stimulation
receptors and co-inhibition receptors in disease
models and cell activity

Microarray datasets were collected from
ArrayExpress of European Bioinformatics Institute,
which stores data from high-throughput functional
genomics experiments (https://www.ebi.ac.uk/
arrayexpress).These data includes the information of
the expression of T cell co-stimulation receptors and
co-inhibition receptors through experiments submitted
directly to ArrayExpress or imported from the NCBI
Gene Expression Omnibus database (https://www.
ncbi.nim.nih.gov/gds/).

4. RESULTS

4.1. CSRs and CIRs are differentially expressed in
human tissues

Recent reports showed that co-stimulation
receptors (CSRs) and co-inhibition receptors (CIRs)
expressed in antigen presenting cell (APC) play
important roles in modulating T cell activation status
(1). An important question remains whether human
tissues contain various types and numbers of antigen
presenting cells (APCs), which provide various
stimulatory/suppressive environments for all the four
CD4+ T cell functional aspects including priming, helper
cell differentiation, effector and memory functions.
We hypothesize that human tissues have different
antigen presenting environments and expression
levels of CSRs and CIRs. To examine this hypothesis,
by searching updated REFERENCES (1, 41, 42), we
collected total of 28 co-signaling receptors expressed
on the cell surface of APCs including 14 CSRs, 4
CSRs that become CIRs when encounter activated T
cells, and 10 CIRs (Table 1). We then examined the
expression patterns of all the 28 co-signaling receptors
in 32 human tissues by searching DNA sequencing-
based data of mMRNA levels at physiological conditions.
Based on the co-signaling receptor expression
amongst human tissues examined, we classified
them into following three groups: highly expressed
(++), low expressed (+), and not expressed (-) as
summarized in Table 2. Of note, information on BTNL2
gene expression was not found in human expression
sequence tag (EST) profile in the NIH-UniGene
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Figure 1. Flow chart of database mining strategy data organization. Abbreviations: NCBI: National Center of Biotechnology Information; IDs: Identifications;

EST: Expressed sequence tag.

database, therefore expression levels of 27 human co-
signaling receptors were analyzed (Table 2).

We found that co-signaling receptors are
differentially expressed in 32 human tissues in
physiological condition. We identified CD40, CD48,
CD58, SEMA4A, and B7-H2 are the highly expressed
CSRs and we could not distinguish any CIRs that are
highly expressed in tissues. When considering all the
levels of expression of co-signaling receptors in tissues,
we found that three CSRs including B7-H2, SEMA4A,
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CD58 and five CIRs such as galectin 9, CD113,
HVEM, B7-H3, and VISTA are expressed in more than
60% of human tissues examined. We also found that
five tissues such as lymph node, placenta, thymus,
nerve and trachea have high T cell co-stimulation and
co-inhibition signaling potential. As shown in Table 3,
human tumors have higher expression of CIRs than
CSRs. SEMA4A, CD40 and CD48 are the highly
expressed CSRs; and Galectin9, SEMA4A, B7-H3,
B7H4 and VISTA are highly expressed CIRs in human
tumors. Bladder carcinoma and ovarian tumors have
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Table 1. 28 human co-signaling receptors and mouse homologs expressed on the cell membrane of antigen

presenting cells (APCs)
L UniGene® ID PMID
Gene name | Full name Gene ID E;rlmld:egn:sfae'f:ors ont Human Mouse
(Hs.) (Mm.)

Co-stimulation receptor (14)
B7-H2 inducible T-cell costimulator ligand ICOSLG ICOS 14155 17819 23470321
CD70 CD70 molecule CD70 CD27 501497 42228 23470321
LIGHT TNF superfamily member 14 TNFSF14 HVEM 129708 483369 23470321
CD40 CD40 molecule CD40 CD40L 472860 271833 23470321
4-1BBL TNF superfamily member 9 TNFSF9 4-1BB 1524 41171 23470321
OX40L TNF superfamily member 4 TNFSF4 0OX40 181097 4994 23470321
TL1A TNF superfamily member 15 TNFSF15 DR3 23349 208152 23470321
GITRL TNF superfamily member 18 TNFSF18 GITR 248197 276823 23470321
CD30L TNF superfamily member 8 TNFSF8 CD30 494901 4664 23470321
TIM4 T-cell immunoglobulin and mucin domain TIMD4 TIM1 334907 69002 23470321

containing 4
SLAM signaling lymphocytic activation molecule SLAMF1 SLAM 523660 103648 23470321

family member 1
CD48 CD48 molecule CD48 CD2/2B4 243564 1738 23470321
SEMA4A semaphorin 4A SEMA4A TIM2 408846 439752 12374982
CD58 CD58 molecule CD58 CD2 34341 23470321
Dual function receptor (4)?

Naive T cell | Active T cell

B7-1 CD80 molecule CD80 CD28 CTLA4 838 89474 23470321
B7-2 CD86 molecule CD86 CD28 CTLA4 171182 1452 23470321
CD155 poliovirus receptor PVR CD226 TIGHT 171844 227506 23470321
CD112 interleukin 2 receptor subunit beta IL2RB CD226 TIGHT 655455 4341 23470321
Co-inhibition receptor (10)
Galectin 9 lectin, galactose binding, soluble 9 LGALS9 TIM3 81337 341434 23470321
CD113 nectin cell adhesion molecule 3 NECTIN3 TIGHT 293917 328072 23470321
HVEM TNF receptor superfamily member 14 TNFRSF14 BTLA/CD160 512898 215147 23470321
B7-DC programmed cell death 1 ligand 2 PDCD1LG2 | PD-1 532279 116737 23470321
B7-H1 CD274 molecule CD274 PD-1/B7-1 521989 245363 23470321
B7-H3 CD276 molecule CD276 ND' 744915 5356 27192563
B7-H4 V-set domain containing T-cell activation VTCN1 ND 546434 137467 27192563

inhibitor 1
VISTA V-set immunoregulatory receptor VSIR ND 47382 273584 27192563
HHLA2 HERV-H LTR-associating 2 HHLA2 TMIGD2 252351 27192563
BTNL2 Butyrophilin-like 2 BTNL2 ND 534471 441007 27192563

'ND: not determined, ?Act as co-stimulation receptors when meet naive T cells and act as co-inhibition receptors when meet

high co-inhibition potential, whereas chondrosarcoma
has high co-stimulator potential (Table 3). Furthermore,
three co-signaling receptors such as CD48 (CSR), two
CIRs galectin 9, and CD113 are significantly expressed
in 29 mouse tissues. Lymph node, lung, skin, and
spleen have high expression of co-signaling receptors
among mouse tissues examined (Table 4).
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4.2. Two CSRs CD40 and CD70 regulate all four
functions of T cells

Recent reports showed that CSRs and CIRs
expressed in APCs play important roles in modulating
four inter-connected processes such as:1) priming
T cells, 2) promoting T helper cell differentiation, 3)
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Table 2. Co-signaling receptors are differentially expressed in human tissues
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Table 4. Co-signaling receptors are differentially expressed in mouse tissues

Mouse tissues
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Table 5. Blood, bone, heart, kidney, lymph node, mammary gland, muscle, spleen, thymus, and trachea
have high cumulative score of co-signaling potentials

