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1. ABSTRACT

Epigenetics involves multiple processes such 
as DNA methylation, histone code modifications, and 
noncoding RNAs to regulate gene expression. In recent 
years the implications of epigenetic mechanisms have 
emerged in the field of neuroscience especially in 
brain development, memory, learning, and various 
cognition processes. Epigenetics also plays a pivotal 
role during the aging process of the brain which 
has led to various age-related neurodegenerative 
diseases. This manuscript portrays the findings of 
various epigenetic mechanisms that play a critical role 
and their implications in aging as well as age-related 
neurodegenerative disorders such as Alzheimer’s 
disease, Parkinson’s disease, and Huntington’s 
disease.

2. INTRODUCTION

Aging is defined as a time-dependent loss 
of function causing increased vulnerability to death 
that affects most of the living organisms. Various 
factors that affect the aging process include genomic 
instability, somatic mutations, telomere shortening, 
loss of protein stability and function, mitochondrial 
dysfunction, deregulated nutrient sensing, cellular 
senescence, stem cell exhaustion, and altered 
intercellular communication such as inflammation (69). 
In addition to molecular, cellular, and physiological 
defects associated with aging, an epigenetic alterations 

that affects all types of cells and tissues throughout life 
is the major hall-mark of aging (8) (Figure 1). During 
aging, the epigenome undergoes a progressive loss of 
its configuration that results in a significant change in 
the genome integrity, chromatin architecture, and gene 
expression pattern. Alteration of the epigenetic pattern 
during aging is a phenomenon called epigenetic 
drift (23).

The term epigenetics is a heritable change 
in gene expression without altering the sequence of 
DNA. Epigenetic regulatory mechanisms include DNA 
methylation, histone code modifications, and small 
and long non-coding RNAs. DNA methylation involves 
covalent modification of cytosine residues of CpG 
dinucleotides by addition of methyl groups catalyzed 
by DNA methyl transferases. Another epigenetic 
alteration is histone code modifications which involve 
various chemical modifications such as acetyl, 
methyl, and phosphoryl groups attached to amino 
terminal tails of histones. Depending on the type of 
modification found on a particular amino acid residue, 
histone code modifications remodel the chromatin 
either euchromatin or heterochromatin. Euchromatin 
is loosely packed with histones and DNA, less 
condensed, transcriptionally active and characterized 
with hypomethylation of DNA, histones and hyper 
acetylation of histones. Heterochromatin is tightly 
packed with histones and DNA, highly condensed, 
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transcriptionally repressive and characterized with 
hypermethylation of DNA, histones and hypoacetylation 
of histones. (Figure 2). In addition, non coding RNAs 
can affect both transcriptional and post-transcriptional 
gene silencing.

Few studies have reviewed the epigenetic 
changes occurring during aging (83, 95, 117). In this 
review, we describe various epigenetic mechanisms 
that occur in general and specify those changes in the 
aging process and their implications in some of the 
common age related neurodegenerative diseases. 

3. EPIGENETIC CHANGES IN AGING

3.1. DNA methylation and aging

DNA methylation is one of the best-
characterized epigenetic mechanisms which provide 

a stable and heritable epigenetic modification. It is 
essential for normal development and survival of 
mammalian cells. DNA methylation occurs on cytosine 
residue of CpG dinucleotides. The CpG dinucleotide 
rich regions are called CpG islands and are found in 
the promoter regions of genes. Promoter CpG island 
methylation plays an important role in gene silencing 
by preventing transcriptional factor binding on to 
the promoter and thereby recruiting transcriptional 
repressors including methyl binding proteins (10). DNA 
methyl transferases (DNMTs) catalyzes the addition of 
a methyl group on to the 5th carbon position of cytosine 
residue utilizing S-adenosyl methionine (SAM) as the 
methyl donor. Off all the DNMTs, DNMT1, DNMT3A 
and DNMT3B plays an important role in maintaining 
and establishing genome methylation. 

