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1. ABSTRACT

While platelets have long been known 
to be essential for maintaining hemostasis in the 
vasculature, their role in tissue repair, inflammation 
and innate and adaptive immunity is a more recent 
science. The ability of platelets to attach to the vessel 
wall, form aggregates and promote fibrin formation, 
key elements of blood clotting, has been said to both 
favor and dampen inflammation, to fight infection and 
to assure an adequate immune response. To fulfill 
their different roles platelets often synchronize with 
leukocytes and cells of the immune system. But just 
as the molecular pathways of platelets in preventing 
blood loss can lead to arterial thrombosis and stroke 
if occurring in an uncontrolled manner, the failure to 
control inflammation can lead to sepsis and inadequate 
platelet function and can aggravate many major 

illnesses. This review is aimed to present a global 
picture of multifaceted platelet biology and platelet 
involvement in selected non-hemostatic events.

2. INTRODUCTION

Platelets are liberated in vast numbers from 
megakaryocytes (MKs), large multinucleate cells 
formed from hematopoietic stems cells (HSC) in a 
multistep process regulated by thrombopoietin (TPO) 
in the bone marrow (Figure 1) (1). Transcription 
factors control the many steps of MK maturation. 
After initial mononuclear cell proliferation, MKs 
undergo polyploidy: when mature, they migrate to the 
endothelial barrier of vascular sinuses and extend 
long processes termed proplatelets into the blood 
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stream (2). Platelets then either bud off directly or 
large fragments disperse and divide in the circulation, 
a process accentuated in the lungs. Some MKs will 
also migrate directly into the vascular sinus and pass 
into the microcirculation of the lungs and fragment 
there (3). Other events in platelet biogenesis include 
division of dumb-bell shaped preplatelets and even 
multiplication of platelets themselves (4). Anucleate 
discoid platelets circulate in large numbers; the normal 
range is 150,000–400,000/µL of blood. Their primary 
role has long been established and is to assure 
hemostasis by preventing blood loss. For this, platelets 
possess a unique range of receptors, including for 
adhesion glycoprotein (GP) Iba (GPIbα) that as part 
of the GPIb-IX-V complex recognizes surface-bound 
von Willebrand factor (VWF), integrins α2β1, α5β1 and 
α6β1 that respectively interact with collagen, fibronectin 
(Fn) and laminin, while GPVI has unique properties in 
organizing the platelet response mainly to collagen and 
fibrin (Figure 2). Receptors for soluble agonists include 
P2Y1 and P2Y12 that bind adenosine diphosphate 
(ADP) while proteinase-activated receptor-1 (PAR-1) 
and PAR-4 coordinate the response to thrombin; other 
important receptors are those for thromboxane A2 
(TXA2) and adrenaline all of which lock into a complex 
intracellular signaling network that controls the platelet 
functional response (5–7). On platelet activation, the 
high-density integrin aIIbβ3 changes from a bent to 
an extended conformation and binds fibrinogen (Fg) 
or other adhesive proteins to bring about platelet 
aggregation (8–9). The newly formed bridges hold 
platelets together and allow secondary interactions 

between other membrane GP pairs (eg. Ephrins and 
Eph kinases, semaphorins) that consolidate platelet-
to-platelet cohesion and regulate thrombus stability 
and permeability within the aggregate (10–11). The 
αIIbβ3 integrin also binds fibrin; in fact, there is a 
greater binding strength with fibrin that will help the 
platelets to retract the fibrin clot (12).

Endothelial cells (EC) form a protective 
barrier and help maintain circulating platelets in a 
resting state by secreting prostacyclin (PGI2) and nitric 
oxide (NO) that dampen their reactivity, but platelets 
come into play after EC loss or structural modification 
(such as during atherosclerosis or inflammation) 
(13). Due to their small size platelets tend to circulate 
close to the vessel wall at the edge of the blood 
stream helping them to support hemostasis; in fact, 
elevated flow itself can be activating (14). Attached 
platelets spread on the extracellular matrix, particularly 
collagen, secrete metabolites and release the contents 
of storage organelles (dense granules, a-granules); 
processes that promote thrombus formation and 
the ensuing tissue repair. Other membrane proteins 
such as platelet-endothelial cell adhesion molecule-1 
(PECAM-1) negatively regulate platelet function and 
intervene in inflammation (15).

Transport of the anionic phospholipid, 
phosphatidylserine (PS) from the inner to the outer 
leaflet of the phospholipid bilayer makes the platelet 
membrane procoagulant. This Ca2+-dependent 
process is optimal when thrombin and collagen act in 

Figure 1. Cartoon featuring key steps in megakaryopoiesis and platelet production. Human stem cells (HSC) proliferate largely in the oteoblastic niche 
of the bone marrow under the influence of thrombopoietin (TPO) reacting with its receptor (c-Mpl). Under the influence of soluble factors including 
interleukins (IL) and stem cell factor (SCF), HSCs give rise to megakaryocyte-erythroid progenitors (MEP) and clonal megakaryocyte precursors (MKP) 
that multiply and form colonies. MKs have the specific characteristic of undergoing endomitosis multiplying their chromosome number many fold. The 
now large polyploidal cells then undergo an extraordinary maturation under the control of many transcription factors with the production of an extensive 
intracellular membrane system and multiple granule types. Having migrated to the endothelial cell barrier lining the vascular sinus, mature MKs interact 
with stromal cells and protrude large processes termed proplatelets into the vascular sinus under the regulation of many intracellular (e.g. Rho-ROCK and 
myosin light chain kinase (MLCK) phosphorylations controlling myosin-IIA activity) and extracellular signalling pathways (e.g. SDF-1, S1P). Proplatelets 
bud of platelets into the circulation or break into large fragments under shear. In an alternative pathway, the MKs themselves pass into the circulation and 
fragment under shear in the microvasculature of the lungs.
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synergy; apoptosis and necrosis also mediators with 
loss of mitochondrial membrane potential a major factor 
in promoting PS expression (16). Platelets in the central 
core of the aggregate (or thrombus) are more tightly 
packed and undergo more extensive secretion than 
those in the outer shell; this consolidation regulates 
intra-thrombus solute transport and local thrombin 
activity (10–11). The latter catalyzes the transformation 
of Fg to the glue-like fibrin within the thrombus core 
where it promotes thrombus stability (17). It is also in the 
center of thrombi that activated platelets mostly secrete 
their newly formed metabolites and release storage 
pools of biologically active substances and proteins, 
with retraction playing a role in their extravasation. 
Activated platelets with formation of aggregates 
after atherosclerotic plaque rupture or uncontrolled 
embolization of platelet masses that severely perturb 
or occlude the circulation are at the origin of arterial 
thrombosis and stroke (18). Fibrin is essential for blood 
clotting and wound repair, its strands entrapping other 
blood cells with platelet aggregates acting as hubs 
within the fibrin network and ultimately mediating clot 
retraction (19). Paradoxically, adsorption of a layer of 
Fg onto fibrin on the surface of clots formed on collagen 
under flow confers anti-adhesive properties and limits 
thrombus growth (20). This Fg layer is extensible and 
incapable of transducing strong mechanical forces with 
the result that incoming platelets rapidly detach.

Platelets circulate for 7 to 10 days and are 
either used up in hemostasis or undergo programmed 
cell death through apoptosis with the balance between 
Bcl-xL and Bak constituting a molecular clock (21). In an 
alternate mechanism, platelets undergo glycosylation 
changes with aging and are removed from the circulation 

in the liver by way of the Ashwell-Morel receptor, a 
process that stimulates production of TPO in a feedback 
mechanism that masterminds platelet production (22). 
Inherited platelet abnormalities or acquired defects 
(including certain drugs, chemotherapy, viral or bacterial 
infections, autoimmune-mediated destruction) can 
result in a dramatic fall in platelet numbers (i.e. below 
30,000/µL) and/or a loss of platelet function both of 
which will favor bleeding (23–25). In addition to their 
essential hemostatic role, evidence is accumulating 
that platelets also play fundamental roles in a wide 
spectrum of biological processes. They perform a 
housekeeping role by assuring vascular integrity, not 
only by physically blocking gaps in the endothelial cell 
layer but also by secreting proteins and substances that 
promote barrier function (26–27). Platelets intervene in 
tissue regeneration and angiogenesis, metastasis and 
tumor growth, inflammation, control of infection and 
innate immunity as well as controlling lymphatic vessel 
development (28–35). As well as receptors essential for 
the cell contact interactions bringing about thrombus 
formation, platelets also possess receptors unique for 
non-hemostatic events such as the toll-like receptors 
(TLR) that engage bacteria or C-type lectin-like 
receptor (CLEC)-2 that plays a major role in lymphatic 
vessel development (35–36). This selective review will 
now largely concentrate on describing the pleiotropic 
functions of platelets in non-hemostatic events.