Human tissues | High expression co-signaling receptors 'Cumula_tive score \_:yhile Pumula_tive score vv{hile
interaction with naive T cell interaction with active T cell
Adipose tissue CD58(6+) 6+ 6+
Adrenal gland B7-H2 (4+) 4+ 4+
Bladder B7-H2 (4+) 4+ 4+
Blood B7-2(4+ /4-),CD48(6+) 10+ 2+
Bone CD40(7+),CD58(6+) 13+ 13+
Bone marrow CD48(6+) 6+ 6+
Brain B7-H2(4+),SEMA4A(2+) 6+ 6+
Cervix 4-1BBL(4+) 4+ 4+
Embryonic tissue
Esophagus
Eye HVEM(7-),CD40(7+),SEMA4A(2+) 2+ 2+
Heart B7-H2(4+),CD58(6+) 10+ 10+
Intestine 0 0
Kidney CD70(6+),CD40(7+),CD155(2+/1-) 15+ 12+
Liver 0 0
Lung CD40(7+),SEMA4A(2+) 9+ 9+
Lymph node EK/II-IAZ“(:ZZ);(;DM(H),SLAM(3+),CD48(6+),GaIectin9(5),S 17+ 17+
Mammary gland | CD40(7+),CD48(6+),SEMA4A(2+) 15+ 15+
Muscle CD40(7+),CD48(6+) 13+ 13+
Nerve 4-1BBL(4+),CD48(6+),CD113(1-),VISTA(ND*) 9+ 9+
Ovary Galectin9(5-) 5- 5-
Pancreas CD40(7+) 8+ 8+
Placenta CD40(7+),B7-H1(7-),CD113(1-),VISTA(ND) 1- 1-
Prostate 0 0
Skin HVEM(7-) 7- 7-
Spleen B7-2(4+/4-),CD48(6+),SEMA4A(2+) 12+ 4+
Stomach CD58(6+) 6+ 6+
Thymus gé—ﬂigﬁ-()éf;%ouy),SLAM(3+),CD48(6+),B7-H1(7-), 10+ 10+
2
Umbilical cord
Uterus
Vascular GITRL(1+),CD48(6+) 7+ 7+

1. Embryonic tissue, esophagus, intestine, liver, prostate, umbilical cord and uterus have no highly expressed co-signaling receptors, suggesting these
tissues have low co-signaling potentials; 2. when encountered with naive T cells or activated T cells, the co-signaling potential score of blood, spleen
and trachea show -8 change, and kidney show -3 change on active T cells; and 3. skin, ovary and placenta have high co-inhibition potentials. ND: not

determined

facilitating T effector function, and 4) memory function (1).
We hypothesized that CSRs and CIRs have differences
in modulating these four functional processes. To
examine this hypothesis, we performed an extensive
literature search. As summarized in Table 5, we found
that 28 co-signaling receptors expressed in APC that
can bind to 23 counter receptors on T cell surface.
These receptors functionally differ in modulating 4 main
immunological functions of T cells mentioned above.
CD40 and CD70 are the only CSRs that exert all four
immunological functions on T cells. Six CSRs including
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CD48, CD58, TL1A, OX40L, LIGHT, B7-H2 and one
CIR Galectin 9 can regulate three functions mentioned
above. The other co-signaling receptors have less
effect on functional processes of the T cells. Further,
our data revealed that most CIRs focus on suppressing
T cell effector function.

To determine whether co-signaling receptors
have functional overlaps in modulating four T cell
functional processes, we performed a Venn analysis. As
shown in Figure 2, we found that CSRs have diversified
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Figure 2. The Venn diagram analysis indicate that co-stimulation receptors exert diversified functions on T cells. A. CSRs exert diversified immunological
regulating functions on T cells. B. Most CIRs exert limited effects on T cells.

effects on stimulating T cells in priming, differentiating,
effector and memory processes (Figure 2A) whereas
most CIRs regulate T effector function (Figure 2B). In
addition, we found that GITRL and TIM4 are the only
two CSRs that have one function. CD113, CD112, and
CD155 are the only CIRs that have one function, others
have multiple effects on T cells. Priming, differentiation
and memory function have no unique co-signaling
receptors, which indicate that these three functions are
all connected to T cell effector functions.
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4.3. Human tissues differ in regulating
co-signaling of four T cell functions

Recently, Dr. Pober’s laboratory showed that
engagement of the T-cell receptor not only activates
T cells but also triggers CD4+T cell trans-endothelial
migration (TEM) by a process that is distinct from that
induced by activating chemokine receptors on T cells.
This distinct process is slower, require microtubule-
organization of T cell and engagement of proteins of
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Figure 3. Human tissues have significant differences in co-signaling for 4 main immunological functions of T cells in 32 human tissues. A. The effects of
CSRs on immunological functions of naive T cells. B. The effects of CIRs on immunological functions of activated T cells. The results indicate that: lymph
node has the highest co-signaling potential, ovary and skin only have co-inhibition potential. * Co-signaling scores of different tissues were estimated on

the highly expressed receptors data given in tables 2 and 3.

the endothelial cell (43), suggesting that MHC class
I/ll-antigen epitopes expressed in tissue APCs and
potential other signaling receptors in tissue endothelial
cells modulate various T cell functions including
trans-endothelial cell migration. We hypothesized
that human tissues have significant differences in

108

co-signaling for four major T cell processes. As shown
in Figure 3, based on the highly expressed co-signaling
receptors in human tissues (Table 2) and various T cell
modulation processes of these co-signaling receptors
(Table 5), we estimated the human tissue co-signaling
potential (Table 6). We found that among 32 human
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tissues, 10 tissues including blood, bone, heart,
kidney, lymph node, mammary gland, muscle, spleen,
thymus, and trachea have high cumulative score of co-
signaling potentials. In addition, we found the following
results: 1) embryonic tissue, esophagus, intestine,
liver, prostate, umbilical cord and uterus do not have
highly expressed co-signaling receptors, suggesting
these tissues have low co-signaling potential, and
may have immune privilege status(23); 2) when meet
with naive T cells versus activated T cells, the co-
signaling potential scores of blood, spleen and trachea
are decreased by“-8”, and the co-signaling potential
scores of kidney are decreased by“-3”; and 3) skin,
ovary and placenta have high co-inhibition potentials.

We further examined whether human tissues
have significant differences in co-signaling for four
major T cell functions in 32 tissues. As demonstrated in
Figure 3, we found that nine human tissues including
bone, eye, kidney, lung, lymph node, mammary gland,
thymus, trachea and vasculature have dominant CSR
signaling for T effector functions (shown in green).
In addition, three human tissues such as eye, ovary,
placenta and skin have dominant CIR function for T
effector process (shown in light blue).