One of the well-studied DNA methylation 
changes that occurs with advanced aging is global 

Figure 1. Hallmarks and mechanisms of aging. 
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DNA hypomethylation. During the aging process, DNA 
methylation drift occurs in mammalian cells that change 
the 5-methyl-cytosine distribution across the genome. 
This result in global DNA hypomethylation, while some 
promoters undergo aberrant DNA hypermethylation 
(139, 118, 42, 43, 44). DNA hypomethylation also 
takes place in transposable DNA repetitive elements 
including Alu and LINE-1 elements, resulting in 
increased transposition activity and genomic instability 
(139). Age dependent loss of DNA methylation also 
occurs at promoters of specific genes such as CD11a 
and IL17RC (146, 138). During aging, promoter 
hypermethylation affects the expression of certain 
transcription regulatory genes (29), apoptotic genes 
(84), development and differentiation regulatory genes 
(107). Global genome wide methylation changes and 

epigenetic pattern of specific genes predicting the aging 
have been reported (57, 6). Due to aging, promoter 
hyper-methylation has been observed in several 
tumor suppressor genes such as CDKN2A, LOX, 
RUNX3, and TIG1 (131, 119). In addition, promoter 
hypermethylation was also observed on estrogen 
receptor (ER) and insulin-like growth factor II (IGF2) 
due to aging (42, 43). Other genes with increased 
promoter methylation during aging include collagenα1, 
c-fos, and the myogenic differentiation antigen1 (13, 
123, 144). Ribosomal DNA (rDNA) clusters also 
show increased promoter methylation that results in 
reduced expression of rRNA during aging (17, 91). 
Global DNA hypomethylation and promoter specific 
hypermethylation changes that occur during aging 
may be associated with altered expression of DNA 

Figure 2. Eukaryotic chromatin organization. In eukaryotes chromatin is organized as open transcriptionally active euchromatin or compact, closed, 
transcriptionally inactive heterochromatin. Euchromatin is characterized with DNA hypomethylation and hyper acetylation of histone N terminal lysine 
residues. Heterochromatin is characterized with DNA hyper methylation, histone methylation at specific lysine residues. M is methyl CpG on DNA, M is 
methyl lysine and A is acetyl lysine of N terminal tail of histone.
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methyl transferases. It has been shown that DNMT1 
expression was reduced while DNMT3b expression 
steadily increased with aging in cells (9, 51) (Figure 3). 

3.2. Histone code modifications and aging

Genomic DNA packed in to highly ordered 
chromatin structures regulate various genomic 
processes such as DNA replication, transcription, 
recombination, and repair. In eukaryotes, the basic 
unit of chromatin structure is a nucleosome that 
consists of 147 base pairs of DNA wrapped around 
a histone octomer comprising two molecules of H2A, 
H2B, H3 and H4. Covalent as well as non-covalent 

modifications occur on histones to alter the chromatin 
structure. Covalent modifications occur at particular 
amino acid residues of the N-terminal tail of histones 
include acetylation, methylation, phosphorylation, 
ubiquitination and ADP ribosylation and sumoylation 
(133). Depending on the site and type of modification 
on amino acid residues, histone code modifications 
are associated with either transcriptional activation or 
repression. Acetylation of histone H3 and H4, di and 
tri methylation of H3K4 and H3K36 are associated 
with active transcription referred to euchromatic 
modifications. Methylation of H3K9, H3K27, and 
H4K20 are commonly associated with transcriptional 
repression and are considered heterochromatin 

Figure 3. DNA methylation changes during aging. A. Global DNA hypermethylation occur at repetitive DNA elements such as Line 1, Alu and LTR 
in young individuals results in transcriptional repression. In Old individuals, hypomethylation of these repetitive transposable elements results in 
transcriptional activation. B. Promoter DNA hypomethylation observed in Young and hypermethylation in Old result in differential expression. Each CpG 
site is represented as lollipop structure with methyl (closed circle), unmethyl (open circle).
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modifications (104). Non covalent histone modifications 
comprise ATP dependent mediated chromatin 
remodeling and histone variants incorporation in to the 
chromatin (134).