3. PLATELETS AS A SOURCE OF  
BIOLOGICALLY ACTIVE PROTEINS  
AND METABOLITES

Certain features of a typical discoid anuclear 
platelet stand out (Figure 2). These include a delimiting 

Figure 2. Cartoon showing the principal functional components of the platelet surface. Also identified are the major platelet intracellular organelles. Mt, 
microtubular band; α-G, α-granule; Db, dense body; Mi, mitochondrion; Ocs, open-surface canalicular system: Gly, glycogen
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plasma membrane linked to an extensive intracellular 
open canalicular membrane system (OCS). Below 
the surface membrane is a microtubular network 
that interacts with an actin-rich cytoskeleton, while 
the cytoplasm contains mitochondria and a series 
of organelles that contain storage pools of bioactive 
molecules (19). Lipid metabolites such as TXA2, 
whose formation is inhibited by aspirin (37), act in 
feedback mechanisms promoting the binding of 
adhesive proteins to the αIIbβ3 integrin and platelet 
aggregation. Sphingosine 1-phosphate (S1P) (see 
Figure 1 for MK maturation) stimulates mitogenesis 
and cell proliferation and is released from platelets 
during clotting; S1P is important in inflammation it 
favors Fn fibril assembly, endothelial barrier integrity 
and tissue factor (TF) expression in the vasculature 
(38). Lysophosphatidic acid and platelet activating 
factor (PAF) are other metabolites released. Another 
early response of the platelet, and a major subject 
of this review, is the release of the storage pools of 
biologically active agents from granules (Figure 3).

3.1. Dense granules

These small lysosome-related organelles 
(3 to 8 per platelet) contain serotonin (actively 
taken up by circulating platelets), ADP, ATP, GDP, 
GTP, polyphosphates, Ca2+ (itself a potential 
central regulator of wound healing) as well as small 
amounts of other amines such as histamine and 

dopamine. The dense granule membrane features 
transporters associated with the uptake and storage 
of their contents such as TPC2 (two-pore channel 2; 
Ca2+), VMAT2 (vesicular monoamine transporter 
2; serotonin) as well as membrane glycoproteins 
such as P-selectin, LAMP-2 (lysosomal associated 
membrane protein-2) and LAMP-3 shared with other 
organelles (19, 39). Dense granule release from 
platelets requires a complex secretory mechanism 
involving SNARE (soluble N-ethylmaleimide sensitive 
factor attachment protein receptor) proteins and 
many others involved in vesicular trafficking and 
late membrane fusion events required for exocytosis 
(40). ADP has a universal role in assuring stable 
platelet aggregation. In contrast, highly charged 
polyphosphates promote coagulation through 
initiation of the intrinsic pathway of coagulation and 
enhance fibrin clot structure; they provide an early 
link between platelets, coagulation and inflammation 
(41). Released serotonin stimulates vasoconstriction 
while increasing vascular permeability. Although the 
subject of debate, release from dense granules is 
thought to occur faster than from a-granules.

3.2. Alpha-granules

These storage organelles for proteins are 
abundant with 50–80 α-granules per platelet. They 
are formed from intermediate multivesicular bodies 
(MVB) originating from the trans-Golgi network in 

Figure 3. Schema showing thrombus formation under flow following a small vascular lesion and the autocrine release of metabolites and dense body 
contents from platelets. Highlighted are some of the principal non-hemostatic roles of platelets and the different categories of α-granule proteins given in 
detail in Table 1. Note the release of negative regulators (PGI2, NO) of platelets from endothelial cells.



Platelets, inflammation and repair

730 © 1996-2018

maturing MKs (40, 42). Some MVB and α-granules 
may contain smaller vesicular structures called 
exosomes that are enriched in LAMP-2 and secreted 
intact; their significance is largely unknown (40). 
Table 1 details just how comprehensive is the platelet 
storage pool of proteins. Here, chosen proteins 
are arbitrarily grouped into functional categories, 
notwithstanding many proteins have several, even 
seemingly opposing functions. Proteomics have 
revealed just how wide and diverse is the α-granule 
content with several hundred proteins identified 
(reviewed in 43). This has been narrowed down to 
124 proteins that were said to have significant release 

after exclusion of proteins released by spontaneous 
platelet lysis (44). Mostly, stored proteins are 
synthesized in MKs and traffic in endosomes to 
MVB and developing granules; nevertheless, some 
proteins are captured by MKs or platelets from their 
environment by endocytosis (e.g. Fg, albumin, IgG) 
(Table 1) (42). For example, Fg is captured by the 
αIIbβ3 integrin and recent studies have shown a 
role for adenosine 5’-diphosphate-ribosylation factor 
6 (ARF6) as a regulator of integrin trafficking, a 
process that requires clathrin and which also plays 
a role in clot retraction and platelet spreading (45). 
The α-granule proteins are grouped in Table 1 within 

Table 1. Platelet α-granule contents arbitrarily grouped in functional categories

Category Protein Function

Adhesive proteins VWF + pro-peptide, Fg, Fn, Vn, TSP-1 and -2, laminin-8 (also α5-laminin subunit) Cell contact interactions, hemostasis 
and clotting, extracellular matrix 

Clotting factors and 
their inhibitors

Factor (F) V/Va, FVI, FVII, FVIII*, FX, FXI, FXIIIa and b subunits, TF*, 
prothrombin, multimerin 1, protein S, high-molecular weight kininogen, protease 
nexin-1 and-2 (amyloid β A4 protein precursor), TFPI, protein C inhibitor

Thrombin production and clotting. 
Wound healing

Fibrinolytic factors and 
their inhibitors

Plasminogen/plasmin, PAI-I, urokinase plasminogen activator, α2-antiplasmin, 
α2-macroglobulin, histidine-rich glycoprotein, thrombin-activatable fibrinolysis 
inhibitor

Plasmin production, fibrinolysis and 
vascular modeling

Proteases and anti-
proteases

MMP-1–4, -9, -14, ADAMTS-13, ADAM-10 (a-secretase), ADAM-17, TIMPs 
1–4, C1 inhibitor, α1-antitrypsin, α2-antitrypsin, α2-macroglobulin, granzyme B*, 
bradykinin

Angiogenesis, vascular modeling, 
regulation of coagulation, regulation 
of cellular behaviour

Growth and mitogenic 
factors

PDGF (A, B and C), EGF-2, HGF, SCUBE1 (EGF-like), IGF-1, IGF binding 
protein 3, VEGF (A-D), FGF-2, bone morphogenetic protein-2, -4, -6, -11, GDF-
15, gremlin-1, gas6**, CTGF

Chemotaxis, cell proliferation and 
differentiation, angiogenesis

Cytokines, chemokines 
and others

TGF-β1, -β2, -β4, IL-1α, IL-1β ***, IL-2–4, -6–8, -10, -11, TNF-α, TNF-β, IFNg,  
CCL2 (MCP-1), CCL3 (MIP-1α), CCL4 (MIP-1β), CCL5 (RANTES), CCL7 (MCP-
3), CCL14, CCL15 (MIP-5), CCL17, CCL19 (MIP-3b), CCL20 (MIP-3α), CCL21, 
CCL22
CXCL1 (GROα), CXCL2 (MIP-2α),  CXCL3 (MIP-2β), CXCL4 (PF4), CXCL4L1, 
CXCL5 (ENA-78), CXCL6, NAP-2, CXCL7 (PBP or β-thromboglobulin that 
gives rise to NAP- 2 and connective-tissue-activating peptide III), CXCL8 IL-8), 
CXCL12 (SDF-1α), granulocyte-macrophage colony-stimulating factor (GM-CSF, 
CSF-1), CXCL16, TNFSF14

