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1. ABSTRACT

Types 1-4 of fibroblast growth factor receptors 
(FGFR) are all expressed in various cancers. Because 
of its prominent role in carcinogenesis and cancer 
progression, FGFR-2, is being considered as a novel 
target in cancer treatment. Owing to the alternative 
splicing of its extracellular domain, FGFR-2 exists in two 
variants: IIIb and IIIc. FGFR-2 IIIb is mainly expressed 
in normal epithelial cells, as well as in oral mucosal, 
esophageal, gastric, colorectal, pancreatic, pulmonary, 
breast, endometrial, cervical, and prostate cancers. 
The IIIc variant of FGFR is expressed in mesenchymal 
cells, and during epithelial-mesenchymal transition 
(EMT), is expressed in colorectal, pancreatic, bladder, 
cervical, and prostate cancers. The FGFR IIIb and 
IIIc variants bind different forms of FGFs and exert 
autocrine and/or paracrine effects in cancers. Recent 
reports indicate that switching from IIIb to IIIc variants 
correlates with the aggressiveness of the cancers 
via EMT. Here, we discuss the expression, role, and 
regulatory mechanisms of IIIb and IIIc variants of 
FGFR in cancers.

2. INTRODUCTION

Fibroblast growth factors (FGFs) are heparin-
binding growth factors including FGF-1, FGF-2, FGF-3 

(proto-oncogene Int-2), FGF-4 (HST/K-FGF), FGF-
5, FGF-6, FGF-7, FGF-8 [androgen-induced growth 
factor (AIGF)], glia activating factor (GAF; FGF-9), 
FGF-10, FGF-11 [FGF homologous factor 3 (FHF-3)], 
FGF-12 (FHF-1), FGF-13 (FHF-2), FGF-14  (FHF-4), 
and FGF-16 through FGF-23 (1). Human FGFs, which 
are comprised of ~150–300 amino acids, have a 
conserved ~120 amino acid residue core, and show 
~30–60% amino acid identity (1–3).

FGFs exert their biological activities by 
binding to high-affinity tyrosine kinase FGF receptors 
(FGFRs) on the surface of cells and low-affinity 
heparan sulfate proteoglycans that enhance ligand 
presentation (1, 4). Expression of FGFRs and their 
corresponding ligands (FGFs) contributes to tumor 
progression in human malignancies by enhancing 
angiogenesis and proliferation via both autocrine 
and paracrine effects (5–7). FGFRs are single 
transmembrane receptors, containing extracellular, 
transmembrane, and intracellular domains. The 
extracellular domains of FGFRs are usually composed 
of 3 immunoglobulin-like domains (Ig I-III), whereas 
their intracellular tyrosine kinase region is interrupted 
by a non-kinase intervening sequence (8). FGFRs 
consist of four members, named FGFR-1, 2, 3, and 4, 



The role of FGFR-2 IIIb expression is different in each 
type of cancer. Increased expression of FGFR-2 IIIb 
seems to be related to cell transformation and tumor 
progression in some cancers. On the other hand, 
decrease of FGFR-2 IIIb expression was reported to 
be associated with increased FGFR-2 IIIc expression. 
Recent studies, including our own, have shown that 
FGFR-2 IIIc expression was closely correlated with 
carcinogenesis and tumor progression in several 
types of cancers (32, 33).

This review summarizes the correlation 
of alternative splicing of FGFR-2 variants to EMT 
in cancer, and clarifies whether they are potential 
therapeutic targets for cancer.

3. STRUCTURE OF FGFR-2

FGF-FGFR binding activates intracellular 
signaling cascades. Mitogenic signaling is mediated 
through tyrosine phosphorylation of key substrates, 
including activation of the mitogen-activated protein 
kinases such as ERK-1 and ERK-2 via the ras 
pathway (34, 35). Binding of the specific ligands 
to FGFR-2 results in receptor dimerization, with 
subsequent autophosphorylation of tyrosine residues 
within the intracellular domain and recruitment 
and phosphorylation of substrate proteins such as 
phospholipase C-gamma (PLC- gamma) and FGFR 
receptor substrate (FRS2) (36, 37).

