
1220

Modified low-density lipoproteins as biomarkers in diabetes and metabolic syndrome 

Andrea Rivas-Urbina1,2, Sonia Benitez1, Antonio Perez3,4, Jose Luis Sanchez-Quesada1,4

1Cardiovascular Biochemistry Group, Research Institute of the Hospital de Sant Pau (IIB Sant Pau), 
Barcelona, Spain, 2Biochemistry and Molecular Biology Department, Universitat Autònoma de Barcelona, 
Cerdanyola, Spain, 3Endocrinology and Nutrition Department, Hospital de la Santa Creu I Sant Pau, 
Barcelona, Spain, 4CIBERDEM. Institute of Health Carlos III, Spain 

TABLE OF CONTENTS 

1. Abstract
2. Introduction
3. Non-enzymatic glycosylation
4. Oxidative stress
5. Effects of oxidation and non-enzymatic glycosylation on lipoprotein function
6. Other modifications affecting LDL

6.1. Enzymatic modifications
6.2. Carbamylated LDL
6.3. Nitrated LDL
6.4. Desialylated LDL
6.5. NEFA-loaded LDL

7. Electronegative LDL. A pool of modified forms of LDL in blood
8. Why does diabetic dyslipidemia stimulate lipoprotein modification?
9. sdLDL as a biomarker of CVR
10. Association of modified LDLs with CVR
11. LDL(-) as a biomarker of CVR
12. Modified LDL as a biomarker of CV risk in DM
13. Summary and perspectives
14. Acknowledgements 
15. References

[Frontiers In Bioscience, Landmark, 23, 1220-1240, January 1, 2018]

1. ABSTRACT

Cardiovascular disease of atherosclerotic 
origin is the main cause of death in diabetes mellitus 
and metabolic syndrome. One of the mechanisms 
involved in such increased risk is the high incidence 
of lipoprotein modification in these pathologies. 
Increased glycosylation, oxidative stress or high 
non-esterified fatty acid levels in blood, among other 
factors, promote the modification and subsequent 
alteration of the properties of lipoproteins. Since the 
modification of low-density lipoprotein (LDL) is the 
triggering factor in the development of atherosclerosis, 
considerable research has been focused on the 
quantification of modified LDLs in blood to be used as 
biomarkers of cardiovascular risk. The present review 
deals with the main molecular mechanisms involved 
in the modification of LDL in diabetes and metabolic 
syndrome and briefly describe the atherogenic effects 

that these modified LDLs exert on the arterial wall. The 
possibility of using the high levels of modified LDLs 
or their immunocomplexes as a predictive tool for 
cardiovascular risk in diabetes-related pathologies is 
also discussed. 

2. INTRODUCTION

Metabolic syndrome and type 2 diabetes 
mellitus confer an increased risk of cardiovascular 
disease (CVD). Compared with non-diabetic individuals, 
diabetic patients have 2 to 4 times increased risk for 
stroke and death from heart disease (1). Glucose 
intolerance and type 2 diabetes are core components 
of metabolic syndrome. A major underlying cause of 
CVD in patients with MS or diabetes is the presence 
of a characteristic form of atherogenic dyslipidemia 
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(2), but other characteristics of this disease contribute 
synergistically to the increase of the cardiovascular risk 
(CVR). Among these characteristics, two phenomena, 
non-enzymatic glycosylation and oxidative stress, are 
exacerbated in diabetes and affect the function of a 
number of macromolecules including lipoproteins. 
Both phenomena are closely interconnected and play 
a relevant role in the development of atherosclerosis 
in patients with diabetes (3). Lipoproteins modified by 
non-enzymatic glycosylation and/or oxidation change 
their native properties. Thus, high-density lipoproteins 
(HDL) loss their antiatherogenic potential whereas low-
density lipoproteins (LDL) acquire proinflammatory, 
proapoptotic and proatherogenic characteristics. 
Besides these modifications, lipoproteins can also be 
affected by other chemical processes, described in 
detail below, which lead to the formation of modified 
LDL particles. The involvement of modified LDL in the 
development of the atheromatous plaque suggests that 
its quantification in plasma could reflect the evolution 
of atherosclerotic lesions, representing a valuable tool 
for the prediction and stratification of CVR (4).

3. NON-ENZYMATIC GLYCOSYLATION 

As a result of hyperglycemia, proteins, lipids 
and nucleic acids are glycosylated by non-enzymatic 
processes. Regarding proteins, glucose reacts with the 
amino groups of lysine and arginine residues, forming 
an unstable by-product (Schiff base) and, later, the 
stable Amadori product. Structural proteins with a long 
half-life, such as collagen, are the most affected by non-
enzymatic glycosylation processes but other proteins 
in blood, such as albumin or immunoglobulins, are also 
glycosylated and their quantification (fructosamine, i.e. 
glycosylated proteins in blood) is used as an indicator 
of glycemic control. Of course, the protein moiety of 
all lipoproteins can be also glycosylated during their 
lifetime in circulation and, as a consequence, the 
normal function of lipoproteins is compromised (5). 