4.4. Increased co-stimulation potential in
cancers is significantly correlated with improved
prognosis

It has been reported that the infiltrated
immune cells play a critical role forimmunosurveillance
in cancers and the prognosis of patients with cancer
(44). We hypothesized that decreased expression
of CSRs and increased expression of CIRs in tumor
cells may be associated with certain human tumors.
Based on our analysis of the expression changes of
co-signaling receptors in human tumors in comparison
to that of corresponding human tissues, we generated
human tumor co-signaling potentials as shown in
Figure 4. We found that first, five human tumors
including uterine tumor, germ cell tumor, leukemia,
glioma and chondrosarcoma have high co-stimulation
potential and low co-inhibition potential, suggesting
that these five tumors may have better response to
immunotherapy; second, six human tumors such as
esophageal tumor, skin tumor, liver tumor, colorectal
tumor pancreatic tumor, and prostate tumor have
moderate co-stimulation potential and moderate co-
inhibition potential, suggesting that these six tumors
may notrespond toimmunotherapy well; and third, other
11 tumors (50.0%) including retinoblastoma, cervical
tumor, lymphoma, adrenal tumor, gastrointestinal
tumor, kidney tumor, ovarian tumor, soft tissue muscle
tissue tumor, breast tumor, lung tumor and bladder
carcinoma have low co-stimulation potentials and high
co-inhibition potential, suggesting that these 11 tumors
may have poor response to immunotherapy.
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In addition, by comparing the detailed
changes of co-signaling potentials of human tumors
with that of corresponding human tissues (Figure
5), we found that: 7) the co-signaling potential of 16
human tumors are significantly different from that of the
corresponding human tissues; and 2) human tumors
including leukemia, chondrosarcoma, germ cell tumor,
lymphoma, breast tumor, muscle tumor, pancreatic
tumor, uterine tumor have dominant co-stimulation for
T effector function. Taken together, our results suggest
that human tumors have lower co-signaling potential
compared to healthy human tissues, suggesting that
downregulation of co-stimulation potential may be
one of the strategies that tumors have developed to
escape immunosurveillance.

Moreover, it has been reported that localized
co-stimulation is important for tumor-specific T cell
responses (45). We hypothesize that tumorgenesis
mediated increase in the expression of CSRs would be
correlated with the prognosis of patients with tumors.
To examine this issue, we analyzed the new data of the
effects of immune infiltrate on the prognosis of patients
with cancer, which is discussed in Fridman, WH et
al Nature review (Figure 5B) (44). This data was a
summary of as many as 200 studies. We defined a type
of combined prognosis scores (PS) as follows: 7) No
effect of immune infiltrate on prognosis was counted as
(0); 2) the strong negative prognosis effect of immune
infiltrate was counted as (-2); 3) less strong negative
prognosis effect of immune infiltrate was counted as
(-1); 4) positive prognosis effect ofimmune infiltrate was
counted as (+1); and 5) strong positive prognosis effect
ofimmune infiltrate was counted as (+2). The correlation
analyses were conducted between the increased co-
stimulation potential during tumorigenesis in human
tumors shown in Figure 5A and the final prognosis
values for six reported immune infiltrated cell types
including CD8+ T cells, tertiary lymphoid structure,
regulatory T cells (Treg), CD68* macrophages,
proinflammatory classically activated macrophages
(M1 macrophages), and alternatively activated
macrophages (M2 macrophages), respectively. As
shown in Figure 5B, among six cell types analyzed,
we found that the increased co-stimulation potential
in nine human tumors including breast tumor, lung
tumor, liver tumor, ovarian tumor, bladder carcinoma,
gastrointestinal tumor, esophageal tumor, glioma and
kidney tumor was significantly correlated, R?= 0.4851
(p < 0.371), with improved final prognosis values
based on decreased M2 macrophage infiltrates in the
human tumors. The results suggest that first, increased
co-stimulation potential during tumorigenesis have
potential for predicting the prognosis of patients with
tumor; and second, increased co-simulation potentials
during tumorigenesis in human tumors are associated
with decreased infiltration of M2 anti-inflammatory
macrophages in tumors, implying a beneficial prognosis
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Figure 4. Human tumors have lower co-signaling potential than correlated human tissues, especially the co-stimulation potential. A. Co-stimulation
potential of human tumors. B. Co-stimulation potential of corresponding human tissues. *Tumors with changed co-signaling potential.

of type | pro-inflammatory macrophages infiltrated in
tumors.

4.5. Inflammasome components regulate reverse
signaling via co-signaling receptors

We hypothesized that tissue expression of
co-signaling receptors are either under the regulation
of tissue physiological status (staying downstream)

111

or regulating tissue physiological status (staying
upstream) as defined by the expression levels of
inflammation-related DAMPRs (46), cellular stress-
regulators, hypoxia regulators, blood supply-related
vascular endothelial growth factors (VEGFs), tissue
regeneration-related four stem cell regulators
(Yamanaka factors: octamer-binding transcription
factor 4 (POU5SF1, Oct3/4), sex determining region
Y)-box 2 (Sox2), Kruppel-like factor 4 (KIf4), c-Myc)),
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Figure 5. Five human tumors have T cell co-stimulation potentials higher than correlated healthy tissues (changes >0), including in uterine tumor, germ
cell tumor, leukemia, glioma, and chondrosarcoma. A. Stimulation potential during tumor genesis B. The correlation between tumor prognosis and
co-stimulation potential. Prognosis data is based on the effects of the immune infiltrate cell types discussed in a published article (PMID: 28741618).

epigenetic modulators such as cellular hyper-,
hypo- methylation status and cell markers of three
professional antigen presenting cell types. To test this
hypothesis, based on the numbers of co-signaling
receptors expressed in 32 tissues/27co-signaling
receptors, we determined co-signaling receptor
potentials. To determine the extent to which factor
expression and that of co-signaling receptors are
related, we conducted correlation studies.

We hypothesized that if there is a positive
correlation, the expression of PAMP receptors/
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metabolite-regulated DAMP receptors (PRRs) and
inflammasome components), the factors (such as
oxygen sensors, genes that regulate angiogenesis
pathway, stem cell master genes, and the co-
signaling receptors will modulate their expression
accordingly (22).As shown in Figure 6,among 14 genes
examined highly expressed co-signaling receptor
potentials in tissues were significantly correlated
with that of NOD3 (2 = 0.3.068; p = 0.0075), NALP9
(r* = 0.2262; p = 0.0253) and CARDS8 (r? = 0.2791;
p = 0.0115). Similarly, high and low expressed co-
signaling receptor potential in tissues was significantly
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Figure 6. The expression of NLRs/ inflammasome sensors are correlated in low levels with the expression of a few highly expressed co-signalingreceptors
in human tissues. (Human tissues analyzed: adipose tissue, bladder, blood, bone, bone marrow, brain, embryonic tissue, eye, heart, kidney, liver,
lung, lymph node, muscle, pancreas, skin, spleen, thymus, placenta, umbilical cord, uterus, vascular).Abbreviations: NOD 1/2/3/4: Nucleotide-binding
oligomerization domain-like receptors 1/2/3/4; NALP 2/3/6/9/14: Nod like receptor (NLR) family pyrin domain containing 2/3/6/9/14; NAIP: NLR family
apoptosis inhibitory protein; NLRC4: NLR family CARD domain containing 4; ASC: PYD and CARD domain containing; IFI16: interferon gamma inducible
protein 16; CARDS: caspase recruitment domain family member 8.

correlated with that of NOD4 (r? = 0.1822; p = 0.0476);
and NALPS6 (r? = 0.1825; p = 0.0474) (Figure 7).