Regulation of angiogenesis, cellular 
proliferation and differentiation, 
chemotaxis, vascular modeling, 
cellular interactions, bone formation

TPO*, angiopoietin-1 and 2, angiopoietin-like protein 2, HMGB1, IL-6sR, 
osteonectin, bone sialoprotein, Dkk1, Wnt3a, osteoprotegerin, BDNF, g-interferon 
protein 10 (IP-10), endostatin (proteolytic fragment of collagen), angiostatin 
(proteolytic fragment of plasminogen), oncostatin M, angiogenin

Anti-microbial proteins Many chemokines and truncated derivatives e.g; thrombocidins (from CTAP-III 
and NAP-2) and kinocidins****, Human beta-defensin-1, -2, -3*****, thymosin-β4

Bactericidal and fungicidal properties

Miscellaneous proteins Serglycin (secretory granule proteoglycan core), chondroitin 4-sulfate, 
syndecan-4, albumin, IgG, A and M, α-actinin-1, -2, -4, thymosin-β4, amyloid beta 
(A4) precursor, disabled-2, complement C3 and C4 precursor, complement factor 
D, factor H, C-reactive protein, bile salt-dependent lipase, substance P, reelin, 
clusterin, autotaxin, PDI)******, ERp5, ERp57, cyclophilin A, cellular prion protein

Various functions

Membrane 
glycoproteins

αIIbβ3, αvβ3, GPIb, PECAM-1, ICAM-2, semaphorin 3A, semaphorin 4D, 
PLEXIN-B1, extracellular matrix metalloprotease inducer (EMMPRIN), receptors 
for primary agonists, P-selectin, TLT-1, JAM-1, JAM-3, claudin-5, PSGL, CD40, 
CD40L, Apo3-L, TRAIL, gC1qR, FasL, Tie-2, mer, major histocompatibility 
complex proteins, beta-2-microglobulin, Siglec-7, hyaluronidase-2, CD39, 
CX3CL1, CXCR4, galactin-1, -8, TLR-1, -2, -4, -6.

Platelet aggregation and 
adhesion, endocytosis, of proteins, 
inflammation, thrombin generation, 
platelet-leukocyte and platelet-
vascular cell interactions, immune 
modulation, apoptosis

This list of proteins is as complete as possible but does not include many additional proteins identified by proteomic analyses (reviewed in Burkhardt 
et al, 2014). Proteins captured by endocytosis are in italics, others are presumed synthesized in MKs. The abbreviations for many proteins are written 
in full in the text, space does not allow the addition of references for each protein. *Proteins whose presence is controversial; **Gas6 is present in 
mouse but not human platelets. ***IL-1β is primarily released in microparticles after spliceosome-dependent synthesis. ****C-terminal peptides of 
CXC chemokines, *****human beta-defensins are abundant in platelets and while their presence in a-granules cannot be excluded their release can 
also occur from the cytoplasm through staphylococcus aureus-induced pores . ******PDI is thought to occur in a separate intracellular organelle called 
T-granules whose relationship to a-granules is uncertain; the same may apply to the TIMPs.
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categories such as adhesive proteins, clotting and 
fibrinolytic factors, growth factors, cytokines and 
chemokines composed of small CXC-ligands (CXCL) 
or CC-chemokine ligands (CCL), proteases and their 
inhibitors, and anti-microbial proteins. Ca2+ and Mg2+ 
are also present in a-granules that contain acidic 
glycosaminoglycans (mainly chondroitin-4-sulphate) 
localized to distinct domains (or cores) where they 
concentrate basic proteins such as platelet factor 
4 (PF4, CXCL4). The granule membrane contains 
not only intrinsic GPs of the plasma membrane (e.g. 
αIIbβ3), but also more selective components such as 
P-selectin, trem-like transcript-1 (TLT-1), semaphore 
4D and CD40L whose surface expression confers 
new properties to the activated platelet allowing 
platelet-leukocyte tethering or platelet interactions 
with other cells.

Adhesive proteins abundant in the α-granule 
storage pool include VWF, Fg, Fn, vitronectin (Vn) 
and thrombospondin-1 (TSP-1) (Table 1) all of which 
participate in platelet surface contact interactions 
even if Fg plays the major role in aggregation (8–9). 
Fibrillar cellular Fn in the vessel wall is an excellent 
substrate for thrombus formation, supporting platelet 
interactions through the α5β1integrin, GPIb, GPVI and, 
quite unexpectedly, toll-like receptor 4 (TLR4) (46–47). 
Special mention should be made of TSP-1, one of 
the most abundant α-granule proteins; TSP-1 plays a 
major role in thrombus stability and clot retraction (48). 
Adhesive proteins may also act directly as mitogens or 
they may promote mitogen activity of growth factors. 
The α-granules are a rich source of coagulation factors 
(F) V and XI that on secretion promote thrombin 
formation on the platelet surface. However, α-granules 
also contain a number of inhibitors of coagulation 
(e.g. tissue factor pathway inhibitor (TFPI), protease 
nexin-2) and of fibrinolysis (plasminogen activator 
inhibitor type I, PAI-1) (Table 1). This illustrates the 
fundamental enigma of platelet α-granules that store 
proteins with opposing effects. Platelet α-granules 
also have surprises, such as the presence of brain-
derived neurotrophic factor (BDNF), synthesized by 
MKs and released on secretion (49). Platelets are a 
major source of BDNF suggesting a role for them in 
the brain. Although lacking a nucleus, platelets contain 
a spliceosome (mRNA splicing machinery) that permit 
them to translate mRNAs into protein after platelet 
activation; two prominent examples are interleukin-
1β (IL1β) that has a prominent role in inflammation 
and TF (50–51). However, these proteins are mostly 
synthesized after secretion has occurred and may 
have an alternative secretory pathway perhaps being 
liberated in microvesicles (see Section 4).

Proteins were for long assumed to target 
to α-granules randomly during granule biosynthesis. 
However, Italiano et al (52) localized pro-angiogenic 
proteins such as vascular endothelial growth factor 

(VEGF), basic fibroblast growth factor (bFGF), platelet-
derived growth factor (PDGF), insulin-like growth 
factor (IGF) and angiopoietin-1 in subpopulations 
of α-granules distinct from those containing anti-
angiogenic proteins such as endostatin, angiostatin, 
TSP-1, PF4 and PAI-1 both in platelets and in MKs; they 
also expanded earlier works by showing that granule 
cargos were released with different kinetics. However 
such concepts have been challenged. By quantitative 
immunofluorescence mapping, Kamykowski et al (53) 
found little to indicate co-clustering of proteins within the 
α-granules. Although confirming kinetic heterogeneity, 
a time-dependent analysis of protein release from 
platelets stimulated by different agonists showed 
much overlap in secretion of proteins of opposing 
functions (54). It was suggested that platelet secretion 
is a stochastic process potentially controlled by factors 
such as cargo solubility, granule shape, and/or granule-
plasma membrane fusion routes. High-resolution and 
scanning transmission electron microscopy (STEM) 
showed granule cargos to be compartmentalized 
zonally but within the same organelle while three-
dimensional images obtained by cryo-electron 
tomography showed α-granules with microvesicular 
and tubular internal structures consistent with a three-
dimensional spatial organization (55–56).