Among the histone code modifications, 
histone methylation and acetylation of lysine residues 
are the more prominent ones that affect the longevity 
process. The global histone methylation pattern differs 
in different organisms during aging process. McCauley 
and Dang (76) reported that there is an increase of 
transcriptionally active histone methylation marks 
and reduced levels of transcriptionally repressive 
histone methylation marks during aging suggesting 
a significant loss of heterochromatin marks in aging 
cells, tissues and organisms. Histone methylation 
marks such as H3K4me3, H3K9me, H3K27me3 and 
H3K36me3 change during aging which indicate a loss of 
heterochromatin. The increased level of H3K9me3 and 
SUV39H1 methyl transferase has also been reported 
in a premature aged mouse model (66). Increased 
methylation of H3K36 has been reported to promote life 
span in S.cervisiae. They identified that H3K36 methyl 
transferase mutants had a shortened life span (113). 
Studies from C. elegans and D. melanogaster suggest 
that loss of H3K36 methylation during aging leads to 
aberrant gene expression and causes transcriptional 
drift like effect and limit the life span (99). These 
studies together suggest that H3K36 methylation loss 
during aging led to aberrant gene expression result in 
limiting the life span. (99, 113). A significant increase 
of H4K20me3 was found in the kidney and liver of old 
rats whereas the amounts of mono and di methylated 
forms did not change significantly with age (108). The 

increase in H4K20me3 was accompanied by reduced 
levels of other histone modifications such as H3K9me3 
and H3K27me3. H3K4me3 and H3K27me3 have been 
related to lifespan regulation and global reduction 
of the H3K4me3 increases the life expectancy (32). 
Histone acetylation also plays an important role during 
aging. The changes in the levels of two histone marks 
such as H3K56Ac reduction and increase in the levels 
of H4K16Ac occurs during replicative aging in cycling 
human fibroblasts (18). Global histone hypoacetylation 
occurs in the repetitive DNA elements in aged mice 
brains suggesting a loss of chromatin integrity with 
aging (106). In addition, it has been shown that histone 
H4K12 acetylation plays a critical role in the aged 
mouse brain (96). Deregulation of H4K12 acetylation 
showed memory impairment in the aged mouse brain. 
Whereas, restoration of H4K12 acetylation recovered 
learning behavior in aged mice (96) (Figure 4). 

In addition to the loss of heterochromatin 
observed during the aging process, global loss of 
core histone proteins from the genome during aging 
has been observed in budding yeast (22). In human 
fibroblasts, it has been reported that reduced synthesis 
of new histones during replicative senescence results 
in shortened telomere length, which is one of the 
hallmarks of aging (94). H2AX, a minor histone H2A 
variant gets phosphorylated at serine 139 to produce 
γH2AX, which is an early cellular response to double 
stranded DNA breaks. The increased levels of DNA 
breaks represented by the formation of γ-H2AX foci 
have been observed in aged cells from multiple species 
including aged mice and senescent human cells. (67, 
71, 111, 112). There are also studies emerging to link 

Figure 4. Histone code modifications during Aging. Covalaent and non-covalent histone modifications alter during aging. Covalent histone modifications 
include transcriptionally active (H3K4me, H3K36me, and H4K16ac) and transcriptionally repressive (H3K9me, H3K27me and H4K20me) marks. Non 
covalent histone modifications include ATP dependent chromatin modifiers such as BRG1, BRM1 and histone variants such as γ-H2AX. The increase 
and decrease in expressions were represented with corresponding arrows.
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Figure 5. Non coding RNAs. A. MicroRNA biogenesis and function. MicroRNAs are synthesized from their gene as primary miRNA which are cleaved by 
Drosha results in premature miRNA. It is further processed by Dicer which cleaves hairpin loop structure to yield miRNA duplex. Unwinding of the duplex 
releases a mature miRNA which target the mRNA by binding to 3’ UTR or ORF. B. Long noncoding RNA mechanism of action. Long noncoding RNAs 
regulate gene expression either by interacting with transcriptional activator led to gene activation or interacting with transcriptional repressor thereby 
suppress the transcription. LncRNA regulate RNA splicing by interacting with splicing factor or by binding the splicing junction of premRNA. LncRNAs 
recruit chromatin remodeling complex such as PRC2 on to the promoter region thereby regulate the gene expression. LncRNA sequester miRNAs by 
occupying their target sites on the mRNA.
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the ATP dependent chromatin remodeling complexes 
to aging. BRG1 a member of SWI/SNF complex 
induced cellular senescence (115). BRM is another 
member of SWI/SNF family that can regulate aging in 
the rat liver. Aging increases levels of BRM in the livers 
of aged animals (41). (Figure 4).