To further consolidate our findings, we used
microarray data deposited in the NIH/NCBI-Geo datasets
and examined the expression of NOD3, NOD4, CARDS,
NALP6 and NALP9 in the deficiencies/knock-down of
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four CSRs CD80, CD48, TIM and CD40 datasets versus
wild-type control microarray data. The results shown in
Figure 8 demonstrated that these co-signaling receptors
regulate the expression of NOD3, NOD4, CARDS,
NALP6 and NALP9 (p<0.05). These results suggest that
first, T cell reverse signaling via co-signaling receptors
may regulate the expression of some inflammasome
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Figure 7. The expression of NLRs/ inflammasome sensors are correlated in low levels with the expression of some co-signalingreceptors in human
tissues.(Tissues analyzed: adipose tissue, bladder, blood, bone, bone marrow, brain, embryonic tissue, eye, heart, kidney, liver, lung, lymph node,
muscle, pancreas, skin, spleen, thymus, placenta, umbilical cord, uterus, vascular).Abbreviations: NOD1/2/3/4: Nucleotide-binding oligomerization
domain-like receptors1/2/3/4; NALP2/3/6/9/14: NLR family pyrin domain containing 2/3/6/9/14; NAIP: NLR family apoptosis inhibitory protein; NLRC4:
NLR family CARD domain containing 4; ASC: PYD and CARD domain containing; IFI16: interferon gamma inducible protein 16; CARDS8: caspase

recruitment domain family member 8.

components NOD3, NALP9, CARD8, NOD4 and NALP6
in the antigen presenting cells to regulate the DAMPs-,
and PAMPs- sensing pathways (Figure 9), which
correlated with a recent report on the roles of type 1 T
helper cell (Th1) and Th17 in regulating innate immunity
for bacterial clearance (47, 48); and/or second, these
five inflammasome components may initiate signaling
in regulating co-signaling receptor expression in human
tissues as the parts of inflammation initiation, suggesting

114

that innate immune sensor components regulate T cell
activation (49).

4.6. VEGFR3 regulate co-signaling receptor
expression

We examined the hypothesis that tissue

physiological functional status such as hypoxia
responsive pathways, vascular growth factor pathways,
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Figure 9. Reverse signaling from T cells regulate the expression of inflammasome components.
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Figure 10. Human vascular endothelial cell growth factor receptor 4 (FLT4) expression in tumor tissues are correlated with the expression of highly
expressed co-signaling receptors in human tissues. A. Correlation between co-stimulation receptor potential and genes that regulate hypoxia,
angiogenesis, stem cells and mitochondrial signaling pathways. B. FLT4 gene is significantly correlated with co-signaling receptor potential. (Tissues
analyzed: adipose tissue, bladder, blood, bone, bone marrow, brain, embryonic tissue, eye, heart, kidney, liver, lung, lymph node, muscle, pancreas, skin,
spleen, thymus, placenta, umbilical cord, uterus and vascular).Abbreviations: PHD2: Prolyl hydroxylase domain-containing protein-2; HIF1B: Hypoxia-
inducible factor-1 beta; HIF1/2A: Hypoxia-inducible factor 1/2-alpha; VEGFA/B/C: Vascular Endothelial Growth Factor A/B/C; FIGF: C-fos-induced
growth factor; FLT1/4: Fms related tyrosine kinase %; KDR: Kinase insert domain receptor; MYC: MYC proto-oncogene; KIT: KIT proto-oncogene
receptor tyrosine kinase; KLF4: Kruppel like factor 4; POUSF1: POU class 5 homeobox 1; SOX2: SRY-box 2; TFAM: transcription factor A; NRF1:nuclear
respiratory factor 1; NRF2(GABPA): GA binding protein transcription factor alpha subunit.

stem cell master gene-regulated tissue regeneration
pathway and mitochondrial activity pathway may
also regulate co-signaling receptor expression in
human tissues. To test this hypothesis, we performed
correlation analysis for the expression of the genes
involved in these pathways with co-signaling receptors.
These genes included seven vascular endothelial
growth factor (VEGF) pathway genes (VEGFA,
VEGFB, VEGFC, C-fos-induced growth factor (FIGF),
VEGF receptor 1 (VEGFR1, FLT1), VEGFR2(KDR),
and VEGFRS3 (FLT4)), six stem cell regulator genes
(CD34, Kit, Myc, Kif4, Pou5F1(Oct3/4), and Sox2)
(50), and three mitochondrial activity regulators
(transcription factor A, mitochondrial (TFAM), nuclear
respiratory factor 1 (NRF1)(51), and the transcription
factor nuclear factor erythroid 2 p45-related factor
2, NRF2)(52). Co-signaling receptor expression
potentials in human tissues were significantly
correlated with that of VEGFR3 (FLT4) (2 = 0.3873;
p = 0.0020) (Figure 10). To further consolidate the
findings, we used the microarray data deposited in
the NIH/NCBI-Geo datasets and examined VEGFR3
expression in the presence of deficiencies/ knock-
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down of co-signaling receptors such as CD80, CD48,
TIM and CD40. The results in Figure 11 showed that
CD40 knock-down with RNAi upregulates VEGFRS3;
and that VEGFR3 knock-down with RNAi regulates the
expression of seven co-signaling receptors including
four CSRs such as SEMA4A, TIM4, B7-H2, CD48 and
three CIRs including Galectin 9, B7-DC and HVEM.
These results suggest that in response to hypoxia,
blood supply and angiogenesis changes, stem cell
regulation and mitochondrial activity changes, all the
co-signaling receptors process behavior almost the
same; and VEGFRS, as a key vascular growth factor
receptor, plays an essential function in regulating
these co-signaling receptor expression and/or co-
signaling receptor functions may regulate the VEGFR3
expression and lymphatic vascular development in
human tissues (53).

4.7. Methylation status regulate the expression of
co-signaling receptors in mice.

It has been reported that treatment with
DNA methylation inhibitors and histone deacetylase
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Figure 11. Knock down of VEGFR3 (FLT4) regulates the expression of co-signaling receptors. This suggests that VEGFR3 regulates the expression and
functions of co-signaling receptors in VEGFR3+ endothelial cells and other VEGFR3+ cells.

inhibitors activate a growth-inhibiting immune response
which can be an effective therapeutic approach for
malignant disorders (54). We hypothesized that
certain co-signaling receptor expression are under
epigenetic regulation such as methylation as we
reported for enzyme expression of homocysteine-
methionine metabolism pathways. Thus, we analyzed
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the correlation between mouse co-signaling receptor
expression and mouse tissue methylation indices
determined by the ratios between S-adenosyl
methionine (SAM - the universal methyl donor)/
S-adenosyl homocysteine (SAH - a methyltransferase
inhibitor) in mouse tissues (55). As shown in Figure
12A and Figure 12B, we found that relative expression
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Figure 12. The tissue hypermethylation indices as evaluated by
S-adenosylmethionine (SAM)/ S-adenosylhomocysteine (SAH) ratio
are correlated with the expression of co-signaling receptors in six
mouse tissues (tissues: liver, brain, heart, kidney, lung and spleen).
A. The correlation between relative expression of co-stimulation
receptors and SAM/SAH ratio. B. Depending on the R2 value, the
correlation was segmented in to three tiers, named high, middle and
low. C) Schematic representation: 1)Histones H3 and H4 methylation
promote genes transcription; the methylation residues of H3 are R2,
8,17, 26 and K4, 9, 23, 27, 36, 79; the methylation residues of H4 are
R3 and K20 (PMID: 22982198). 2)CpG island methylation promote co-
signaling receptor genes transcription. (PMID: 15506922).