Heterogeneity was confirmed however when 
tissue inhibitors of metalloproteases (TIMPs) were 
localized to granules distinct from those containing 
VWF; often these were present close to the plasma 
membrane and even within filopodia (57). Significantly, 
platelets from patients with an inherited disorder of 
α-granule production (gray platelet syndrome) failed to 
label for VWF while normally containing TIMPs. Another 
secreted cargo stored in a specific compartment 
discrete from α-granules and labeled T granules by 
the authors, is protein disulfide isomerase (PDI) that 
on secretion associates with αIIbβ3 and helps stabilize 
a fibrin clot (58–59). PDI is the archetypal member 
of a large family of thioredoxin-like proteins of the 
endoplasmic reticulum (ER) of which platelets contain 
several members that also include ERp57 and Erp5 
(60). These family members known for their role in 
oxidative folding and disulfide exchange intervene in 
thrombus formation and fibrin generation in which they 
appear to have non-redundant roles. They are also 
active players in neutrophil recruitment to the vessel 
wall in inflammation. Recent studies show that PDI 
and ERp57 are localized close to the inner surface 
of the plasma membrane within the dense tubular 
system (derived from MK smooth ER) and on platelet 
activation are mobilized by a process that requires 
actin polymerization and membrane/cytoskeletal 
reorganization (61); an organization similar to that 
seen for some TIMPs (57).

Platelet release of α-granule constituents 
requires docking and fusion of the granule membrane with 
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either the plasma membrane or an internal channel that 
opens to the surface. As for dense granules, exocytosis 
heavily involves vesicle- and plasma membrane-
bound SNARE proteins and their chaperones in which 
vesicle-associated membrane protein (VAMP) -3, -7 
and -8, synaptosome associated protein-23 (SNAP-
23), Munc13–4, syntaxin-11 (STX-11), STX-BP5, 
Munc18–2 and Rab27b are prominent players (40, 62). 
STEM tomography has revealed another mechanism 
in that many α-granules liberate their contents through 
tubular extensions reacting directly with the plasma 
membrane; this can also involve the OCS membranes 
that join independently with the plasma membrane 
(56). Differential sorting of α-granules has also been 
shown, with granules labeling for VAMP-7 moving to a 
more peripheral localization during platelet spreading 
allowing it to play a role in cytoskeletal remodeling 
while a novel mechanism involving VAMP-8-dependent 
compound granule fusion has also been proposed 
(63–65).

A brief mention should also be made of 
metalloproteases (MMPs) of which platelets are a 
rich source containing MMP-1–4, -9, -14, ADAM 
(a disintegrin and metalloprotease)-10 and -17 and 
ADAMTS-13 (ADAM with thrombospondin type I 
repeats), among others (Table 1). ADAMTS-13 is a 
negative regulator of thrombosis and inflammation 
acting by cleavage of hyperactive large VWF 
multimers (66). While MMPs are often said to localize 
in α-granules, their presence in other non-identified 
organelles, as seen for the TIMPs, cannot be ruled 
out (57). The ubiquitous MMPs have many roles that 
include tissue remodeling (67). ADAM-10 and ADAM-
17 are largely responsible for the cleavage of platelet 
surface receptors on platelet activation leading to the 
loss of a large part of the extracellular domains of 
GPIbα, GPVI and P-selectin as part of what is often 
called “sheddase” activity and therefore regulating 
platelet function (68). Localization of the sheddase 
enzyme is key and is under tight control, an example is 
the cleavage of GPVI by ADAM-10 where members of 
the Tspan C8 subgroup have been shown to mediate 
ADAM-10 intracellular trafficking and enzyme activity. 
In platelets, the interaction of Tspan14 with ADAM10 
via its large extracellular loop provides specificity for 
the collagen receptor, GPVI (69).

In summary, differentially packaged and 
segregated proteins have different ways of reaching 
the platelet surface while the spatial localization of 
the granules, determined by VAMP isoforms, and the 
size of both the individual secreted proteins and the 
fusion pores will determine diffusion rates in response 
to different stimuli. Finally, the three-dimensional 
structure of thrombi in the vasculature and the 
extent of integrin-based clot retraction will control 
the extravasation of secreted and plasma borne 
molecules in wound healing and inflammation (35). 

Similar mechanisms occur in arterioles and venules 
although surprisingly it is in the latter that platelets 
exercise a greater role compared to fibrin and 
thrombin with secreted ADP playing a key role (70). 
Factors that control fibrin organization in thrombi and 
their microelasticity under flow include (i) the nature of 
the exposed surface generating thrombus formation, 
(ii) thrombin generation and TF expression both inside 
and outside the thrombus, and (iii) shear rate, lower 
shear forces favoring fibrin coverage of the thrombus.

3.3. Lysosomes

These are granule stores for enzymes such 
as cathepsins D and E, elastase, β-glucuronidase 
and acid phosphatase. Their membranes resemble 
dense granules in expressing LAMP-2 and LAMP-3. 
Platelets contain a constitutively active autophagy 
pathway that is essential in maintaining cellular 
homeostasis and which is activated further on platelet 
response to stimuli (71). Autophagy involves the 
constitution of autophagosomes containing protein 
complexes (perhaps the best known of which is light 
chain 3II, a microtubule derivative) able to fuse with 
lysosomes.

4. THROMBIN GENERATION AND  
MICROPARTICLE RELEASE

Thrombin generation is key for blood 
clotting and is mediated by the extrinsic and intrinsic 
pathways of coagulation. Activated platelets provide a 
catalytic surface that accelerates thrombin production. 
Platelet stimulation by strong agonists leads to 
increases in cytosolic Ca2+ and the surface exposure 
of phosphatidylserine (PS) (72). Interestingly, 
procoagulant platelets form distinct patches in a 
growing thrombus (73). PS expression on platelets 
allows the binding of coagulation factors from plasma 
or after autocrine secretion with the rapid formation 
of an activated factor Xa/Va complex that transforms 
prothrombin into thrombin (74). Thrombin itself is a 
powerful mitogen. However, its main immediate role is 
to generate fibrin. Apoptotic or necrotic pathways also 
lead to Ca2+-dependent PS exposure and procoagulant 
platelets, for example through cyclophilin D-dependent 
mitochondrial permeability transition pore formation 
and loss of energy potential, processes that can occur 
within the developing thrombus (16, 75). Ballooning 
of procoagulant platelets with cytoskeletal disruption 
has been reported with membrane GPs and adhesive 
proteins retained within large patches (76–77). 
Intriguingly, such findings only apply to subsets of the 
total platelet population; nevertheless, an increased 
presence of procoagulant cells can tip the balance 
from hemostasis to thrombosis. PS-expressing 
platelets that retain procoagulant and serotonin-
derived adhesive proteins are often referred to as 
“coated” platelets; their levels are often increased after 
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trauma, for example after brain injury and they have 
been implicated in stroke (78).

PS expression is also associated with the 
release of small membrane-bound microvesicles, 
commonly known as microparticles (MPs), from 
platelets (72, 79). Procoagulant in nature, they bud off 
in large numbers from the platelet surface following 
calcium-dependent uncoupling of the plasma 
membrane from the underlying cytoskeleton. MPs 
play essential functions in cell-cell communication 
and transport of mediators and are at the nexus 
between inflammation, immunity and thrombosis 
(79–80). Procoagulant in nature, MPs are elevated 
in a variety of immune disorders including systemic 
lupus erythematosus (SLE), Sjorgen’s syndrome, 
multiple sclerosis, antiphospholipid syndrome and 
autoimmune disease of which rheumatoid arthritis is 
a prominent example (81–82). MPs are functionally 
active, they express P-selectin enabling them to react 
with leukocytes and this is of biological significance. 
In one example, the expression of 12-lipoxygenase 
leads to the release of 12(S)-hydroxyeicosatetranoic 
acid that in turn promotes MP internalization by 
neutrophils which with soluble phospholipase 
A2-IIA release promotes inflammation (83). Quite 
surprisingly, platelets can also release mitochondria, 
both within MPs and as isolated organelles (84). 
Degradation of the mitochondrial membrane by 
soluble phospholipase A2 also leads to the release 
of inflammatory mediators; mitochondria themselves 
can also bind to neutrophils.

5. PLATELETS AND BLOOD VESSELS

Platelets through the formation of the 
hemostatic plug prevent blood loss and help restore 
the structure of blood vessels after injury (see 
Section 1. Introduction). This involves tissue repair 
while platelets play a major role in angiogenesis both 
in damaged tissues and in tumors (85, 86). They also 
play a role in vascular disease with atherosclerosis the 
prominent example.