More than 20 alternative splicing variants 
of FGFR-2 have been identified in the extracellular 
and intracellular regions (38). Alternative splicing 
of the extracellular domain of FGFR-2 results in the 
generation of variants containing all three Ig-like 
domains (referred to as the alpha isoforms), or only 
Ig II and Ig III (referred to as the beta isoform (39, 40). 
Alternative splicing of intracellular domains generates 
C1, C2, and C3 variants (41). The major splicing event 
of FGFR-2 occurs in the carboxyl-terminal half of the 
third Ig-like domain in the extracellular domain (D3). 
The two types of FGFR-2 variants termed FGFR-2 
IIIb (NM_022970.3/Variant 2/4657 bp) and FGFR-2 
IIIc (NM_000141.4/Variant 1/ 4654 bp) are generated 
by alternative splicing of exons 9 and 10 (9, 42, 43). 
When the C-terminal half of D3 is encoded by exon 8, 
the FGFR2 IIIb variant is generated, while the FGFR-2 
IIIc variant is generated when the C-terminal half of 
D3 is encoded by exon 9 (Fig.1). The homology of 
IIIb and IIIc regions of FGFR-2 is 62% and 51% at the 
mRNA and protein levels, respectively. The Intronic 
Splicing Enhancer/Intronic Splicing Silencer-3 (ISE/
ISS-3), which is located in intron 8 downstream of a 
UGCAUG motif of FGFR-2, regulates the  FGFR-2 
splicing via binding of FOX-2 or Epithelial Splicing 
Regulatory Protein (ESRP) 1 and 2 (44–46). The ISE/
ISS-3 functions specifically in epithelial cell types to 
enhance splicing of the upstream exon 8 and silence 

that are encoded by distinct genes (1).  FGFR-1, 2, 3, 
and 4 genes are localized in chromosomes 8q12, 
10q26, 4p16.3, and 5q35.1, respectively (1). Alternative 
splicing of the C-terminal half of the third Ig-like domain 
generates the IIIb and IIIc variants of FGFRs1-3, but 
FGFR4 does not possess such alternative exons 
(9, 10) (Fig.1). Appropriate tissue-specific expression 
of FGFR-2 IIIb or FGFR-2 IIIc, in conjunction with the 
presence of appropriate ligands, is crucial for fetal 
development, maintenance of cellular homeostasis, 
and other functions in postnatal status.

Mice null for the FGFR-2 gene die early 
during embryogenesis with no formation of limb buds 
(11). Those null for the FGFR-2 IIIb variant while 
retaining FGFR-2 IIIc, survive to birth. FGFR-2 IIIb null 
mice show dysgenesis of the kidneys, salivary glands, 
adrenal glands, thymus, pancreas, skin, otic vesicles, 
glandular stomach, and hair follicles; minor defects in 
the skull; and agenesis of the lungs, anterior pituitary 
gland, thyroid, teeth, and limbs (12–14). FGFR-2 
IIIb is considered to be required for the growth and 
maintenance of limb bud formation, but not for limb 
bud initiation (12). Conditional FGFR-2 IIIb knockout in 
the rodent epidermis leads to increased macrophage 
infiltration in the dermis and adipose tissue, epidermal 
thickening accompanied by basal-layer dysplasia and 
parakeratosis, and the promotion of chemically induced 
squamous-cell carcinoma. To create a loss-of-function 
phenotype of FGFR-2 IIIc, Eswarakumar et al.(15) 
introduced a point mutation into the IIIc exon, which 
introduced a frame-shift and created a translation 
stop codon, without influencing the expression of 
FGFR-2 IIIb. Loss of FGFR-2 IIIc results in a viable 
recessive phenotype with craniosynostosis and 
retarded development of the axial and appendicular 
skeleton, causing dwarfism and misshapen skull. The 
knockout mice remain alive for over a year, but remain 
significantly smaller than normal mice.