3.3. Non-coding RNAs and aging

Non-coding RNAs are another kind of 
epigenetic modifiers that regulate gene expression 
without altering the DNA sequence. Although most of 
the studies were focused on small non- coding RNAs 
such as microRNAs, the importance of long non-coding 
RNAs has become more evident in recent years. 

MicroRNAs are small non coding RNAs 
which are about 20-24 nucleotides in length that 
regulate gene expression post transcriptionally 
either by blocking translation or by inducing mRNA 
degradation. They are transcribed as a primary 
miRNA transcript from their corresponding gene 
locus by RNA polymerase II. It is further processed 
by endonucleases Drosha and Dicer to generate a 
short RNA duplex. One strand of the duplex is loaded 
into the RNA induced silencing complex (RISC) to 
bind to the target mRNA, whereas the other strand is 
usually degraded (2) (Figure 5). Numerous miRNAs 
are expressed throughout the whole human body; the 
brain is especially enriched in miRNAs suggesting 
their role in neuronal development, function, and 
aging (31, 39). Global miRNA profiles associated 
with aging have been studied in peripheral blood 
mononuclear cells and it was found that the majority of 
miRNAs were decreased with age. There were about 
144 miRNAs down regulated and 21 miRNAs were 
upregulated in elderly individuals (90). They further 
validated nine different miRNAs,  miR-103, miR-107, 
miR-128,  miR-130a, miR-155, miR-24, miR-221, 
 miR-496, miR-1538 that were significantly lower in 
older individuals compared to young ones. Predicted 
targets for several of these miRs were found to be 
PI3K, c-Kit, and H2AX, which were elevated with 
advanced age supporting a possible role in aging 
process. However, two miRNAs (miR-496, miR-1538) 
were found to be upregulated in the old participants 
(90). Another study in a mouse model of senescence 
revealed that  miR-29, which targets type IV collagen 
gene was increased in elderly mouse tissue which 
in turn reduced the type IV collagen expression and 
weakened the basement membrane (122). Another 
study revealed that the miR-34 family is an important 
determinant for brain aging in Drosophila (68). Various 
members of miR-17-92 clusters were reported to be 
down regulated during aging in humans (34). Several 
studies reported that certain miRNAs were specific 
to aging in the brain. Mir-144 was reported to be 
upregulated in the cortex and cerebellum of humans, 
chimpanzees and macaque monkeys (97). 