Non-enzymatic glycosylation also induces 
the formation of oxygen free radicals, a phenomenon 
known as glycoxidation (6). This process generates a 
rearrangement of molecular bonds and leads to the 
formation of advanced glycation end-products (AGE), 
which irreversibly change the function of proteins. The 
formation of AGE requires longer period of time than 
the formation of Amadori products and it is generally 
assumed that it affects mainly to structural proteins. 
However, AGEs associated to proteins with relatively 
short mean life, such as apolipoprotein B (apoB) in 
LDL, have been detected in blood circulation (7).

The modification by methylglyoxal (MG) 
or other highly reactive aldehydes is another type 
of modification related to hyperglycemia, that does 
not directly involve glucose (8). MG is a glucose 
metabolite of the dicarbonyl type with a high reducing 

power. These metabolites rapidly react with arginine 
residues of proteins forming a heterocyclic compound 
(hydroimidazolone) which is part of the heterogeneous 
family of AGE compounds. Thornalley and coworkers 
have demonstrated the existence of MG-modified 
LDL (MG-LDL) in blood and have observed that their 
concentration is increased in patients with diabetes 
and decreases after treatment with metformin (9, 10). 

4. OXIDATIVE STRESS

Increasing evidence from experimental 
and clinical studies suggests that systemic oxidative 
stress plays a major role in the pathogenesis of 
diabetes mellitus and atherosclerosis (7). Besides 
the glycosylation-associated oxidation (glycoxidation) 
of proteins, described above, another major cause of 
increased oxidative stress in diabetes is that, as a result 
of hyperglycemia, there is an increase in mitochondrial 
activity that favors the production of reactive oxygen 
species (ROS), such as the superoxide anion (O2-)or 
the hydroxyl radical (·OH) (11). Therefore, alterations 
of the oxidative stress-related parameters are frequent 
in the plasma of these individuals. Oxidative stress is 
particularly relevant in the intima layer of the arterial 
wall, a microenvironment surrounded by metabolically 
active cells (smooth muscle cells, macrophages, 
endothelial cells) that generate ROS and that does 
not have the abundant antioxidant defenses present 
in blood. The primary cellular damage resulting 
from this free radical reactivity, which mainly affects 
cellular membranes, is a process known as lipid 
peroxidation. Oxidative modification can damage 
all macromolecules in the subendothelial space, but 
lipoproteins are especially affected by oxidation due to 
their high content of lipids (12). ROS mainly oxidize the 
unsaturated fatty acids of the phospholipids located 
on the surface of the lipoproteins, being LDL highly 
sensitive to this modification. As a result, a number of 
oxidized lipids (lipoperoxides, oxidized phospholipids, 
oxidized fatty acids, oxidized cholesterol) and derived 
products (lysophosphatidylcholine, aldehydes, 
ketones) are formed in lipoproteins, having most of 
them proinflammatory, proliferative and apoptotic 
properties (13). 

5. EFFECTS OF OXIDATION AND NON-ENZY-
MATIC GLYCOSYLATION ON LIPOPROTEIN 
FUNCTION

The knowledge gathered from three decades 
of research has shown that the modification of LDL 
is a key event in the development of atherosclerosis 
(13). By far, oxidative modification is the most studied 
mechanism, but alternative modifications are gaining 
strength as putative mechanisms involved in the 
development of atherosclerosis. Figure 1 shows 
different mechanisms of modification that could 
affect LDL in diabetes and metabolic syndrome. The 
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oxidatively-modified form of low density lipoprotein 
(oxLDL) is a proinflammatory and proatherogenic 
particle containing protein adducts and inflammatory 
lipids that promotes atherosclerosis by different 
mechanisms (14, 15). First, oxidation generates 
lipid-derived molecules, such as malondialdehyde 
(MDA), which promotes the derivatization of lysine 
and arginine residues in apolipoprotein B. This 
provokes the loss of affinity for the LDL receptor, and 
the increased binding to scavenger receptors (SR). 
As a consequence, oxLDL is able to induce massive 
intracellular accumulation of cholesterol esters by 
macrophages (16, 17). In addition, the oxidation-
derived lipid products generated in oxLDL induce 
the different cell types in the arterial wall to express 
cytokines, chemokines and growth factors. In this 
way, oxLDL promotes the chronic inflammatory and 
cell proliferation processes which are characteristic 
of atherosclerosis (18-22). Ox-LDL is also cytotoxic 

and apoptotic, favoring the formation of the necrotic 
nucleus of advanced atheromatous lesions. In fact, 
ox-LDL is a mixture of particles with different degrees 
of oxidation whose atherogenic properties change 
depending on the oxidative stage of LDL (23). Thus, 
minimally oxidized LDL is much more inflammatory 
than extensively oxidized particles but it has less 
capacity to induce foam cell formation.