5.1. The repair process

Essential for maintaining vascular integrity, 
collagens, proteoglycans and adhesive proteins 
such as Fn (often organized in a fibrillar form) are 
major constituents of the subendothelial matrix; they 
provide a molecular scaffold for adhering platelets 
as well as fibroblasts and incoming cells at injured 
or inflamed sites (47, 87). Thrombus growth brings in 
further platelets that secrete their panoply of growth 
factors, cytokines, chemokines and active metabolites 
(Table 1). Proteins such as VEGF, PDGF a/b and 
c isoforms, FGF, hepatocyte growth factor (HGF), 
epidermal growth factor (EGF), connective tissue 
growth factor (CTGF) and IGF form chemotactic 

gradients around the lesion by directly binding to matrix 
components or to newly generated fibrin (19, 42). 
Some interact directly with vascular cells; for example, 
VEGF binds to its endothelial receptor (VEGF-R2) and 
induces signaling that leads to vessel relaxation and 
vasodilation (reviewed in 47). More nutrients arrive 
with the increased blood flow and recruitment of white 
blood cells is facilitated by platelet/leukocyte crosstalk 
and macrophage development under the influence 
of macrophage inflammatory proteins (MIPs) (see 
also Section 6. Inflammation). In another example, 
secreted and activated transforming growth factor-β1 
(TGF-β1) recruits inflammatory cells into the wound 
area and stimulates fibroblasts to produce connective 
tissue, a process that if not controlled can result in 
fibrosis (89). Fibrinogen itself can enhance wound 
closure by favoring cell proliferation and migration and 
it forms mixed fibrils with Fn, a substrate for αvβ3 on 
fibroblasts (90). Fibrin is another key player in wound 
healing (91). Fibrinolysis produces fibrin degradation 
products that also attract leukocytes and aid the 
transition between inflammation and tissue repair. 
The benefits of the now widespread therapeutic use 
of platelet-rich plasma clots are obtained through an 
enhancement of this natural process (19).

The liver provides a special example of how 
platelets intervene in organ repair as it has a unique 
regenerative capacity. Platelet released serotonin and 
growth factors (e.g. HGF, VEGF and IGF) enhance 
this process (92). However, alternative mechanisms 
for platelet involvement are yet to be ruled out and 
these include roles for (i) ADP and other released 
molecules (ii) a direct transfer of mRNA to liver cells 
and (iii) neutrophil attraction secondarily favoring an 
inflammatory response (reviewed in 93).

5.2. Angiogenesis

Restoring vascularization at sites of vessel 
injury relies heavily on platelets and their released 
proteins to promote recruitment, growth and proliferation 
of endothelial and other vascular cells (94). Released 
factors such as VEGF, bFGF and PDGF, enhance not 
only endothelial cell proliferation but also later events 
such as endothelial tube formation and sprouting of new 
vessels (95). Another key protein is stromal cell derived 
factor-1 (SDF-1), an α-granule stored chemokine that 
by binding to its receptors CXCR4 and CXCR7 on 
progenitor cells or mesenchymal stem cells enhances 
their recruitment to the site of vascular lesions (96). The 
whole process is regulated in coordination with growth 
factors and inhibitors released from endothelial and 
vascular cells with a role for endothelial cell membrane 
signaling molecules such as PEAR1 (97). Enigmatically, 
the platelet content of angiogenesis regulators was 
selectively increased in mice bearing tumors suggesting 
that they are also taken up from plasma (98). There is 
also the apparent contradiction, yet to be resolved, that 
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platelets also possess and secrete anti-angiogenic 
factors such as endostatin, PF4, TSP1 and the 
TIMPs that may counterbalance the effect of the pro-
angiogenic mediators (99). PF4 (CXCL4) is perhaps the 
best studied of these as it also has immune-modulatory 
properties. PF4 binds with high affinity to heparin and 
to heparin-like molecules on the endothelial cell surface 
and negatively regulates angiogenesis by inhibiting 
VEGF and FGF as well as blocking the cell cycle (100).

Platelet membrane constituents also 
intervene in favoring angiogenesis. Optimal tube 
formation from endothelial colony-forming cells, and 
particularly the number of branching points, requires 
the presence of tetraspanin (Tspan), CD151 (CD40L) 
and the laminin-binding integrin α6β1on platelets and 
endothelial cells (101–102). Tspans are functional 
partners of integrins and segregate them into plaques 
or domains to increase their density; they are widely 
present in platelets, endothelial and tumor cells 
(103–104). Tissue factor is the initiator of the extrinsic 
pathway of coagulation; it also plays a key role in 
angiogenesis and wound healing (105). Whether 
circulating platelets actually possess TF is unclear; 
however, they can take it up from monocytes and 
circulating MPs in a P-selectin dependent mechanism 
while activated platelets can make it through pre-
mRNA splicing by using their spliceosome (51). A role 
for PDI and perhaps PS in modulating the initiation of 
TF activity has been proposed (60).

5.3. Atherosclerosis

Atherosclerotic plaque formation provides a 
link to the following Section as it can be considered as 
chronic inflammation and the reader is invited to consult 
specialist reviews for more detailed information on this 
much-studied condition (31, 47, 88, 106–108). Suffice 
to say here that activated platelets secrete biologically 
active molecules such as PF4 and RANTES (regulated 
on activation, normal T cell expressed and secreted) 
that alter the differentiation of T cells and macrophages, 
increase uptake of oxidized LDL and stimulate monocyte 
recruitment. SDF-1α is important for regenerative 
processes while platelet surface glycoproteins 
including αIIbβ3, GPIbα, P-selectin, junctional adhesion 
molecule-A/C (JAM-A/C) and CD40/CD40L are 
crucially important in regulating platelet interaction with 
endothelial cells, leukocytes, dendritic cells and matrix 
components involved in plaque formation (109–110). 
Platelets affect cholesterol metabolism by interacting 
with and capturing LDL particles and by contributing 
to the formation of lipid-laden macrophages and foam 
cells (111–112).

6. PLATELETS AND INFLAMMATION

As seen in atherosclerosis, platelets 
participate actively in inflammation by promoting 

leukocyte accumulation at inflamed sites and aiding 
the attached cells to migrate within the vessel wall 
(113). At the same time they help prevent hemorrhage 
at sites of neutrophil diapedesis and disruption of 
endothelial cell junctions (114–115). GPIb plays an 
important role in platelet recruitment following release 
of ultralarge VWF strings from the Weibel-Palade 
bodies of activated endothelial cells at inflamed sites 
and GPVI mediates activation of platelets by exposed 
collagen (reviewed in 31). P-selectin expression helps 
arrest platelets under conditions of high flow and favors 
white blood cell recruitment to inflamed sites. The role 
of platelets extends well beyond the vascular system. 
For example, notwithstanding the blood-brain barrier, 
platelets influence central nervous system repair 
and can regulate neuro-inflammation and influence 
regenerative processes – essentially by interacting 
with stem/progenitor cells (116).

6.1. Cell survival and apoptosis

It is pertinent to question how platelets are 
capable of modulating the balance between cell survival 
and apoptosis in tissues. SDF-1 acting with serotonin, 
ADP and S1P favors cell survival. A number of tumor 
necrosis factor-α (TNF-α. -related apoptosis regulators 
are secreted from platelets including CD40L, soluble 
Fas Ligand (sFasL) which with membrane-bound FasL 
promote apoptosis as a defense mechanism against 
inflammation (117). Another platelet-expressed 
protein, TNF-related apoptosis-inducing ligand (TRAIL) 
regulates apoptosis in cells including fibroblasts, 
smooth muscle cells, neutrophils and monocytes 
(118). ATP release from dying cells and damaged 
tissues acts as a danger signal being part of a damage-
associated molecular pattern (DAMP) that start and 
perpetuate a noninfectious inflammatory response; 
ATP release from platelets in a growing thrombus can 
potentiate this process (5). Released ADP also favors 
platelet/leukocyte interactions. Polyphosphates may 
interact with endothelial cell P2 receptors and amplify 
their inflammatory response (reviewed in 5). They also 
increase vascular permeability and promote edema by 
favoring bradykinin production (119).