Long non coding RNAs (lnc RNAs) are 
heterogenous regulatory elements that are >200 
nucleotides in length, and poorly conserved (49, 75). 
Based on genomic location, relative to a protein-
coding gene, they are classified as intergenic, intronic, 
exonic, antisense, and overlapping. They regulate 
many biological processes such as development, 
differentiation, cell survival, apoptosis, gene imprinting, 
maintainance of stem cells, and reprogramming of 
differentiated cells (5, 78, 102, 89, 137). The function 
of lncRNAs in gene regulation is quite complex and 
involves epigenetic mechanisms. They couple with 
chromatin-remodeling or histone modifying complexes 
such as polycomb repressive complexes (PRCs) and 
HDACs (140, 77). They also serve as scaffolds that 
mediate the recruitment of PRCs to certain genomic 
regions to guide the regulation of transcription. They 
also involve in post transcriptional modification such 
as mRNA stability, splicing and translation (128). 
LncRNAs can serve as molecular sponges by targeting 
miRNA binding sites thereby sequester miRNAs from 
their mRNA targets (98). (Figure 5). Recent evidence 
also suggests a role for lncRNAs in gene regulation 
via influencing the activity of gene enhancers. These 
lncRNAs are transcribed from gene enhancers are 
called enhancer RNAs (eRNAs) (132). LncRNAs 
have also been shown to regulate gene expression 
in both cis- and trans- based on their regulations that 
are local or distant from their genetic locations (103). 
Long noncoding RNAs mainly execute their function via 
modulating chromatin structure and function. During 
aging, the aberrant expression of these noncoding RNAs 
results in defects in many chromatin related biological 
processes. The important lncRNAs that are functionally 
associated with chromatin stability and integrity and 
could also be implicated in aging process are H19, 
Kcnq1ot1, ANRIL and AIR. H19 lncRNA is found to be 
strongly expressed during embryogenesis and acts in 
trans to negatively regulate various conserved genes 
in the imprinted gene locus IGN including H19 and 
IGF2 (25, 26). Recently it has been shown that H19 
forms a complex with MBD1 which then recruits histone 
lysine methyltransferases at DMR1 region resulting in 
repressive H3K9me3 marks at the imprinted locus (81). 
Loss of imprinting at the H19-IGF2 locus in mice has 
been implicated in aging (101). This loss of imprinting 
results in higher levels of expression of H19 in human 
prostate tissue during aging (149). Kcnq1ot1 is a nuclear 
localized, paternally expressed lncRNA that regulates 
imprinting of nearby imprinted genes including Cdkn1c 
and, Kcnq1 during embryonic development. It interacts 
with and recruits chromatin remodeling complexes 
such as G9a and PRC2 to the paternal DMR-LIT1 
(differentially methylated region- long QT intronic 
transcript 1) locus to maintain the repressive state of 
the chromatin (59, 80). Kcnq1ot1 can affect the aging 
process by regulating cell growth and proliferation via 
epigenetically modulating the expression of various 
cell regulated genes. ANRIL is an antisense noncoding 
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RNA in the INK4 cyclin-dependent kinase inhibitor 
2A, (CDKN2A) locus. It regulates the expression of 
CDKN2A and CDKN2B genes which plays roles in 
the regulation of cell proliferation, senescence, and 
aging. It binds and recruits Chromobox 7 (CBX7) a 
component of PRC1 to p16, SUZ12 a component of 
PRC2 on to p15 result in the increased repressive 
histone mark, H3K27 methylation (61, 143). Recent 
reports also suggest that this lncRNA is positively 
linked to TNF-α, NF-κB, and other inflammation factors 
contributing to aging (148). AIR (antisense Igf2r RNA) 
is a nuclearly localized and, paternally expressed 
imprinting lncRNA that is transcribed in the antisense 
direction towards the Igf2r promoter region. Silencing 
of AIR expression resulted in bi-allelic expression of 
Igf2R which lead to various developmental defects. 
AIR can be indirectly implicated in the senescence and 
aging process through its regulation of Igf2 expression. 
Other lncRNAs involved in the aging process are 
LincRNA-p21 and HOTAIR. LincRNA-p21 showed 
p53 mediated upregulation following DNA damage 
(40). It has been associated with repressing somatic 
cell pluripotency a characteristic feature found in 
aging cells through hnRNPK mediated recruitment of 
H3K9 methyl transferase, SETDB1 and DNMT1 to the 
promoters of pluripotency genes (4). HOTAIR (HOX 
transcript antisense RNA) regulates expression of 
genes located in HOXD1 gene locus. It acts in trans- 
by targeting SUZ12, EZH2 and LSD1 complex leading 
to altered H3K27methylation and H3K4 demethylation 
at the HOXD locus (140, 142, 145). 

4. EPIGENETIC DYSREGULATION IN AGE 
 RELATED NEURODEGENERATIVE DISEASES

Neurodegenerative diseases are 
characterized by a progressive loss of neuronal 
integrity and function followed by neuronal death. 
Age associated neurodegenerative changes include 
abnormal and dysfunctional axons, neurites, a decline 
in neurotransmitter network, and the presence of 
amyloid plaques. Depending on the brain region where 
the changes occur, various functional disabilities may 
arise as the disease progresses. The exact cause for 
various neurodegenerative diseases varies, suggesting 
in some cases it is genetic mechanism. Recent 
evidence also suggests, epigenetic mechanisms play 
an important role in neurodegenerative processes. 
We and others recently reviewed DNA methylation 
and histone code modification changes in various 
neurological disorders (63, 27). Some of the most 
common age related neurodegenerative diseases 
include Alzheimer’s disease (AD), Parkinson’s disease 
(PD) and Huntington’s disease (HD). 