Regarding glycosylation, it must be 
distinguished between glycosylated LDL (gl-LDL), 
LDL-modified with AGE (AGE-LDL) and LDL modified 
with MG (MG-LDL) (3, 24). The main atherogenic 
property of gl-LDL is a loss of its affinity for the LDL 
receptor (25) but it is not very inflammatory, in contrast 
with AGE-LDL that, since is originated from oxidative 
processes, is inflammatory, apoptotic and induces 
foam cell formation (5, 6). Concerning MG-LDL, it has 
been reported that has smaller particle size, greater 

Figure 1. Different features of diabetes promote LDL modification. High levels of glucose stimulate non-enzymatic glicosylation and oxidation, thereby 
generating different forms of glycated LDL and oxidized LDL. These processes of modification are favored by the presence of atherogenic dyslipemia, 
which promotes the formation of small, dense LDL particles that are prone to oxidation and glycosylation. In addition, atherogenic dyslipemia also 
generates dysfunctional HDL with lower capacity to prevent LDL modification. Another consequence of dyslipemia is the elevation non-esterified fatty 
acids (NEFA) concentration which stimulates the overloading of LDL particles with NEFA. Finally, when kidney disease is present the generation of 
thiocyanate from urea favors the carbamylation of LDL.
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susceptibility to aggregation and greater affinity for 
binding to proteoglycans of the arterial wall (26). Of 
note, the short half-life of circulating LDL (2.5.-3.5. 
days) has been an argument against the formation 
of gl-LDL or AGE-LDL in blood since, in absence of 
reducing agents, 6-7 days are necessary for glucose 
to modify proteins. Therefore, it has been implicitly 
assumed that the formation of these modified particles 
would occur mainly in LDL retained in injured areas 
of the arterial wall for a period longer than its plasma 
lifetime and their presence in the blood would be a 
reflection of the development of arteriosclerotic lesions 
(24). In contrast, the modification by MG does not 
directly involve glucose but this metabolite with a high 
reducing power rapidly reacts with arginine residues. 
Thus, the relevance of MG-LDL, within the AGE-LDL 
family, is that it could be formed during LDL plasma 
lifetime.

6. OTHER MODIFICATIONS AFFECTING LDL

Besides oxidation and glycosylation, other 
modifications of LDL have been described to occur 
in vivo (27). Some of them would occur mainly in 
the intima layer of the arterial wall while others are 
probably more relevant during blood circulation. Table 
1 summarizes the different modifications that could 
affect lipoproteins and the most probable environment 
where this modification occurs. 

6.1. Enzymatic modifications

Regarding modifications occurring in the 
arterial wall, during the development of atherosclerotic 
lesions there is a hyperexpression of proteolytic and 
lipolytic enzymes such as phospholipase A2 (PLA2), 
sphingomyelinase (SMase), cholesterol esterase 
(CEase), metalloproteinases (MMPs) or cathepsins 
(28-32). Therefore, it is presumed that LDL retained 
in the arterial wall is affected not only by oxidative or 
glycosylative processes but also by proteases and 

lipases. As a consequence, lipoproteins isolated from 
the arterial wall show protein fragmentation and a high 
content of enzyme-mediated lipid degradation products 
such as lysophosphatidylcholine, ceramide or free 
cholesterol (33). Nowadays, although it is still accepted 
that lipid peroxidation has a role in atherogenesis, it 
is considered that other enzyme-related mechanisms 
of LDL modification, such as degradation by lipases 
or proteases, could have an even more predominant 
role in the generation of modified LDL in the arterial 
wall (34, 35). The main atherogenic effect of enzymatic 
modifications is that these processes trigger LDL 
aggregation and fusion, favoring its subendothelial 
retention (36). Hence, retained LDL is exposed to 
undergo further modifications by other mechanisms 
such as oxidation or glycosylation. Other effect of 
enzyme-mediated lipolysis is the formation of lipids, 
such as lysophosphatidylcholine or ceramide, which 
would not be formed by oxidation or glycosylation and 
display apoptotic and inflammatory properties.

6.2. Carbamylated LDL

Enzymatic processes preferentially occur in 
the artery wall, but LDL can also be modified by other 
mechanisms in the blood circulation. Recently, the 
presence of carbamylated LDL in plasma has been 
reported (37). The carbamylation of LDL occurs due 
to spontaneous, non-enzymatic chemical modification 
of the amine-containing residues in apoB by urea-
derived cyanate (38). This modification is especially 
relevant to smokers, since tobacco smoke favors 
the formation of thiocyanate, and also in patients 
with chronic uremia due to severe renal insufficiency 
(39). Then, carbamylation of LDL could have a role 
in the development of atherosclerosis in patients with 
diabetes that also present kidney disease. Among the 
atherogenic properties of carbamylated LDL, it has 
been reported that is immunogenic, prothrombotic, 
proliferative and that induces endothelial dysfunction 
(40-42).