6.2. Interplay between platelets,  
leukocytes and vessels

As we have already mentioned, 
inflammation involves close interplay between 
platelets, leukocytes (including cells of the immune 
system) and the vessel wall (see Section 1. 
Introduction). GPIb-mediated platelet adhesion helps 
trap leukocytes at sites of inflammation; P-selectin 
on the now activated platelets binds to its counter 
receptors, including P-selectin glycoprotein ligand 
(PSGL)-1, on white blood cells (28–31, 113). Studies 
in mice show how platelet-released serotonin also 
promotes the recruitment of neutrophils to sites of 
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acute inflammation (120). Under flow, neutrophils 
roll along inflamed vessels, stop and then migrate 
into perivascular tissues. Interaction of neutrophil 
ligands with endothelial P- and E-selectins exposed 
at inflammatory sites can also lead to rolling while 
intercellular adhesion molecule (ICAM)-1 on 
endothelial cells can also bring about neutrophil 
arrest. Signaling through chemokine receptors 
leads to activation of β2 integrins on leukocytes; 
with CalDAG-GEFI, Rap1, kindlin-2 and -3 and talin 
all having essential late-signaling roles in integrin 
activation and transformation to an extended high 
affinity conformation, a step essential for stable 
cell adhesion, cytoskeletal reorganization and cell 
migration (121–122). In a major development it was 
even proposed that recruited neutrophils scan for 
platelets and that the involvement of platelets is a 
two-way process (123). Neutrophil polarization within 
venules led to a protruding domain that continued 
to engage activated platelets in the blood stream. 
Intriguingly, the active form of the Rho GTPase, 
Cdc42, was shown to negatively regulate chemokine-
induced integrin activation (124). Cdc42 is activated 
by growth differentiation factor 15 (GDF-15), related 
to the TGF-β family. In fact, recent studies have shown 
that both GDF-15 and TGF-β1 inhibit chemokine-
triggered integrin activation through heterodimers 
of TGF-β receptor 1 (TGF-βR1) that in turn lead to 
Cdc42 activation (125). The latent form of TGF-β1, a 
major protein released from platelet α-granules, can 
be activated by shear (126). This raises the intriguing 
possibility that platelet cytokines and shear help 
regulate integrin activation and thrombus growth at 
inflamed sites and provides a further example of the 
complexity of the roles of α-granule proteins.

The diversity of biologically active 
substances secreted from platelets cannot be over 
stated. Platelets rapidly synthesize pro-inflammatory 
metabolites including TXA2 and PAF while ADP, 
ATP, polyphosphates, serotonin and histamine are 
released from dense granules (5, 127). As well as 
the growth factors already outlined in this review, 
platelets release a range of cytokines and chemokines 
to their environment (Figure 3) (Table 1). As well as 
PF4, platelet basic protein (CXCL7) and RANTES 
favor immune and inflammatory processes. As an 
example, neutrophil-activating peptide-2 (NAP-2, 
a proteolytic derivative of CXCL7) attracts immune 
cells to traverse the thrombus and enter the vessel 
wall (34, 128). Other proteins of special interest in 
terms of inflammation are IL-8, macrophage migration 
inhibitory factor (MIF), growth-regulated oncogene-α 
(Gro-α), epithelial activating protein-78 (ENA-78) 
and monocyte chemoattractant protein-3 (MCP-3). 
Significantly, many of these proteins are involved in 
atherosclerotic plaque formation (discussed in 107). 
Platelet immunoreceptor tyrosine-based activation 
motif (ITAM) signaling is critical for securing vascular 

integrity for inflammatory bleeding occurred in the skin 
and lungs of platelet-depleted mice or those transfused 
with antibodies blocking platelet GPVI, CLEC-2 or 
SLP76 (129). In fact platelets secure inflamed vessels 
and play a positive vascular protective role during the 
inflammatory response.

7. PLATELETS AND INFECTIONS, NET 
FORMATION AND SEPSIS

Increased bleeding is seen in inflammatory 
states such as immune-complex-induced vasculitis 
and LPS-induced lung inflammation when the 
platelet count is low (34, 114). Platelets are also 
active in promoting rheumatoid arthritis (RA) through 
release not only of biologically active proteins from 
a-granules but also by way of MPs (81, 130). MPs 
act as carriers of immune complexes (ICs) consisting 
of immunoglobulin and complement (C) with the 
MPs themselves contributing the autoantigen often 
identified as a citrullinated protein (e.g. vimentin and 
Fg) (82). A mixture of MPs and ICs from RA fluid was 
shown to be inflammatory, stimulating neutrophils to 
secrete leukotrienes. It was suggested that MPs enter 
the synovial fluid through gaps between endothelial 
cells in the inflamed vasculature and then undergo 
citrullination and form the immune complexes. In 
sterile inflammation, cell death can lead to release of 
DAMPs (131). These stimulate the immune response 
to remove dead cells but can have inflammatory off-
target effects.

7.1. Anti-microbial and anti-viral roles in  
host defence

A special and increasingly recognized 
function of platelets is in host defense both in 
circulating blood and at vascular sites of lesions such 
as in endocarditis (127, 132). Platelets can be involved 
in counteracting microorganisms such as in malaria, 
where they bind to infected red cells and release 
proteins that kill intra-erythrocytic parasites (133). 
Platelets contain a variety of receptors recognizing 
pathogens including members of the toll-like receptor 
family (TLR1–7; -9) whose engagement with bacterial 
targets leads to platelet activation and release of 
microbicidal proteins and cytokines (Table 1) that 
promote recruitment of circulating inflammatory cells 
whose role is bacterial destruction (134). Other platelet 
receptors involved in bacterial clearance are GPIb-IX 
and αIIbβ3 that bind Staphylococcal proteins among 
others and and FcγRIIA (see 33). Platelets bind to 
Escherichia coli (E coli) through FcγRIIA binding to IgG 
coating the bacteria; this leads to platelet aggregation 
by a secretion- and αIIbβ3-dependent mechanism 
(135). Inflammation drives thrombosis in the liver 
after Salmonella infection and does so in a TLR4-
dependent cascade via ligation of C-type lectin-like 
receptor-2 (CLEC-2) on platelets by the membrane 
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glycoprotein, podoplanin, on monocytes and kupffer 
cells (136). In contrast, platelets also participate in 
bacterial clearance by collaborating with Kupffer cells 
through the recognition of VWF on the Kupffer cells by 
GPIb (137). Some cytokines released from activated 
platelets have direct microbicidal activities (Table 1) 
including PF4, platelet basic protein (PBP, CXCL7), 
thymosin-β4 and RANTES. Thrombocidins (TC-1 
and -2) are small C-terminal proteolytic derivatives of 
CXCL7 such as NAP-2 (138).

Platelets can also directly bind 
and phagocytose many types of virus while 
thrombocytopenia accompanies many viral infections 
(132). A specific example is the binding of human 
immunodeficiency virus (HIV)-1 virus to CLEC-2 
(also called DC-SIGN) followed by its internalization 
while interestingly some viral surface proteins exhibit 
molecular mimicry with platelet αIIbβ3 (139–140). 
Strikingly the Dengue virus enters the platelet allowing 
replication of the positive sense single strand RNA 
genome of the virus thereby aggravating infection 
(141). Even influenza virus reacts with platelets with 
the membrane-bound hemagglutinin of the virus 
mediating antibody and complement-dependent lysis 
of platelets (142).

The complement system plays a key role in 
inflammation and immunity. Platelets store and secrete 
elements of the complement (C) cascade (C3, C4 
precursor) from their α-granules as well as proteins 
that regulate complement activity (C1 inhibitor, 
factor H) (143). In this context, properdin-mediated 
C5a production enhances stable binding of platelets 
to granulocytes, a process tightly regulated by factor 
H (144). Complement proteins have a reciprocal 
relationship with platelets that activate the complement 
system while complement proteins can also activate 
platelets (145). Interestingly, polyphosphates released 
from platelet dense granules mimic heparin by acting 
as a template for C1 inhibitor and thus are an important 
regulator of complement activation (146).