4.1. Alzheimer’s disease

AD is the most common type of age related 
neurodegenerative disease characterized by cognitive 

decline, progressive motor abnormalities, mood 
instabilities, loss of memory, and decreased ability 
to focus and reason. It is a complex multifaceted 
disorder involving dysregulated energy metabolism, 
inflammation, and cell cycle control (72). There is 
a complex interplay between genetic, epigenetic 
and environmental factors that contribute to AD (15, 
73). The two major hallmarks of AD pathology are 
amyloid β (Aβ) plaques and phosphorylated tau 
protein (127). The amyloid precursor protein (APP) 
is concentrated in neuronal synapses and cleaved to 
produce β-amyloid plaques, which are responsible for 
neurodegeneration and dementia in AD patients. The 
hyper-phosphorylated microtubule associated protein 
tau is expressed in neurons and is capable of forming 
neurofibrillary tangles (130).

Growing evidence suggests that epigenetic 
mechanisms mediate the risk for AD. Studies revealed 
a reduction in genome wide DNA methylation in aging 
and AD (73). Global DNA hypomethylation observed in 
AD patients were attributed to significant decreases in 
folate and S-adenosyl methionine, whose metabolites 
are critically involved with DNA methylation mechanism 
(7, 82). Evidences also suggest that the expressions 
of genes associated with synapatic plasticity are 
selectively reduced, while inflammatory and immune 
response genes were significantly increased in AD 
brains. The locus specific epigenetic changes and 
chromatin alterations associated with this targeted 
gene expression correlate with impaired synaptic 
plasticity (8). Bakulski et al., 2012 (3) studied global 
genome wide CpG methylation of several genes in the 
frontal cortex of AD patients brains and demonstrated 
promoter hypomethylation of transmembrane protein 
59 (TMEM59) which is implicated in amyloid-β 
precursor post-translational processing. Other 
studies also reported changes in methylation status 
of transcription factor binding sites of tau promoter 
(135). In addition to DNA methylation, histone code 
modifications also have been reported in AD. APP/
presenilin 1 double mutant transgeneic mice exhibit a 
marked reduction in histone H4K14 acetylation which 
was associated with impaired learning (24). It has 
also been reported that in pre-plaque AD transgenic 
mice exhibit increased levels of H3K14 and H3K9me2 
compared with wild-type non-transgenic mice (24). 
An accumulation of phospho-H2AX, an indicator of 
DNA strand breaks has been reported in AD (86). The 
increased level of global H3 phosphorylation in frontal 
cortex and hippocampus in AD has been reported (93, 
100). Guan et al., 2009 (33) studied HDAC2 deficiency 
and found that it results in increased synapse number 
and memory facilitation supporting the role of histone 
acetylation and deacetylation in AD. Non-coding 
RNAs have also been associated with AD. Preliminary 
evidence suggesting the role of miRNAs in AD came 
from the studies of Dicer knock-out in adult forebrain 
which caused abnormal tau hyperphosphorylaion and 
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neurodegeneration as observed in AD brain (109). 
Studies reported that miR-9, miR-125b and  miR-146 
are increased in the temporal lobes, neocortex and 
hippocampal regions from Alzheimer’s disease 
patients (70, 114). Various other miRNAs were 
also dysregulated in sporadic Alzheimer’s disease 
patients. Mir-29a/b-1 was found to be downregulated 
in AD patient’s brains. These miRNAs are potential 
regulators of BACE1 which contribute to Aβ in sporadic 
AD (35). Mir-34a is upregulated in the cerebral cortex 
of AD mouse model (55). Another study showed 
 miR-107 expression decreased in AD patient’s brains. 
Mir-107 seems to regulate BACE1 expression which is 
associated with AD pathology (136, 87). Various long 
noncoding RNA dysregulation has been implicated in 
Alzheimer’s disease (37). BACE1-AS is one of the long 
noncoding RNA abundantly expressed in several brain 
regions of AD patients. It regulates BACE1 expression, 
which is crtical for AD pathophysiology (21). BC200 is 
another long noncoding RNA involved in regulation of 
synaptic plasticity and is found to be elevated in the 
prefrontal association area and hippocampus regions 
in AD brains (85, 126). 