Table 1. Modifications affecting LDL and the most probable location of modification

Pathological cause Mechanism Modified LDL Location Increase of electronegativity

Hyperglycemia Non-enzymatic glycosylation Glycosylated LDL 
AGE-LDL
MG-LDL

Arterial wall
Arterial wall
Plasma

+

Oxidative stress Lipid peroxidation
Desialylation
Nitration

Oxidized LDL
Desialylated LDL 
Nitrated LDL

Arterial wall/ Plasma +

Diabetic 
dyslipidemia

Elevated NEFAs NEFA-LDL Plasma +

Nephropathy Elevated urea Carbamylated LDL Plasma +

Arterial lesion Enzymatic (proteases and 
lipases)

Proteolyzed LDL
Lipolyzed LDL

Arterial wall
Arterial wall

-
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6.3. Nitrated LDL

Although less studied than ROS-mediated 
modification, LDL can also be modified by reactive 
nitrogen species (RNS), a process known as nitration. 
This phenomenon is closely related to oxidative 
modification because the main reactive molecule is 
peroxynitrite (ONOO-), which derives from nitric oxide 
(·NO) and superoxide anion O2

-. Besides promoting 
lipoperoxidation, nitration of apoB in LDL results in the 
derivatization of tyrosine and oxidation of cysteine, 
which alters apoB structure (43). As occurs with 
carbamylation, nitration of LDL is a process that occurs 
in plasma (44) and is potentiated in smokers and in 
patients with severe kidney disease (45, 46). 

6.4. Desialylated LDL 

Other form of modified LDL detected in plasma 
is desialylated LDL, which has a reduced content in 
sialic acid, the final carbohydrate in the apoB-enzymatic 
glycosylation chains. Desialylated LDL is increased in 
patients with diabetes and it has the capacity to induce 
the formation of foam cells being, therefore, potentially 
atherogenic (47). The desialylation process has been 
attributed to oxidative processes since these favor the 
non-enzymatic hydrolysis of sialic acid bound to apoB 
(48). Desialylated LDL shares some properties with 
oxidized LDL; thus, it could be a reflection of oxidative 
stress (49). 

6.5. NEFA-loaded LDL

Although it cannot be strictly considered 
a chemical modification, overloading of LDL with 
non-esterified fatty acids (NEFA) confer some 
atherogenic properties to LDL (50, 51). NEFA are 
usually transported in circulation by albumin, however, 
when NEFA concentration rises and the capacity 
of albumin to bind NEFA is exceeded, these lipids 
bind to other macromolecules, mainly lipoproteins. 
This phenomenon could have especial relevance 
in situations of insulin resistance such as metabolic 
syndrome or diabetes and it has been reported that LDL 
from diabetic patients has a high NEFA content (52). 
LDL with an increased NEFA content is inflammatory 
and its structure is altered favoring its aggregation (53-
56). This could explain the observations that diabetic 
LDL is more inflammatory than LDL from subjects 
without diabetes, despite not having increased rates of 
lipoperoxidation (57).

7. ELECTRONEGATIVE LDL: A POOL OF 
MODIFIED FORMS OF LDL IN BLOOD

A common property of the different forms of 
modified LDL is an increase of the electric charge of 
these particles (58, 59). According to this property, 
total LDL can be subfractionated  by anion exchange 
chromatography into two populations, a major 

subfraction of non-modified native LDL and a minor 
subfraction of electronegative LDL (LDL(-)). This 
minor subfraction accounts for 2-10% of total LDL  in 
normolipidemic subjects. LDL(-) is heterogeneous in 
terms of size, density, lipid and protein content (60-
62). The most widely accepted idea is that LDL(-) is a 
pool of LDL particles modified by several mechanisms. 
However, only a small part of LDL(-) would consist 
of oxidized, glycosylated, nitrated, desialylated or 
carbamylated LDL because LDL(-) proportion is much 
higher than that described for these modified LDLs 
(0.1.-1%) (63). 

Besides the chemical modifications previously 
described, other alterations in the composition of LDL 
also contribute to the presence of LDL(-). It has been 
reported that NEFA content is a major contributor to 
the electronegativity of LDL particles (56). In addition, 
both small dense and very large LDL particles also 
present an increased electronegative charge (64). The 
same occurs with LDL particles that contains other 
apolipoproteins different than apoB (65). Indeed, LDL(-) 
is characterized by abnormal size (small or large) and 
increased content of NEFA and minor apolipoproteins 
that include, among others, apoA-I, apoE, apoC-III, 
apoD, apoJ or apoF (56, 60, 65, 66). Therefore, an 
increased proportion of LDL(-) in blood would reflect a 
range of metabolic abnormalities, which are associated 
with  high CVR and systemic inflammation. Accordingly, 
the proportion of LDL(-) is increased in a number of 
metabolic diseases with increased CVR, such as 
familial hypercholesterolemia, hypertriglyceridemia, 
diabetes, metabolic syndrome, severe renal disease, 
non-alcoholic fatty liver disease and also in patients 
with angiographically-established coronary disease 
(58, 67, 68). Moreover, LDL(-) proportion dramatically 
increases during the early phase of acute myocardial 
infarction and after cerebral ischemia (69, 70).