Recent studies have shown that gene 
amplification, abnormal activation, or single nucleotide 
polymorphisms (SNPs) of FGFR-2 play important roles 
in cancer progression (16–19). Gene amplification 
or missense mutations of FGFR-2 occur in gastric, 
lung, breast, ovarian, and endometrial cancers and 
melanomas (20–26). SNPs of intron 2 in FGFR-2 are 
associated with an increased risk of breast (27, 28) 
and endometrial cancers, and activating mutations of 
FGFR-2 have been identified in endometrial cancers 
(24, 29). Amplification and overexpression of  FGFR-2 
is strongly associated with the poorly differentiated, 
diffuse type of gastric cancer, which has an especially 
unfavorable prognosis (30).

Concerning FGFR-2 IIIb or IIIc variants 
and cancer, there is a lot of evidence correlating 
epithelial-mesenchymal transition (EMT) with 
migration and metastasis of cancer cells (31). 
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4. ROLES OF FGFR-2 IIIb

4.1. Normal cells and tissues

FGFR-2 IIIb is mainly localized in epithelial 
cells during development and in adult tissues. FGFR-
2 IIIb is expressed in epithelial cells throughout the 
gastrointestinal tract, and an intraperitoneal injection 
of FGF-7, which is a major ligand for FGFR-2 IIIb, 

the downstream exon 9 (47). In normal human 
tissues, FGFR-2 IIIb is mainly localized in epithelial 
cells, whereas FGFR-2 IIIc is mostly expressed 
in mesenchymal cells (48). Alternative splicing 
determines the specific ligands for each FGFR-2 
variant. FGFs 1, 3, 7, 10, and 22 are reported to bind 
to FGFR-2 IIIb with high affinity, whereas FGFs 1, 2, 4, 
6, 9, 17, and 18 bind to FGFR-2 IIIc with high affinity 
(9, 10, 36).(Fig. 2)

Figure 1. Structures of IIIb and IIIc isoforms of FGFR-2.FGFRs 1-3 possess IIIb and IIIc isoforms due to the alternative splicing of the C-terminal half of 
the third Ig-like domain. ESRP1 contributes to the alternative splicing of the domain, and increases isoform IIIb of FGFR-2.
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of squamous epithelial cells, but strongly expressed 
in vascular smooth muscle cells in uterine cervical 
tissues (58). FGFR-2 IIIb was not detected in normal 
lung tissues (59).

4.2. Cancer cells and tissues

FGFR-2 IIIb over-expression has been 
detected in a variety of cancers. FGFR-2 IIIb mRNA 
is expressed in carcinoma cell lines derived from 
multiple tissues, including breast, colon, stomach/
esophagus, pancreas, prostate, oral mucosa, and 
uterus. Overexpression of the FGFR-2 IIIb variant 
have been reported in various cancers, including 
breast, endometrial, cervical, lung, esophageal, 
gastric, pancreatic, and colorectal cancer (CRC) 
(51, 54, 56, 58–64). The role of the FGFR-2 IIIb variant 
between types of cancer has been controversial. 
FGFR-2 IIIb was expressed in esophageal cancer 
cells in 41% of patients, and FGFR-2 IIIb expression 
correlated with the well-differentiated cell type of 
esophageal cancer (51). FGF-7 induced proliferation 
in FGFR-2 IIIb positive esophageal cancer cells. The 
different roles of FGFR-2 IIIb in various cancers have 
not been well characterized; however, the differences 
may be due to the affinity of different ligands for 
FGFR-2 IIIb or their effects on other FGFRs. In 
gastric cancer tissue, FGFR-2 IIIb was expressed in 
the cell membrane and cytoplasm of cancer cells 
in 36.5% of the cases (53). FGFR-2 IIIb expression 