4.2. Parkinson’s disease 

PD is the second most common age related 
neurodegenerative disease affecting humans over the 
age of 65. The clinical manifestations of the disease 
include motor dysfunctions such as rigidity, tremors 
at rest, slowness or absence of voluntary movement, 
and posture instability. Other non-motor symptoms are 
cognitive defects, depression, sleep, and emotional 
problems (Jankovic 2008). Loss of dopaminergic 
neurons in the substantia niagra brain region and 
formation of α-synuclein protein aggregates named 
levy bodies are the two major hall marks of the 
disease. Although a number of studies reported 
genetic predisposition remains high risk factor for 
sporadic PD, studies are emerging to suggest the role 
of epigenetic machinery in the development of this 
neurodegenerative disease (53). 

Epigenetic regulation of PD linked genes is 
emerging in the field of neuroepigenetics and it was 
recently reviewed (62, 28). The relationship between 
methylation potential and cognitive performance in PD 
patients revealed that higher methylation potential is 
correlated with better cognitive capabilities (92). The 
SCNA gene which encodes α-synuclein known to form 
levy bodies is potentially regulated by DNA methylation. 
Hypomethylation of the SCNA intron1 negatively 
correlates with its expression and was reported in 
the substantia nigra of brains in PD patients (50, 74). 
Promoter CpG2 site of SCNA gene was found to have 
reduced methylation in PD patients (124). In addition, 
it has been shown that α-synuclein can associate with 
DNMT1, sequestering it in the cytoplasm resulting in 
global DNA hypomethylation observed in PD cases 

(19). A few other genes including PARK16, MAPT, 
and Cyt P450 2E1 (CYP2E1) are implicated in PD 
pathogenesis showed differential methylation status 
in PD patients suggesting the critical role of DNA 
methylation in PD (16, 54). Chromatin remodeling 
including histone code modifications also have been 
reported in PD. α-Synuclein, a major contributor 
of  PD-linked neurodegeneration is neurotoxic with 
increased nuclear targeting. It has been found that 
α-Synuclein binds to histones and reduces the levels 
of histone H3 acetylation resulting in neurotoxicity (58). 
In PD patients, PGC1-α expression was significantly 
reduced in substantia nigra neurons. The epigenetic 
mechanism by which PGC1-α expression reduced 
in PD was suggested with binding of α-Synuclein 
on to the PGC1-α promoter which causes histone 
deacetylation thereby reduces the expression of 
PGC1-α (147, 116). Dieldrin, a neurotoxin implicated in 
PD pathogenesis has been found to increase histone 
H3 and H4 acetylation (120, 53). MicroRNAs also play 
an important role in PD. Mir-7 negatively regulates 
α-synuclein expression by binding to its 3’ UTR (52). 
Mir-133b is another miRNA that plays a role in PD 
by acting as a negative regulator of dopaminergic 
neuron differentiation. It regulates dopaminergic 
neuron differentiation by targeting Pitx3 a transcription 
factor critically involved during this process (56). 
Another miRNA, miR-153 represses α-synuclein 
(20). In addition to the SCNA gene, the LRRK2 gene 
is also implicated in PD. It has been reported that 
 Mir-205 targets the 3’UTR of LRRK2 which was found 
to be downregulated in PD cases (12). Mir-34b/c 
are thought to modulate DJ-1 and Parkin proteins 
that have been associated with PD. These miRs are 
down regulated at the early stages of the disease in 
brains of PD patients (79). The two lncRNAs namely 
RP11-462G22.1 (lnc-FRG1-3) and RP11-79P5.3 are 
differentially expressed in PD cases were identified 
from studies of whole transcriptome RNAseq analysis 
of leukocytes from PD patients (141). Another lncRNA, 
naPINK1 is transcribed antisense to the PINK1 gene 
and is involved in dopamine release, mitochondrial 
function, and motor function affected in PD (110). 

4.3. Huntington’s Disease

HD is an autosomal dominant 
neurodegenerative disease prevalent in aged 
individuals. It is the most common polyglutamine 
(polyQ) disorder which is caused by an aberrant 
expansion of trinucleotide sequence CAG repeats 
in exon1 of the HTT gene. This misfolded mutant 
protein can affect several cellular processes such as 
endocytosis, vesicle trafficking and synaptic functions. 
It is cleaved and forms intracellular aggregates in 
the cell nucleus, cytoplasm, neurites, and neuron 
terminals which constitutes a major hallmark of the 
disease (150). The most characteristic symptom of the 
disease is chorea, an involuntary jerk or movement of 
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the face and limbs. Other prominent symptoms include 
cognitive deterioration and psychiatric disturbances. 