Since LDL(-) is a mixture of modified LDL 
particles and has an abnormal composition, it shows 
inflammatory, apoptotic and proliferative properties 
(58, 68, 71, 72). These atherogenic characteristics 
displayed by LDL(-) isolated from normolipemic and 
normoglycemic subjects are exacerbated in LDL(-) 
isolated from diabetic subjects, especially when these 
subjects are in poor glycemic control(73). Then, LDL(-) 
from diabetics would be more atherogenic than LDL(-
) from normoglycemic subjects. This could be due to 
the confluence in poorly-controlled diabetic patients 
LDL of multiple factors including, increased oxidation/
nitration, increased glycosylation, increased NEFA 
content, smaller size and, if kidney disease is also 
present, increased carbamylation.

8. WHY DOES DIABETIC DYSLIPIDEMIA 
STIMULATE LIPOPROTEIN MODIFICATION?

A common metabolic abnormality associated 
with diabetes is a specific dyslipidemia that includes 
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a spectrum of quantitative and qualitative changes in 
lipids and lipoproteins (74). This anomalous lipid profile, 
known as diabetic or atherogenic dyslipidemia, is 
characterized by high levels of triglycerides and apoB, 
low concentration of high density lipoprotein (HDL) 
cholesterol, and increased postprandial lipidemia. 
This abnormal lipid profile is typical of diabetes but it is 
also present in pre-diabetic situations such as insulin 
resistance and metabolic syndrome (1, 75, 76). 

The origin of diabetic dyslipemia comes 
from an increased hepatic production of very low 
density lipoprotein (VLDL) due to the high plasma 
concentration of NEFA. In this situation, VLDL particles 
are very large due to a very high content of triglycerides 
(77, 78). Hypertriglyceridemia alters some enzymatic 
activities related to VLDL catabolism, specifically the 
enzymes cholesteryl ester transfer protein (CETP) and 
hepatic lipase (HL). Hypertriglyceridemia stimulates 
the enzymatic activity of CETP, which facilitates 
the transfer of triglycerides from triglyceride-rich 
lipoproteins (i.e. VLDL) to HDL and LDL in exchange 
for cholesteryl esters (79). This leads to an increase 
in the triglyceride content of HDL and LDL (80). 
Triglyceride-enriched HDL particles are subjected 
to increased catabolism; consequently, they have a 
short plasma half-life. In addition, triglyceride-enriched 
LDL particles undergo subsequent hydrolysis via HL, 
thereby reducing the LDL particle size (81).

In contrast to HDL, which has atheroprotective 
properties, LDL and VLDL are considered atherogenic, 
being apoB their main protein component. Despite 
that 80-90% of apoB is associated with LDL and 
that apoB concentration is high in diabetes, the LDL 
cholesterol levels are usually normal in these patients 
(82). This peculiarity is explained by the prevalence 
of LDL particles of small size (small, dense LDL, 
sdLDL). sdLDL have lower relative cholesterol content 
and higher relative apoB and triglyceride content 
than normal LDL particles (81). Thus, an increase in 
triglyceride-rich lipoproteins is commonly associated 
with a reduction in HDL concentration and an increase 
in sdLDL levels. This means that at a given LDL 
cholesterol concentration, diabetic patients have a 
greater number of LDL particles (83, 84).

sdLDL particles are more atherogenic than 
large buoyant LDL due to several characteristics that 
facilitate their modification (81, 84, 85). First, sdLDL 
has a lower affinity for the LDL receptor, which implies 
a lower rate of plasma clearance and longer time in 
the circulation; this would expedite LDL modification by 
different mechanisms such as oxidation, glycosylation, 
desialylation or carbamylation. Second, sdLDL crosses 
the endothelial barrier easier than native LDL since 
this is a process mainly dependent on the size of the 
lipoprotein particle. In addition, sdLDL also binds with 
greater affinity to the proteoglycans that constitute the 

intima layer of the arterial wall, favoring subendothelial 
retention of lipoproteins. Third, sdLDL has a greater 
susceptibility to be modified by oxidative mechanisms 
and also by non-enzymatic glycosylation(86). 

To these intrinsic pro-atherogenic properties 
of sdLDL, it must be added the qualitative alterations in 
HDL function in a diabetic dyslipidemia situation. The 
antiatherogenic role of HDL goes beyond that its classic 
role in the reverse transport of cholesterol. HDL has 
a determinant action in the protection of LDL against 
modifications, some enzymes and apolipoproteins 
associated to HDL, such as apoA-I, apoJ, paraoxonase, 
platelet-activating factor acetylhydrolase (PAF-AH) 
or lecithin-cholesterol acyl transferase (LCAT) act 
synergistically preventing the oxidation of LDL (87, 
88). However, the glycosylation and oxidation of these 
proteins also affect their functionality, compromising 
the antioxidant and anti-inflammatory capacity of 
HDL. Therefore, the concentration of HDL is not only 
diminished in patients with diabetes, but it is also 
dysfunctional. In this way, the impairment of the HDL 
anti-atherogenic properties in diabetes favors the 
formation of modified LDL.