7.2. NET formation

NETs are webs of histone-modified nuclear 
material extruded from activated neutrophils. Platelet 
engagement through platelet-neutrophil interplay has a 
key role in NET formation, an event essential for optimal 
host response to major infection but which can also 
have harmful effects such as promoting microvascular 
and deep vein thrombosis (DVT) - both in sepsis and 
as a more confined example, transfusion-related acute 
lung injury (147–149). A TF-dependent coagulant 
state promotes fibrin formation in large vessels in DVT 
(see 150). Despite much evidence that neutrophils 
play important roles in venous thrombosis, the role 
of platelets and FXII has been recently emphasized 
(151). Neutrophils kill and remove bacteria and 

viruses at sites of infection and the NETs consisting of 
scaffolds of histone-containing chromatin fibers, serine 
proteases and released reactive oxygen species allow 
this to be done on a large scale. But an excess of 
histone release can be harmful and may contribute 
to lethality in sepsis. NET formation has also been 
observed in pre-eclampsia, vasculitis and systemic 
lupus erythematosus and its associated nephritis while 
antibodies against NET components (including DNA) 
promote the pathology of autoimmune disease (see 
152). The negatively charged DNA of NETs initiates 
the contact pathway of coagulation and thrombin 
generation (153). Histones also promote thrombin 
generation in a platelet-dependent manner (154).

7.3. Sepsis

An extreme condition linked to uncontrolled 
inflammation and organ dysfunction; sepsis is 
associated with a high incidence of thrombosis and 
mortality (155–156). Platelets have a major influence 
on the host response during sepsis. I have dealt with 
the role of platelets in bacterial clearance, but it should 
not be forgotten that many of their receptors are shared 
with endothelial and other blood cells, one example 
being αvβ3. Staphyloccus aureas, one of the primary 
etiologic agents of sepsis also causes endothelial cell 
dysfunction and death through initial Fg-dependent 
binding to αvβ3 (157). Endothelial cell activation or 
damage can lead to VWF deposition thereby promoting 
platelet accumulation (158). Platelet accumulation in 
inflamed tissues accelerates immune cell recruitment 
and the onset of organ dysfunction. In a mouse model of 
sepsis induced by cecal ligation and double puncture, 
neutrophil infiltration in the lungs was reduced after 
platelet depletion suggesting that platelets play a role 
in neutrophil activation during inflammation (159). The 
association of sepsis with disseminated intravascular 
coagulation (DIC) can lead to a fall in platelet count 
and impaired vascular integrity and favorise edema, 
shock and organ failure with inflammatory and 
thrombotic responses favored by thrombin generation 
and a late stage involvement of complement activation 
products (160). Platelet activation through FcγRIIA-
dependent and independent mechanisms with αIIbβ3 
activation may also favor thrombosis, a major cause 
of death in sepsis and meningitis. Venous thrombosis 
is aided by decreases in the levels of thrombomodulin 
on endothelial cells and a reduction in circulating 
protein C (161).

Thrombocytopenia is associated with greater 
mortality and platelet transfusion has been shown to 
be protective by inhibiting macrophage-dependent 
inflammation (162). In this context, the Ashwell-Morel 
receptor for desialated proteins in the liver has been 
proposed to mitigate the lethal coagulopathy of sepsis 
(163). As an example, infection with Salmonella 
pneumoniae can trigger DIC with consumption of 
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coagulation proteins and platelets leading to fibrin 
deposition in multiple organs. The Ashwell-Morel 
receptor provides an adaptive response to bacterial 
infection by removing desialated proteins and cells 
from the circulation. Sepsis is a progressive systemic 
inflammatory condition and the kallikrein/kinin 
systems, elements of which can be secreted from 
platelets (Table 1), can have a prominent role (164). As 
discussed earlier, anucleate, activated platelets can 
synthesize proteins such as IL-1β, TGF-1β and TF from 
preformed mRNA (51). Thus when, lipopolysaccharide 
(LPS) binds to TLR4 and stimulates platelets, it favors 
sepsis through splicing and translation of IL-1β mRNA 
(165). Newly synthesized pro-IL-1β is activated by 
caspase-1 and released bound to MPs or exosomes. It 
can interact with its platelet receptor IL-1R1 providing 
an autocrine loop amplifying platelet activation by 
LPS. Interestingly, Il-1β can also bind to fibrin where it 
retains its activity while TF favors thrombosis providing 
another example of a link between thrombosis and 
innate immunity.

A role for secreted ADP either from platelets 
and/or tissue cells in systemic inflammation and 
sepsis, has been confirmed through the use of platelet 
P2Y12 inhibitors in man although both pro- and anti-
inflammatory roles have been described (5, 166). 
Drugs blocking P2Y12 dampen down platelet-monocyte 
and platelet-neutrophil aggregate formation and the 
release of pro-inflammatory cytokines in response 
to bacterial endotoxemia. P2Y12 inhibition with 
clopidogrel or its deletion in mice also decreased 
platelet sequestration in the lungs and lung injury in 
a mouse model of intra-abdominal sepsis and acute 
lung injury (167). Reducing P-selectin expression 
largely brings about these effects. Notwithstanding, 
platelets also stimulate inflammation through 
pathways independent of P2Y12, for example the 
TLR4-activated signaling cascade (168). Studies 
with mice show that platelets may play an important 
role in host response to Klebsiella pneumosepsis 
(169). Antibody-induced thrombocytopenia was 
associated with greater bleeding and a reduced 
survival of the mice with increased bacterial growth 
in the lungs. Thrombocytopenia was associated with 
a dysregulated host response in critically ill sepsis 
patients; a blood microarray analysis revealed a 
distinct gene expression pattern in sepsis leading to 
reduced leukocyte adhesion and diapedesis when 
the platelet count is low (170). In inflammatory states 
hepatic TPO production can also be upregulated by 
IL-6 leading to an overproduction of platelets; platelet 
clearance in the liver may be part of the acute phase 
response (22). Intriguingly, a highly inflammatory state 
can lead to an upregulation of platelet production 
by direct fragmentation of megakaryocytes (171). 
In addition, Haas et al (172 have defined a normally 
quiescent hematopoietic stem cell-like progenitor that 
in situations of acute inflammation becomes primed 

and allows a rapid replenishment of platelets during 
inflammatory insult.

Platelets are effectors of injury in a variety 
of pulmonary disorders (34, 173). Modulation of 
Wnt/β-catenin signaling by platelet-derived Dickopf-1 
(Dkk1) is a major factor in promoting neutrophil 
trafficking and the inflammatory response in the lungs 
(174). Dkk1 is an example of the role of a relatively 
unknown α-granule protein. Platelet secretion of PF4 
regulates neutrophil infiltration and lung inflammation 
in lung damage through stimulating alveolar 
macrophages to produce CXCL2 in polymicrobial 
sepsis (175).

8. ADDITIONAL THOUGHTS ON  
PLATELETS AND INNATE IMMUNITY

Clearly, platelets act as sentinel innate immune 
cells and by facilitating white blood cell entry into lymph 
nodes and the spleen help immune surveillance and 
the clearing of affected tissue of invading pathogens 
(29, 127). They have also been shown to act as antigen 
presenting cells. As discussed in the previous Section, 
platelets participate actively in host defence by binding 
and capturing pathogens, secreting microbicidal 
proteins and promoting neutrophils to act similarly, and 
have a close interplay with the complement system. 
Intriguingly, platelets phagocytose neutrophil-derived 
MPs and relocate them so that they become available to 
cyclooxygenase-1 giving increased TXA2 production that 
in turn facilitates endothelial cell expression of ICAM-
1 favouring neutrophil recruitment in the vasculature 
and in particular in the lungs (176). Thrombosis is 
also recognized as an intravascular effector of innate 
immunity particularly in small blood vessels (30). 
Interestingly, mice expressing a mutant form of Fg that 
cannot support fibrin polymer and clot formation while 
sustaining platelet aggregation exhibit compromised 
antimicrobial host defence thereby emphasizing the 
importance of fibrin (177). As we have discussed 
in the previous Section, in large vessels platelets 
stimulate neutrophils to extrude nuclear material with 
the procoagulant DNA nets forming an essential part of 
the immune response with fibrin; the nets themselves 
trapping bacteria. In small vessels it is the expression 
of TF on leukocytes and their release of nucleosomes 
that stimulates fibrin formation while released proteases 
degrade inhibitors of fibrinolysis (30, 153). Platelets are 
partners in the above processes. We will further illustrate 
the role of platelets in immunity with reference to three 
examples of α-granule proteins with specific roles.