Altered epigenetic modifications have been 
reported in HD. DNA methylation pattern were found 
to be altered in striatal cells of HD mouse model. The 
promoter regions of Ap-1, Sox2, Pax6 and Nes genes 
were hypermethylated in HD mutant cells resulting 
in reduced expression. These genes are associated 
with neurogenesis and neuronal differentiation 
(88). Adenosine A2A receptor (A2AR) also known as 
ADORA2A, is a G-protein coupled receptor highly 
expressed in striatum. Decreased expression of this 
receptor is also epigenetically regulated in HD patients 
as well as in a mouse model. The increased levels of 
5-mC in the 5’-UTR region of the A2AR gene correlate 
with its reduced expression in the putamen of HD 
patients. The reduced levels of 5-hmC correlates with 
this receptor reduced expression in the striatum of 
HD transgenic mice (129). Another DNA methylation 
modification observed in HD is 7-methylguagnine 
(7-mG), which also plays an important role in 
transcriptional regulation. It has been found that 7-mG 
was significantly altered in human HD brains and also 
in animal models (125). Loss of histone acetylation 
and hypermethylation of histones are associated with 
HD pathogenesis (11, 121). Mutant huntingtin was 
shown to interact with CBP, an important histone acetyl 
transferase (HAT) in mediating neuronal survival 
response and also implicated in neurodegenerative 
diseases (1, 60). It has been reported that disruption 
of CBP function by mutant HTT is indirectly induced 
by histone hypermethylation (64). CBP is thought 
to repress SUV39 and SETDB1 which are histone 
lysine methyl transferases that methylate H3K9. The 
reduction of CBP by mutant HTT can cause increase in 
levels of SETDB1 resulting in increased H3K9me3 in 
striatal neurons of transgenic HD mice and HD patients 
(106). In addition to DNA methylation and chromatin 
modification, the non-coding RNAs are also implicated 
in HD. In general, miRNA expression was found to be 
decreased in HD patients and animal models resulting 
in an upregulation of their target mRNAs (48, 65). 
Mir-9, miR-9*, and miR-124 were shown to be down 
regulated in the cortex of HD patients (47). These 
miRs target REST and CoREST chromatin repressor 
complexes shown to be implicated in HD. There are 
other miRNAs such as miR10b-5p, miR196a-5p, 
 miR-196b-5p, and  miR615-3p, which are upregulated 
in the prefrontal cortices of HD brains correlated to 
aberrant polycomb repressive complex2 (PRC2) 
regulation (38). In addition, it was also reported that 
mutant HTT expression decreased miR-125b and 
 miR-150 expression (30). LncRNAs are also involved 
in HD pathogenesis. A natural antisense lncRNA, 
 HTT-AS, expressed antisense to HTT has been 
identified to regulate the expression of HTT gene. In HD 
brain cortex this lncRNA is reduced in its expression. 
Its overexpression or knock-down shows the inverse 

effect on HTT transcript (14). In addition to HTT-AS, 
there are other lncRNAs such as TUG1, NEAT1, MEG, 
DGCR5 and some novel lncRNAs such as LINC00341, 
RPS20P22, and LINC00342, which are differentially 
expressed in HD brain versus control (36, 46). Another 
study reported that HTT acts as a molecular coordinator 
of PRC2, which associates with many lncRNAs for its 
function suggesting HD pathophysiology is related 
with impaired lncRNA expression, its chromatin, and 
transcriptional regulatory processes. 

5. CONCLUSION

Epigenetic mechanisms regulating gene 
expression plays a critical role in various cellular 
processes. Here we reviewed various epigenetic 
mechanisms and how they regulate gene expression. 
We discussed in detail each epigenetic modification 
involved in the aging process and their role in common 
age-related neurodegenerative diseases. The 
involvement of the epigenetic factors in the brain during 
the aging process and age-related neurodegenerative 
diseases provides new insight in understanding how 
epigenetic based therapy is emerging as an alternative 
approach to treat neuropsychiatric diseases. The 
current knowledge of epigenetic changes that occur 
during aging and age-related disorders is of great 
importance and epigenetic based therapies need to be 
developed in the near future.
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