9. sdLDL AS A BIOMARKER OF CVR

It is well documented that small dense LDL 
(sdLDL) levels are elevated in conditions linked to 
atherosclerosis, such as metabolic syndrome, disease 
in which sdLDL has been reported to be an independent 
predictive factor for cardiovascular events (89, 90). 
Other studies concur with the concept that sdLDL 
cholesterol (sdLDL-C) is a better marker for predicting 
CVR than total LDL cholesterol (91, 92). However, 
not all the studies agree; these discrepancies could 
depend on the methods used to measure sdLDL. The 
recent use of homogeneous assays has allowed to 
evaluate sdLDL in large clinical trials (90). In a large 
prospective study using these assays it was found that 
sdLDL-C is associated with coronary heart disease 
even in patients with low CVR based on their LDLc 
levels (93). The value of sdLDL-C as an independent 
CVR factor has also been suggested by comparing with 
intima media thickness measurement (94). sdLDL has 
been associated with poor outcome after angioplasty 
in peripheral artery disease (95). Several atherogenic 
properties have been ascribed to sdLDL, which can 
be further modified in plasma by several mechanisms, 
such as desialylation, glycation, and oxidation (90), 
as described above. These modifications would 
confer more atherogenic properties to this LDL and, 
consequently, a closer relation with CV events.

10. ASSOCIATION OF MODIFIED LDLS WITH 
CVR 

Owing to its known role in atherosclerosis, 
different forms of modified LDLs have been proposed as 
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biomarkers for CVR and for detecting the vulnerability 
of atherosclerotic plaques. Most studies using modified 
LDLs as biomarkers have been conducted with oxLDL 
(96-99). Holvoet et al. developed the first immunoassay 
to detect the presence of oxLDL in plasma, which 
was reported to be increased in atherosclerotic 
patients (100). Since then, a multitude of studies 
have associated oxLDL concentration with different 
expressions of vascular disease, and its concentration 
is increased in pathologies with increased CVR. Thus, 
oxLDL is increased in patients with atherosclerosis 
and correlates with the severity of coronary disease 
(4, 101-105). Moreover, oxLDL increases after acute 
myocardial infarction and is associated with plaque 
instability (90). oxLDL also acutely increases after 
percutaneous coronary intervention (93, 106, 107). It 
has been recently reported that oxLDL also increases 
in ischemic stroke (108). In stroke, particularly in large 
artery atherosclerosis subtype, an increased oxLDL 
concentration in acute phase was associated with 
higher mortality or worse outcome. These observations 
suggest that oxLDL in blood comes from the arterial 
wall and could be a biomarker of atherosclerotic 
plaque vulnerability.

Regarding its predictive value as a CVR 
marker, numerous studies have described increased 
concentrations of oxLDL in diseases with high vascular 
risk, such as hypercholesterolemia, hypertension, 
chronic heart failure, peripheral arterial disease, 
diabetes, metabolic syndrome, obesity and renal 
disease (4, 109-117). In spite of this, some studies cast 
doubts on the usefulness of oxLDL as an independent 
predictive biomarker of future cardiovascular events 
(118, 119). The main concern comes from the fact 
that oxLDL values strongly correlate with other known 
lipid risk factors, including total and LDL cholesterol 
(120). Thus, even though the involvement of oxLDL in 
atherosclerosis has been clearly established, its value 
as an independent biomarker of CVR is moderate. 
This is due to different factors. On the one hand, some 
conflicting results have been reported; for instance, not 
all studies have found the association of oxLDL levels 
with the burden of atherosclerotic lesions (121, 122). 
Choi et al also reported that statin therapy increased 
the titers of oxLDL measured by two independent 
ELISAs but found no quantitative changes in coronary 
angiography (123). Several factors could underlie 
these conflicting results. First, there is no international 
standardization in oxLDL determination, due to the 
use of different antibodies that recognize epitopes of 
different stages of LDL oxidation (120). Second, at 
least three commercial ELISAs have been widely used, 
but each antibody recognizes different epitopes that 
could reflect different processes, thereby preventing 
an adequate comparison of the results obtained by 
different groups. On the other hand, oxLDL represents 
only a part of the modified LDL particles that can be 
found in circulation. In specific pathologies other forms 

of modified LDL could be more relevant than oxLDL. 
For instance, carbamylated LDL possibly plays an 
important role in patients with severe renal disease. 
Unfortunately, there are no established guidelines for 
modified LDL evaluation that allow its application to 
the clinical practice and its usefulness as a predictive 
biomarker. Regarding diabetes, the usefulness of 
AGE-LDL as biomarker is discussed in detail below.

11. LDL(-) AS A BIOMARKER OF CVR 

An alternative to oxLDL as a biomarker 
could be LDL(-). Modified lipoproteins such as oxLDL 
and AGE-LDL are considered biomarkers for active 
atherosclerotic lesions, as they are supposed to 
be generated in the arterial wall. But, as discussed 
above, LDL(-) represents not only a pool of modified 
LDLs but also reflects the existence of metabolic 
abnormalities leading to alterations in the composition 
of the lipoprotein. Therefore, the quantification of LDL(-) 
would be especially useful in asymptomatic patients 
(58, 63). LDL(-) proportion is high in several groups 
of subjects with enhanced CVR, such as familial 
hypercholesterolemia, hypertriglyceridemia, diabetes, 
renal disease, and non-alcoholic fatty liver disease (68, 
90). Furthermore, LDL(-) proportion highly increases 
after stroke (70) and myocardial infarction (69), being its 
concentration higher in acute than in chronic coronary 
disease (124). Moreover, LDL(-) levels are associated 
with the severity of coronary disease angiographically-
determined (125) and with the carotid intima-media 
thickness (126). 