levels of 10 co-signaling receptors in mouse tissues
including CIR B7-H1 (r? = 0.9668, P = 0.0004), CIR
BTNL2 (r = 0.9242, P = 0.0022), CSR CD40 (r
= 0.932, P = 0.0018), CSR GITRL (* = 0.9242, P
= 0.0022), CSR CD30L(r* = 0.9242, P = 0.0022),
CSR TIM4 (r? = 0.9318, P = 0.0018), CSR SLAM(r?
=0.9242, P = 0.0022), CSR B7-H2 (r* = 0.8807, P =
0.0056), dual function B7-2 (r* = 0.884, P = 0.0053),
CSR CD48 (r? = 0.7487, P = 0.0457) are correlated
with tissue SAM/SAH levels (hyper-methylation index).
These results suggest that first, the expression of
35.7% (10/28) co-signaling receptors may regulate
tissue hyper-methylation status or tissue hyper-
methylation status may regulate the expression of
one-third of co-signaling receptors in mouse tissues;
and second, during tumorigenesis certain tumors can
switch methylation/demethylation regulation modes on
these co-signaling receptors and upregulate these co-
signaling receptors, after treated with DNA methylation
inhibitors and/or histone deacetylase inhibitor(s), then
anti-tumor immune responses can be enhanced.

4.8. Immune cell markers except CD11C are
correlated with highly expressed co-signaling
receptors.

Since the main types of professional APCs
are dendritic cells (DCs), macrophages, and B cells
(56), we hypothesized that highly expressed co-
signaling receptors in tissues are correlated with
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the expression of macrophage marker adhesion G
protein-coupled receptor E1 (F4/80), B cell marker
CD20, T cell markers CD3G, CD3E and CD3D and
DC marker CD11C in human tissues. To test this
hypothesis, we performed correlation analysis for the
expression of these professional APC markers with co-
signaling receptor potential in 22 human tissues. As
shown in Figure 13A and Figure 13B, human tissue
expression levels of macrophage marker F4/80 (r* =
0.1259, p = 0.0463), B cell marker CD20 (r? = 0.2392,
p = 0.0045), and T cell antigen receptor components
CD3G (r°= 0.1565, p = 0.0250) and CD3E (r* = 0.3646,
p = 0.0003) are significantly correlated with the high
expressed co-signaling receptor potential. However,
tissue expression levels of DC marker CD11C and
T cell marker CD3D are not correlated with the high
expressed co-signaling receptor potential. These
results suggest that first, tissue expression of high
expressed co-signaling receptors are partially
correlated with tissue contents of professional APCs;
and second, the expression of highly expressed co-
signaling receptors in non-professional APCs in
tissues contribute significantly to forward signaling
in regulating T cell activation and reverse signaling
in regulating tissue physiology and pathology as
demonstrated by our report on CD40 (11).

4.9. Reverse signaling of many CSRs play
important roles in M1 polarization.

We hypothesized that reverse signaling by
upregulated co-stimulation receptors in macrophages
may contribute to infections and macrophage
polarization. To test this hypothesis, we examined six
macrophage microarray datasets of infectious disease
including streptococcus pneumonia, leptospiral,
influenza H1N1, influenza H3N2, Legionella
pneumophila, and listeria, respectively. As shown in
Table 7, among 26 upregulated co-signaling receptors,
22 receptors were CSRs (84.6%) whereas other 4
receptors were CIRs (15.4%). Also, the co-stimulation
receptors including CD40, 4-1BBL, SLAM, CD48, B7-
1, B7-2, and CD155 are significantly upregulated in
macrophages in response to infections. In addition, 2
CIRs such as B7-DC and B7-H1 are upregulated in
macrophages in response to infection.

Furthermore, we examined five macrophage
microarray datasets of type 1 macrophage (M1)
polarization versus MO non-polarized macrophage
controls and five microarray datasets of M2 polarization
versus MO non-polarized macrophage controls. We
found that 1) 22 CSRs (73.3%) and 8 CIRs (26.7%)
were upregulated during M1 polarization; 2) 6 CSRs
and 1 CIR were upregulated during type 2 macrophage
(M2) polarization; 3) CSRs such as CD40, 4-1BBL,
TL1A, CD30L, SLAM, CD48, SEMA4A, B7-1, B7-
2, and CD155 are significantly upregulated in M1
macrophage polarization. In contrast, only two CSRs
including CD40 and SLAM are upregulated in M2
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Figure 13. Expression levels of macrophage marker F4/80, B cell marker CD20, and T cell antigen receptor components CD3G and CD3E in human
tissues are significantly correlated with the high expressed co-signaling receptor potential. A) Correlation between macrophage, dendritic cells, T-cell and
B-cell markers with highly expressed co-signaling potential. B) The cell markers that are significantly correlated with the expression of highly expressed
co-signaling potential.

macrophages; 4) 4 co-inhibition receptors such as These results suggest that reverse signaling of CSRs
CD113, B7-DC, B7-H1, and HHLA2 are upregulated than CIRs play an essential role in macrophages
in M1 macrophage polarization; and 5) CD70, GITRL, during infections. Further, many CSRs are involved in
TIM4, CD112, HVEM, B7-H3, B7-H4 and BTNL2 have M1 polarization while only few CSRs play a role in M2
no significant changes under M1 or M2 polarization. polarization.
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Table 7. Endothelial cells (EC), vascular smooth muscle cells (VSMCs) and leukocytes upregulate co-
stimulation receptors and co-inhibition receptors in response to infections, pro-inflammatory cytokine
stimulation and trauma

Cell type SMC EC Leukocytes

GEOID GSE21403 | GSE78020 | GSE46262 GSE59226 | GSE36809 | GSE36809 | GSE36809 | GSE57065 | GSE57065

Description | IL-1b TNF+IFN hyperglycemia | influenza Trauma 1d | Trauma 7d | Trauma Septic Septic

virus 28d shock high | shock low

score score

B7-H2 35.7 10.03 0.4

CD70

LIGHT 6.32 2.75 3 3.81

CD40 16.38 9.41 0.19

4-1BBL 0.36

OX40L 0.27

TL1A 0.09

GITRL

CD30L 0.46 2.66

TIM4

SLAM 0.46 0.44 0.4

CD48 2.16

SEMA4A 2.91 3.02 245 2.33 2.03 2.63 2.44

CD58 0.09 3.38 2.21 2.82 3.08

B7-1 6.95

B7-2 4.6 0.49

CD155 2.52

CD112 4.74 0.22 0.22 0.45 0.15 0.2

Galectin9 43.77

CD113 0.03

HVEM 16.25

B7-DC 2.79

B7-H1 6.59 49.18 2.02 3.87

B7-H3

B7-H4 0.24

VISTA

HHLA2

BTNL2 2.25

1. VSMCs upregulate co-stimulation receptors B7-H2, CD40, SEMA4A, B7-1, B7-2, and CD155 after stimulation with interleukin-1b (IL-1b); 2. In contrast,
endothelial cells upregulate B7-H2, CD40, SEMA4A and CD112 and co-inhibition receptors Galectin 9, HVEM, B7-DC, and B7-H1 after stimulation with
tumor necrosis factor-a (TNF-a.) and interferon (IFN); and 3. Co-stimulation receptors such as LIGHT, SEMA4A, and CD58 show significant upregulations;
and co-stimulation receptors SLAM, B7-2, and CD112 are downregulated in the tissue injuries such as severe trauma and septic shock in leukocytes.