8.1. CD40L

A much-studied platelet cytokine is CD40 
ligand (CD40L, CD154), first identified on activated 
helper T cells and a member of the TNF family (88, 178). 
It binds not only to CD40 on antigen-presenting cells 
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but also to multiple receptors on a variety of cells, these 
receptors include the integrins αMβ2, α5β1 and αIIbβ3 
thereby also linking it to inflammation and thrombosis. 
In the immune system, the CD40L/CD40 interaction 
drives B-cell proliferation and antibody production; it 
plays a primary role in immunoglobulin class switching 
and intervenes in autoimmune disorders (179). 
Platelets constitute the major reservoir for CD40L 
in blood; present in the α-granule membrane, it is 
transported to the platelet surface on platelet activation 
where it becomes available to bind other blood or 
vascular cells. It participates in inflammation and 
atherosclerosis by favouring the formation of platelet/
leukocyte aggregates and by stimulating interleukin 
and cytokine production and the release of reactive 
oxygen species (88, 127, 180). Surface-expressed 
platelet CD40L is a sheddase substrate for MMPs that 
release the smaller but still biologically active soluble 
CD40L (sCD40L). CD40L is also an active surface 
component of platelet MPs.

8.2. TREM-like transcript-1 (TLT-1)

The triggering receptors expressed on myeloid 
cells (TREMs) contain a single V-set immunoglobulin 
(Ig) domain, and are involved in cell activation within 
the innate immune system with a key role in sepsis. A 
glycoprotein with significant homology to the TREMs, 
TLT-1 is exclusive to mouse and human MK lineages 
where it co-localizes with P-selectin in the α-granule 
membrane (181). It is translocated to the platelet surface 
when platelet activation leads to secretion and supports 
platelet aggregation with Fg among its ligands thereby 
protecting against bleeding during inflammation. Like 
CD40L (and P-selectin), TLT-1 can also be the object of 
cleavage by “sheddase” enzymes to liberate a soluble 
form that has a regulatory role in sepsis by modulating 
platelet-neutrophil crosstalk (182).

8.3. High mobility group box 1 (HMGB1)

Recently, HMGB1, a protypical DAMP and 
a nuclear protein attached to DNA and a regulator 
of gene expression, is also stored in platelets being 
translocated to the surface and secreted on platelet 
activation in inflammatory diseases (183–185). It is 
also intimately involved in the regulation of DVT (185). 
Thus, in a mouse model of flow reduction in the inferior 
vena cava (IVC), a cellular mass formed upstream of the 
stenosis after 48h. Large amounts of HGMB1, mostly 
released from platelets, progressively accumulated on 
the luminal endothelial surface and played a role in the 
trapping of platelet-leukocyte aggregates via RAGE 
(receptor for advanced glycation end products) and 
TLR2/4. Atherosclerosis, thrombosis and inflammation 
are inseparably linked and in this context HMGB1 
appears as a critical player by fine-tuning leukocyte 
recruitment and activation. Its functionality depends 
on its redox state with the reduced form acting as a 

chemoattractant; once oxidized it activates leukocytes. 
Mice specifically lacking HMGB1 in their platelets have 
increased bleeding, reduced thrombus formation 
and platelet aggregation; but they also have less 
inflammation and organ damage during experimental 
trauma/hemorrhagic shock and sepsis (183). HMGB1 
may also have a role in rheumatoid arthritis being 
at the crossroads of innate and adaptive immunity; 
it is another excellent example of a previously 
unrecognized platelet protein with multiple functions in 
health and disease. HMGB1 from platelets also plays 
a key role in the formation of NETs by acting through 
RAGE on neutrophils and through the induction of 
autophagy (185–186). In fact, oxidized HMGB1 may 
be a master regulator of the pro-thrombotic cascade 
involving platelets and myeloid leukocytes fostering 
occlusive DVT formation (185). HMGB1 oxidation 
unleashes its prothrombotic activity and promotes 
platelet aggregation. Additional monocytes arrive and 
are activated through RAGE and TLR2 with expression 
of TF and release of cytokines, an activating cascade 
that leads to NET formation and obstructive DVT.

9. PERSPECTIVES: OTHER MAJOR  
DISEASES AND WHAT THE  
FUTURE HOLDS

This review has been selective and many 
major pathologies are not mentioned. It is important to 
briefly comment on how platelets intervene in some of 
them and how this intervention offers novel therapeutic 
strategies. An example is cancer for circulating tumor 
cells may bind to platelets and even aggregate them; 
an interaction that can protect tumor cells from the 
immune system and also facilitate metastasis by 
depositing them in the vasculature through their use 
of platelet adhesive receptors (e.g. GPIb, integrins, 
P-selectin) (see 33, 187–188). Release of ADP, ATP 
and polyphosphates, the expression of P-selectin after 
platelet activation and the generation of thrombin on 
the now procoagulant platelet surface may all favor 
tumor growth within the vessel wall and help tumor 
stability. The release of a-granule proteins (e.g. VEGF, 
PDGF, EGF, angiopoietin-1 and TGF-β1) may promote 
angiogenesis and vascularization of the tumor while 
autotaxin is a novel platelet secreted enzyme that 
liberates lysophosphatidylcholine and stimulates tumor 
cell mobility (188). Intriguingly, platelets from cancer 
patients have higher levels of VEGF and angiopoietin-1 
suggesting either a feedback mechanism or their 
active uptake (189).

By transporting secretable pools of amyloid-β 
precursor, a substrate for ADAM10 (α-secretase), 
and by being activated by amyloid-β in the walls of 
cerebral vessels leading to thrombus formation and 
granule release; platelets may actively participate 
in the progression of Alzheimer’s disease, an 
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age-related neurodegenerative disorder (190–191). 
In fact, amyloid-β binds directly to the αIIbβ3 integrin 
and stimulates release from platelets of ADP and 
the chaperone protein clusterin, a known player 
in Alzheimer’s disease. The latter promotes the 
formation of fibrillar amyloid-β aggregates while ADP 
promoted αIIbβ3 activation and clusterin release 
thereby accelerating the process. The interaction 
between P-selectin on activated platelets and PSGL-1 
on neutrophils and platelet-derived chemokine 
heterodimers play a major role in acute lung injury 
(192). The pro-inflammatory potential of platelets 
also leads to roles in inflammatory bowel disease 
(with elevated levels of RANTES), migraine (IL-1 
and β-thromboglobulin) and asthma (kallikrein/kinin 
system) among many examples (see 34, 164). Platelet 
activation has been postulated to be heavily involved 
in allergic asthma and P2Y12 promotes eosinophilia 
and the pro-inflammatory action of leukotriene E4 in 
the airways (193–194).

What does the future hold? Anti-platelet 
therapy is an increasingly used option in non-hemostatic 
disorders as for example the use of P2Y12 inhibitors 
to reduce inflammation or blockers of β3 integrins in 
metastasis and tumor growth (86, 195). An alternative 
and very promising approach is to genetically modify 
progenitor cells or MKs so that platelets are produced with 
α-granules containing new proteins of therapeutic benefit 
such as FVIII as a treatment for hemophilia or TRAIL for 
prostrate cancer (196–197). This type of approach may 
ultimately be used for lifelong therapies in major illnesses 
including cardiovascular disease, other forms of cancer 
and Alzheimer’s disease but also many others.
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