Specifically in diabetes, several studies 
have confirmed by different methods an increased 
proportion of LDL(-) compared to healthy subjects (57, 
72, 127-131). Interestingly,  the elevated proportion 
of LDL(-) decreases after insulin therapy in type 1 
but not in type 2 diabetes, which suggests that non-
enzymatic glycosylation has a more relevant role in 
LDL(-) generation in type 1 than in type 2 diabetics. 
In the same context, it was observed that the oral 
antihyperglycemic agent pioglitazone decreases the 
negative charge of LDL (130). Also in prediabetic 
insulin-resistant subjects the proportion of LDL(-) is 
increased (132). The clinical importance of LDL(-) in 
the metabolic syndrome has been studied by Chen 
and co-workers. These authors found a correlation 
between L5, the most electronegative form of LDL, 
plasma levels and the number of metabolic syndrome 
criteria (according to the Framingham score) in 
asymptomatic patients (133). 

Unfortunately, there are no standardized 
methods for LDL(-) quantification in large-population 
studies. The usual methods are size exclusion 
chromatography combined with ultracentrifugation or 
capillary electrophoresis. But these methodologies 
are not applicable to a large number of subjects 
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and are not accessible to most of clinical chemistry 
laboratories. Abdalla and coworkers have developed 
monoclonal antibodies to perform immunoassays 
for LDL(-) measurement in population studies (134, 
135). However, these methods are not commercially 
available and it is unknown if all modifications affecting 
LDL(-) could be detected. 

Measuring the presence of auto-antibodies 
to LDL(-) could be an alternative approach for LDL(-) 
quantification. Similarly to oxLDL or AGE-LDL, LDL(-
) shows immunogenic properties, and it has been 
proposed that LDL(-) is internalized by macrophages 
in the subendothelial space, thereby promoting anti-
LDL(-) production by B cells. Auto-antibodies for LDL(-
) and immunocomplexes (IC), consisting of LDL(-) 
and anti-LDL(-) antibodies, could be released to the 
lumen space. The presence of these auto-antibodies 
and IC has been detected in plasma. Moreover, the 
proportion of auto-antibodies for LDL(-) is increased 
in coronary disease, particularly in the acute phase 
of unstable angina (124, 134, 135). However, the 
role of these auto-antibodies is controversial since it 
has been described that administration of anti-LDL(-) 
protects from atherosclerosis development in mice 
(136). Further studies are necessary to elucidate the 
possible role of auto-antibodies anti LDL(-) in the 
evolution of atherosclerotic plaques and during acute 
vascular events. 

12. MODIFIED LDL AS A BIOMARKER OF CV 
RISK IN DM AND METABOLIC SYNDROME

As discussed throughout this review, 
lipoproteins from diabetic patients are subjected to 

a number of modifications. Accordingly, diabetics 
have increased concentrations in blood of several 
modified LDLs, including oxLDL, glycLDL, AGE-LDL, 
MG-LDL and LDL(-). Table 2 summarizes the main 
studies on the relation of modified LDL and CVR in 
subjects with diabetes, metabolic syndrome or related 
diseases. Diabetic patients with phenotype B of LDL 
subfraction (predominance of sdLDL) have even 
higher plasma levels of oxLDL and glycLDL than those 
with phenotype A (predominance of large LDL) (137, 
138). It has also been described that patients with 
poor glycemic control have increased concentration 
of different types of modified LDL (130, 139), and 
that glycemic optimization decreases these levels 
(131). Hypolipemic treatment also decreases the 
concentration of modified LDL (70); this suggests that 
the determination of these modified forms of LDL as 
independent CVR biomarkers is rather controversial, 
particularly in type 2 diabetic patients, who usually have 
an altered lipid profile. Thus, some studies suggested 
that in the context of diabetes, oxLDL is a factor that 
predicts CV events, whereas others did not find this 
association when corrected by lipid profile (101, 140). 
However, an independent association of oxLDL with 
atherosclerosis progression is found in some studies 
in which intima-media thickness (IMT) or nephropaty 
are evaluated (141, 142).