4.10. CSRs and CIRs regulate immune tolerance,
anti-inflammation, and inflammation resolution.

We previously proposed endothelial cells
as innate immune cells, which can act as APC in
pathological conditions by upregulating MHC class Il
and co-stimulation receptors (56). We also reported
that vascular smooth muscle cells upregulate innate
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immune sensor caspase-1/inflammasome pathway
in chronic kidney disease (CKD) (31, 57). Thus, we
hypothesized that vascular cells including endothelial
cells (EC) and vascular smooth muscle cells (VSMC)
may upregulate co-stimulation receptors and co-
inhibition receptors in pathologies. We analyzed
microarray datasets conducted on endothelial cells and
VSMCs stimulated with pro-inflammatory cytokines.
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Table 8. All the co-signaling receptors can act as potential kinases

Topology tln cell Intrac_ellular P_hosphorylation Interaction partners*
Gene Gene ID membrane domain sites

N-out C-out
B7-H2 ICOSLG + 259-277 + ICOS, ZDHHCS6, PTPRD, LGALS1, C2CD2L(BioGrid)
LIGHT | TNFSF14 + 34-53 + HVEM, CCPG1, APP, YTHDF1, HOXD13(BioGrid)
TIM4 TIMD4 + 287-308 + TIM1, B7-H3, HLA-B(STRING)
CD48 CD48 + 225-242 + PRAP1, EEF1D, BRIX1, CD2, LCK(BioGrid)
CD58 CD58 + 216-234 + CD2, PARP2, LGALS3, ABHD12B, DNAJA1(BioGrid)
CD113 | NECTIN3 + 39-62 + CD111, CD112, TIGHT, INPP5K, MAK(BioGrid)
B7-DC | PDCD1LG2 | + 225-243 + PDCD1, SBDS, SLC39A11, NGLY 1, ALCAM(BioGrid)
B7-H3 CD276 + 467-487 + ;?(?LLES(?L ;V('gilt‘)gr@)m’ CEACAM21,
B7-H4 | VTCN1 + 260-280 + NCALD, BTLA(BioGrid)
VISTA | VSIR + 195-215 + PLSCR1, SMAD3(BioGrid)
HHLA2 | HHLA2 + 345-365 + TMIGD2, HHLA3, DMAP1(STRING), YPOO0764(IntAct)
BTNL2 | BTNL2 + 7-23 + :E:AI\:;;B??‘S)SFIEILG”;NMO EMC10,

Our database mining analysis show that all the co-signaling receptors have phosphorylation sites in the intracellular domain, which indicate that all the
co-signaling receptors have kinase activities for their potential downstream pathways. 1. Most co-signaling receptors have their N-terminus localized
intracellularly; 2. all 12 CSRs and CIRs have the intracellular domains and potential phosphorylation sites; and 3. B7-H4 and VISTA has two interaction
partners, while all the other receptors have more than three interaction partners. The topology information of co-signaling receptors were analyzed
using the databases such as the UniProt (www.uniprot.org/) and HMMTOP (http://www.enzim.hu/hmmtop/).The interaction partners of co-signaling
receptors were analyzed using the databases including the BioGrid (https://thebiogrid.org/), STRING (https://string-db.org/), and IntAct (http://www.ebi.

ac.uk/intact/).

Additionally, our analysis also included microarray
datasets conducted on leukocytes extracted during
infections, trauma injury and septic shock. As shown
in Table 8, we found that 1) VSMCs upregulate co-
stimulation receptors B7-H2, CD40, SEMA4A, B7-1,
B7-2, and CD155 after stimulation with interleukin-
1beta (IL-1beta); 2) In contrast, endothelial cells
upregulate four CSRs B7-H2, CD40, SEMA4A and
CD112 and four CIRs Galectin 9, HVEM, B7-DC, and
B7-H1 (PD-L1) after stimulation with tumor necrosis
factor-alpha (TNF-alpha) and interferon-gamma (IFN-
gamma) (58); and 3) three CSRs such as LIGHT,
SEMA4A, and CD58 were significantly upregulated
and SLAM, B7-2, and CD112 were downregulated in
leukocytes extracted during severe trauma and septic
shock. These results suggest that first, forward and
reverse signaling of three out of 18CSRs, B7-H2,
CD40, and SEMA4A (16.7%),play significant roles
in vascular cells stimulated with pro-inflammatory
cytokines such as TNF-alpha and IFN-gamma;
second, pro-inflammatory cytokines TNF-alpha and
IFN-gamma also upregulate five out of ten CIRs
(50%) in endothelial cells, suggesting that endothelial
cells play an essential role in immune tolerance, anti-
inflammatory responses, and inflammation resolution,
presumably via their forward signaling and reverse
signaling; and third, three CSRs, LIGHT, SEMA4A and
CD58, upregulated in trauma and septic shock injury in
leukocytes have specific forward and reverse signaling
in the pathologies.
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4.11. CSRs and CIRs regulate the expression of
EC adhesion molecules and VSMC phenotypic
markers.

To further consolidate our findings thatreverse
signaling of CSRs and CIRs in the pathophysiology of
vascular cells, we hypothesized that CSRs and CIRs
play important roles in EC activation (22) and VSMC
phenotypic switch by modulating the expressions
of EC adhesion molecules and VSMC phenotypic
switching markers. To examine this hypothesis,
we conducted a literature search and selected 20
EC adhesion molecules and 20 VSMC phenotypic
switching markers. As shown in Figure 14, we found
that: 7) CD30L (a CSR) transgenic overexpression in
spleen induces the endothelial cell adhesion molecule
FN1 and VSMC phenotypic switching marker alpha-
SMA upregulation; 2) B7-H4 (a CIR) overexpression
in pancreas downregulates CD31 and upregulates
VSMC markers S100A4 and GP110; CD40 RNA
interference (RNAi) in human umbilical vascular
endothelial cells (HUVEC) induces the upregulation of
EC adhesion molecules AGT, TGFB1 in HUVEC and
upregulation of VSMC markers MMP-1, MMP-3, and
SMMHC; 3) CD70 (a CSR) transgenic overexpression
in hematopoietic stem cells (HSC) induces the
upregulation of EC adhesion molecule VCAM-1, and
VSMC marker cyclin; 4) In CD48 (CSR) negative cells,
VSMC marker TIMP-2 was upregulated; and finally,
5) CSR CD112 deficiency induces upregulation of
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Figure 14. Reverse signaling of CSRs and CIRs regulate pathophysiology of vascular cells. A) Modulation of CSRs and CIRs affect endothelial cell
activation and vascular smooth muscles phenotypic switch. B) Schematic representation of modulation co-signaling receptors in vascular inflammatory
disorders induce endothelial activation by increasing the presence of adhesion molecules. Further, changes in the co-signaling receptors induce the

vascular smooth muscles to undergo phenotypic changes.