In diabetic patients, besides the presence 
of modified LDL, autoantibodies anti-modified 
LDL (anti-oxLDL, anti-AGE-LDL, anti-MDA-LDL) 
forming immuno-complexes (IC) with modified LDLs 
are detected in blood. Recently, anti-ribosylated-
glycated-LDL has also been found in type 1 and type 
2 diabetic patients (143). Although data from the 

Table 2. Main clinical studies investigating OxLDL, LDL(-), AGE-LDL and their immunocomplexes in 
Diabetes, Metabolic Syndrome, Obesity and related diseases 

References

Oxidized LDL and its immunocomplexes

Increased levels found in diabetic subjects with small dense LDL
Increased levels found in diabetic subjects with poor glycemic control
Elevated concentration is a predisposing factor in diabetes for atherosclerosis 
Elevated concentration is a predisposing factor in diabetes for nephropathy
Increased levels found in subjects with MS in comparison to those without MS
Associated with obesity
High levels were associated with a cardiometabolic risk score in obese children

130,131
123,132,124
133,134,135,156,157,158
135,149,159
112,114,115
90,91,92,93,107
108,109,110

LDL(-)

Increased  proportion in patients with type 2 diabetes in comparison to non-diabetics
Increased proportion or mobility in type 1 diabetic compared to non-diabetics  
LDL (-) levels are significantly higher in MS subjects than in control subjects
Insulin resistance is associated with high levels of LDL(-)

53,68,121,123,130,131
120,122,123,124
126
125

AGE-LDL and its immunocomplexes

High levels in patients with type 1 diabetes 
High levels in patients with type 2 diabetes
Increased levels are associated with retinopathy in patients with type 1 diabetes 
Elevated concentration is a predisposing factor in diabetes for nephropathy and macroalbuminuria

156,157,159
158,161,162
160
148,159,163
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studies of ICs are sometimes difficult to interpret, it 
is generally accepted that IgM antibodies would have 
a protective effect, whereas IgG antibodies would be 
directly related with atherosclerosis (144). Thus, IgM 
anti-AGE-LDL concentration has been reported to 
protect from CVR both in diabetic and non-diabetic 
subjects (145, 146). In contrast, some studies show 
a positive relationship of IgG autoantibodies titers 
with the development of atherosclerosis (124, 147, 
148). Other authors, however, disagree with this 
direct relation; thus, Asciutto and coworkers reported 
that low levels of IgG anti-MDA-LDL correlates 
with high risk of postoperative death after carotid 
endarterectomy (149), whereas high levels of these 
antibodies are associated with decreased plaque 
inflammation (150). Moreover, studies performed 
in diabetic mice shows that treatments with anti-
oxLDL IgG (151) or AGE-LDL immunization (152) 
protect against atherosclerosis, thereby suggesting 
a protective role for IgG autoantibodies. Regarding 
LDL(-) autoantibodies and diabetes, there is a higher 
concentration of auto-antibodies anti-LDL(-) in type 1 
and type 2 diabetic patients, as well as in those with 
impaired glucose tolerance, than in control subjects 
(153).

The above described discrepancies could 
come from the difficulty of measuring modified LDL 
and autoantibodies, which could be due to the fact 
that both molecules are strongly associated in IC 
(154). The evaluation of IC is technically difficult, 
since it requires a previous precipitation of IC before 
the quantification of modified LDL or autoantibodies 
by immunoassay. IC-oxLDL and IC-AGE-LDL have 
been detected mainly in type 1 diabetes (155). In 
this regard, are noteworthy the studies of Virella 
and Lopes-Virella et al. describing that in these 
subjects the major part of oxLDL and AGE-LDL is 
associated to antibodies as IC (156). IC-LDLs have 
a higher atherogenic effect than modified LDL alone 
and seem to be a solid predictor of CVR (157-160). 
Sobenin et al. reported that, even in the absence of 
clinical manifestations, elevated levels of IC-LDL are 
increased in early carotid atherosclerosis, measured 
as IMT (161). Orekhov et al. suggested that IC-LDL can 
be considered biomarkers for macrovascular disease 
in type 1 diabetes (162). Several studies performed in 
large populations of type 1 diabetic subjects (DCCT/
EDIC cohort) have shown that IC-oxLDL and IC-AGE-
LDL concentrations are associated, independently 
of other risk factors, with IMT and atherosclerosis 
progression (163, 164), coronary calcification 
(165), risk of nephropathy (166) and progression of 
retinopathy (167). Similar studies conducted in type 2 
diabetic patients (VADT cohort) have shown that high 
levels of IC-MDA-LDL are associated with myocardial 
infarction and acute CV events (168), retinopathy 
(169), and macroalbuminuria (170). 

13. SUMMARY AND PERSPECTIVES 

Diabetic patients have increased plasma 
concentrations of LDLs modified by different 
mechanisms. In general, this concentration correlates 
with other lipid risk factors attributed to diabetic 
dyslipemia, which somehow prevents its use as 
an independent biomarker of cardiovascular risk. 
However, some studies show that modified LDL and, 
more specifically immunocomplexes of modified 
LDLs, could be independent risk factors, being its 
plasma concentration associated with atherosclerosis 
progression in type 1 and type 2 diabetic patients. 
Therefore, the detection of modified LDL and 
immunocomplexes could help to better predict 
cardiovascular risk in diabetes and probably in other 
pathologies related to cardiovascular disease. It would 
be very useful to develop a specific profile of modified 
LDL that, combined to genetics of patients with 
diabetes or metabolic disease, could predict the risk 
of cardiovascular disease and to personalize therapy. 
However, more mechanistic studies are warranted 
to gain insight into the molecular processes leading 
to LDL modification and their consequences for 
atherosclerosis development in patients with diabetes.
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