EC adhesion molecules COL18A1, and E-selectin in
HUVEC, and downregulates VSMC markers TIMP-1,
ACLP, smoothelin, and SM22-alpha. These results
suggest that reverse signaling of CSRs and CIRs
regulates the pathophysiology of vascular cells by
modulating the expression of endothelial cell adhesion
molecules and VSMC phenotypic switching markers.
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4.12. CSRs and CIRs have intracellular domain
with phosphorylation sites capable for reverse
signaling

To further consolidate our findings that reverse

signaling of CSRs and CIRs in the pathophysiology of
professional APCs, endothelial cells (EC) and other
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Figure 15. In addition to co-stimulation for T cell activation, 12 co-stimulation receptors including B7-1, B7-2, CD70, CD40, 4-1BBL, OX40L, TL1A, GITRL,
CD30L, SLAM, CD155, CD112, and 2 co-inhibition receptors Galectin9, HVEM have reverse signaling pathways in professional APCs, endothelial cells,
monocytes, and other cells. A) The signaling pathways that are involved in reverse signaling. MAPK pathway is the most common pathway involved in
reverse signaling. B) Schematic representation of the biological roles played by the signaling pathways that mediate reverse signaling.

cells, we extensively searched previous literature. As
shown in Figure 15, we found that, 1) in addition to co-
stimulation for T cell activation, 12 CSRs including B7-1,
B7-2, CD70, CD40, 4-1BBL, OX40L, TL1A, GITRL,
CD30L, SLAM, CD155, CD112, and 2 CIRs Galectin9,
HVEM have reverse signaling pathways in professional
APCs, ECs, monocytes, and other cells; 2) The most

123

common pathway involved in reverse signaling in
various cells is mitogen activated protein kinase (MAPK)
pathway; 3) Other downstream pathways involved are
phosphatidylinositol-3 kinases (PI3K)-AKT (a serine/
threonine kinase also known as protein kinase B, PKB),
indoleamine 2,3-dioxygenase (IDO), tumor necrosis
factor receptor associated factors (TRAF)2/3/4/5/6,
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signaling lymphocytic activation molecule (SLAM)-
associated protein (SAP), focal adhesion kinase (FAK)
and caspase-1; 4) CSRs have signaling pathways in
various innate immune and non-immune cells; and 5)
CSRs regulate various immunological and cell biological
roles including apoptosis, autoantibody generation,
EC activation (adhesion molecule upregulation),
immunoglobulin class switching, expression of CCR7,
HLA-DR, and CD86, osteroclastogenesis, cell adhesion
and migration, cytotoxicity, cell proliferation.

For those less-characterized CSRs and CIRs
including five CSRs (B7-H2, LIGHT, TIM4, CD48 and
CD58) and seven CIRs (CD113, B7-DC, B7-H3, B7-
H4, VISTA, HHLA2 and BTNL2), we also searched the
structural evidences of reverse signaling by analyzing
the candidate phosphorylation sites in their intracellular
domains and protein interaction partners. As shown in
Table 8, we found that 1) Most co-signaling receptors
have their N-terminus localized intracellularly; 2) all
12 CSRs and CIRs have the intracellular domains
and potential phosphorylation sites; and 3) B7-H4 and
VISTA has two interaction partners, while all the other
receptors have more than three interaction partners.
These analyses suggest that all the CSRs and CIRs
have intracellular domain with phosphorylation site
capable for reverse signaling and regulating the
pathophysiology of professional APCs, vascular
cells and other cells in addition to regulate T cell
activation and other T cell functions including priming,
differentiation, effector and memory functions.

4.13. STAT1 inhibits T cell plasticity into atypical
APCs.

It has been well accepted that all the CSRs
and CIRs are expressed in professional antigen
presenting cells (APCs) and “conditional APCs”
including endothelial cells as we proposed (56). Recent
reports showed that an increased number of cell
types that are capable of acting as atypical APCs and
present antigens to major histocompatibility complex
(MHC) class Il molecules to conventional CD4* T
cells (37). Of note, CD4" T cells are among atypical
APCs. However, it is unknown what master regulators
control the development of T cell plasticity into atypical
APCs. We hypothesized that when key transcription
factors in T cells have mutations, T cells upregulate
MHC class Il and CSRs and CIRs. To examine this
hypothesis, we analyzed MHC class Il expression and
the expression of CSRs and CIRs in six T cell master
gene mutations. As shown in Figure 16, we found that:
1) T-helper-inducing POZ/ Kruppel-like factor (Thpok,
cKROX) deficiency upregulated CIR CD113, CSR B7-1
and downregulated CSRs CD40 and SLAM; 2) Myb
deficiency upregulated CSR CD30L and CIR VISTA
but downregulated CSRs SLAM and B7-2; 3) signal
transducer and activator of transcription 4 (STAT4)
deficiency downregulated B7-1; 4) transcription factor
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3 (TCF3, E2-alpha) deficiency upregulated CSRs
LIGHT and SLAM and downregulated CSR CD48;
5) canonical Wnt/B-catenin effector (Tcf1) deficiency
upregulated CSRs LIGHT, CD155 and CD112, but
downregulated T cell antigen receptor beta (TCR-
beta); and finally 6) STAT1 deficiency (59) upregulated
four CSRs such as CD40, CD30L, B7-1, and CD112
and three CIRs including CD113, B7-DC, and BTNL2.
In addition, STAT1 deficiency upregulated MHC class II
expression. Taken together, STAT1 deficiency not only
upregulates MHC class Il for delivering T cell activation
signal 1, but also upregulates four CSRs for delivering
T co-stimulation signal as T cell activation signal 2
(2, 4). Therefore, our results have demonstrated for
the first time that STAT1 inhibits T cell plasticity into
atypical APCs; and other transcription factors also
modulate the expression of CSRs and CIRs in T cells.

5. DISCUSSION

It has been documented that CSRs and CIRs
play critical roles via forward signaling in regulating
T cell activation, T cell functional status in priming,
differentiation, effector and memory. However, the
reverse signaling of these co-signaling receptors in
APCs and other cells remained poorly characterized.
To improve our understanding in this aspect, we
took an experimental datamining approach that we
pioneered in 2004 (23, 26, 60-62), and analyzed the
expression of 28 CSRs and CIRs in 32 human and
mouse tissues as well as many pathological settings.
We made the following significant findings. 1)Among 27
co-signaling receptors expressed in 32 human tissues,
five CSRs such as CD40, CD48, CD58, SEMA4A
and B7-H2 are highly expressed; there are no highly
expressed CIRs; and five tissues including lymph node,
placenta, thymus, nerve and trachea have high T cell
co-stimulation and co-inhibition potential. 2)Two CSRs
including CD40 and CD70 exert all four functions on
T cells including priming, differentiating, effecting and
memorizing; and six CSRs including CD48, CD58,
TL1A, OX40L, LGHT, B7-H2 and one CIR Galectin
9 have three functions. 3)32 human tissues have
significant differences in co-signaling that regulate four
T cell functions including priming, differentiation, effector
and memory. 4) Increased co-stimulation potential
in nine human tumors in breast, lung, liver, ovaries,
gastro-intestine, esophagus, kidney and in glioma
and bladder carcinoma is significantly correlated with
improved prognosis. 5) Inflammasome components
NODS3, NALP9, CARD8, NOD4 and NALP6 are few
of the significant regulators of the tissue expression
of co-signaling receptors; and reverse signaling via
co-signaling receptors regulate the pro-inflammatory
sensor functions of innate immune cells for DAMPs
and PAMPs. 6) VEGFRS3, a key VEGF receptor, plays
an essential function in regulating these co-signaling
receptor expression, suggesting that co-signaling
receptors may play important roles in angiogenesis.
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Figure 16. Transcription factors modulate the expression of CSRs and CIRs in T-cells. Stat1 attenuate T-cell plasticity and prevents its conversion to APCs.
A. The deficiencies of master genes such as THPOK, MYB, STAT1, and TCF1 in T cells upregulate co-signaling receptors and major histocompatibility
complex class Il (MHC class Il) (STAT1 deficiency). B. Schematic representation of how the mutations in T-cell master regulators can modulate T-cell

plasticity.

7) Tissue hyper-methylation status may regulate the
expression of one-third of co-signaling receptors in
mouse tissues; and during tumorigenesis, certain
tumors can switch methylation/demethylation regulation
modes on these co-signaling receptors and upregulate
these co-signaling receptors, suggesting that DNA
methylation inhibition and histone deacetylase inhibition
can enhance co-signaling receptor expression and anti-
tumor immune responses. 8) Tissue expression levels
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of macrophage marker F4/80, B cell marker CD20,
and T cell markers CD3G and CD3E are correlated
with highly expressed co-signaling receptors, but not
correlated with the expression of dendritic cell marker
CD11C in 22 tissues. 9) Reverse signaling of CSRs
play roles more than that of CIRs in macrophages
during infections; and reverse signaling of many CSRs
plays important roles in M1 polarization but only that
of three CSRs such as CD40, SLAM and B7-2 play
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some roles in M2 polarization. 10) Forward and reverse
signaling of three CSRs B7-H2, CD40, and SEMA4A
play roles in vascular cells during inflammation; and
forward and reverse signaling of 50% co-inhibition
receptors upregulated in inflammation makes EC play
roles in immune tolerance, anti-inflammation, and
inflammation resolution. 11) Reverse signaling of CSRs
and CIRs regulate the expression of EC adhesion
molecules and VSMC phenotypic switching markers.
12) 12 CSRs and 2 CIRs are reported to have reverse
signaling pathways including PI-3 kinase-Akt, MAPK,
TRAF, caspase-1; and all the CSRs and CIRs have
intracellular domain with phosphorylation sites capable
for reverse signaling. 13) STAT1 inhibits T cell plasticity
into atypical APCs; and other transcription factors
modulate the expression of CSRs and CIRs in T cells.

By analyzing sequencing data from tissue
cDNA libraries, we were able to study the expression
profiles of CSRs and CIRs in various tissues. Since
the data are collected from cDNA cloning and DNA
sequencing experiments rather than theoretical data
derived from computer modeling, the data require
no further experimental verification. Since the gene
expression sequencing tag (EST) data deposited in the
NIH-NCBI-UniGene database have been established
based on DNA sequencing data, the data obtained by
EST database mining are more precise in providing
the tissue expression profiles of genes than traditional
hybridization- and primer annealing-based approaches
like Northern blots and RT-PCRs (23). Of note, since
the UniGene database does not have many non-tumor
cell line-related gene expression data in various gene
deficiencies and stimulation conditions, we analyzed
microarray-based gene expression data deposited
in NIH-GEO Datasets to determine CSR and CIR
expression changes under pathological conditions.

We previously proposed a novel concept that
endothelial cells are innate immune cells, in which we
provided strong evidence to show that endothelial cells
stimulated by various pathological factors can function
as innate immune cells comparable to that of prototypic
innate immune cells such as macrophages. ECs’
innate immune cell functions include the upregulation
of CSRs for T cell activation and other T cell functions.
Although ECs’ function in attenuating T cell activation
and inhibiting autoimmune responses has been
reported (63), CIRs function in ECs and other vascular
cells remains poorly characterized. Our new finding
showed that potential forward and reverse signaling of
50% CIRs upregulated by pro-inflammatory cytokine
TNF-alpha and IFN-gamma stimulation (58) can make
ECs to play significant roles in immune tolerance,
anti-inflammation, and inflammation resolution during
inflammatory pathologies.

Recent reports showed that an increased
number of cell types that are capable of acting as atypical
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APC and present antigens to major histocompatibility
complex (MHC) class Il molecules to conventional CD4*
T cells (37). Of note, CD4* T cells are among atypical
APCs. Indeed, we recently reported that GATAS3,
HDACG6 and BCL6 regulate FOXP3+Treg plasticity and
determine Treg conversion into either novel antigen-
presenting cell-like Treg or Th1-Treg (38). However,
it is unknown what master regulators control the
development of non-Treg T cell plasticity into atypical
APC. The novel finding presented in this manuscript has
demonstrated for the first time that STAT1 deficiency
in T cells upregulates MHC class Il and co-stimulation
receptors, suggesting that STAT1 inhibits T cell plasticity
into atypical antigen presenting cells.

Herein, we acknowledge that further
experiments such as qPCR, immunoblots,
flowcytometry etc. are required to verify tissue
expression profiles CSR and CIRs in both physiological
and pathological conditions. Further, well-designed
experiments are needed to validate the signaling
pathways that are involved in reverse signaling that
we report here.

6. CONCLUSIONS

Based on our new findings and others reports,
to improve our understanding on co-signaling receptors
including CSRs and CIRs, we propose a new working
model as shown in Figure 17 and highlight the new
roles of reverse signaling of co-stimulation receptors
and co-inhibition receptors on T cells and non-T cells.
T cell transcription factor STAT1 inhibits the expression
of MHC class Il and co-signaling receptors. This leads
to inhibition of T cell plasticity into atypical antigen
presenting cells (APCs). Since STAT1 deficiency
significantly weakens immune response (64), our
findings suggest that STAT1 inhibition of T cell plasticity
into atypical antigen presenting cells support immune
function of T cells. Further, our new finding showed that
pro-inflammatory cytokine TNF-alpha and IFN-gamma
stimulation (58), secreted by endothelium-interacting
CD4+ T helper cell 1 (Th1 cells) and other immune
cells, upregulate co-inhibition receptor expression on
endothelial cells (ECs) significantly. This indicates
that ECs play significant roles in immune tolerance,
inhibition of inflammation, and inflammation resolution
during inflammatory disorders. Additionally, cellular
immunometabolic status such as hypomethylation/
hypermethylation status, signaling of pathogen-
associated molecular patterns (PAMPs) receptors/
danger associated molecular patterns (DAMPs)
receptors/ inflammasomes, as well as vascular
endothelial growth factor receptor 3 (VEGFRS3)
pathways play significant roles in modulating the
expression of CSRs and CIRs. Our results have
provided novel insights into co-signaling receptors as
physiological regulators in addition to their functions
in regulating T cell activation and also suggest new
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Figure 17. New roles of reverse signaling exerted by CSRs and CIRs on T-cells and non T-cells. A) Mutations of T-cell master regulators such as STAT1
can modulate the expression of CSRs and CIRs, thus affect the plasticity of T-cells. B) Pro-inflammatory cytokines such as tumor necrosis factor —alpha
(TNF-alpha) and Interferon-gamma (IFN-gamma) secreted by CD4+ Th1 cells and other immune cells increase the expression of CIRs in endothelial
cells. This suggest that endothelial cells play a significant role in modulating immune tolerance, attenuation of inflammation, inflammation resolution and
tumorigenesis. C) The cellular methylation status, signaling mediated via DAMPRs and PAMPRs and VEGFR3 pathway during various pathological
conditions modulate the expression of CSRs and CIRs.
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