enhances growth of normal intestinal epithelial cells 
and hepatocytes (49, 50). In noncancerous esophageal 
tissues, FGFR-2 IIIb was localized in epithelial cells from 
the basal region of the epithelium to the lower one-third 
of the epithelium and its localization was broader than 
that of Ki-67, one of the markers for proliferating cells 
(51). Levels of FGF-7 mRNA synthesized by stromal 
cells and FGFR-2 IIIb mRNA in epithelial cells markedly 
increase, and a single injection of recombinant human 
FGF-7 enhances cell proliferation and accelerates 
ulcer healing (52). FGFR-2 IIIb immunoreactivity 
was weakly detected in the luminal surface of normal 
gastric epithelial cells (53). In addition, FGFR-2 IIIb 
immunoreactivity was strongly detected in the nucleus 
and cytoplasm of many parietal cells in the stomach. 
FGFR-2 IIIb immunoreactivity was also localized in the 
luminal surface of normal colorectal epithelial tissues 
(54). These findings suggest that FGFR-2 IIIb plays 
important roles not only in epithelial cell proliferation 
in the GI tract, but also in cell differentiation. In fetal 
pancreatic tissues, FGF-7 induces beta-cell expansion 
through the activation of ductal cell proliferation 
and their subsequent differentiation into beta-cells 
(55). In normal human pancreatic tissues, we found 
that FGFR-2 IIIb immunoreactivity was detected in 
the cytoplasm and/or membrane of islet cells and, 
pancreatic ductal cells (56). FGFR-2 IIIb was localized 
in islet cells in rat tissues and the intensity was stronger 
in glucagon-secreting alpha cells among the islet cells 
(57). FGFR-2 IIIb was weakly localized in the surface 

Figure 2. Binding of FGF to IIIb and IIIc isoforms of FGFR-2. FGFs 1, 3, 7, 10, and 22 bind to IIIb of FGFR-2 with high affinity, whereas FGFs 1, 2, 4, 6, 
9, 17, and 18 bind to IIIc with high affinity.
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with the non-keratinizing type of cervical cancer (58). 
Furthermore, FGFR-2 IIIb was prominently localized in 
proliferating reserve cells and squamous metaplastic 
reserve cells adjacent to cervical cancer cells. In 
contrast, FGFR-2 IIIb was not detected in cervical 
ductal cells. Strong immunoreactivity to FGFR-2 IIIb 
was observed in lung tumor cells in 31 of 61 specimens 
(59). In lung adenocarcinoma, cells staining with the 
FGFR-2 IIIb antibody were scattered throughout the 
tumor region, whereas in squamous cell carcinoma 
(SCC), FGFR-2 IIIb-positive cells were often clustered 
in tumor cell nests (59). A stable transfectant of the 
FGFR-2 IIIb gene in salivary adenocarcinoma cells 
induced cancer cell differentiation and apoptosis (68).

5. ROLES OF FGFR-2 IIIc

5.1. Normal cells and tissues

FGFR-2 IIIc expression in human normal 
tissues has not been extensively reported. In our 
immunohistochemical analysis using FGFR-2 IIIc-
specific antibody, FGFR-2 IIIc was localized in some 
endothelial and smooth muscle cells in small-sized 
blood vessels (Table 1). In gastrointestinal tracts, 
FGFR-2 IIIc was localized in fundic glands in the 
stomach, epithelial cells in the duodenum and stromal 
fibroblasts in the colorectum. FGFR-2 IIIc was not 
localized in gastric foveolar epithelial cells, Brunner’s 
glands in duodenum or epithelial cells in colorectum. 
In normal colorectal tissues, weak  FGFR-2 IIIc 
expression was detected in superficial colorectal 
epithelial cells, but no FGFR-2 IIIc expression was 
detected in the proliferative zone of the colorectal 
epithelium (69). FGFR-2 IIIc was localized in 
hepatocytes, but not localized in bile ducts. In 
pancreas, FGFR-2 IIIc was weakly localized in islet 
cells, but not in ductal cells or acinar cells (70). In 
other major tissues, FGFR-2 IIIc was localized in renal 
tubules, but not in the glomeruli of kidneys. FGFR-2 
IIIc was localized in cardiomyocytes and pericardial 
cells. In lungs, FGFR-2 IIIc was localized in bronchial 
and alveolar cells. FGFR-2 IIIc protein was not or very 
faintly localized in squamous epithelial cells and its 
mRNA was expressed in basal cells of the squamous 
epithelium of uterine cervix (71).

in gastric cancer cells was significantly associated 
with early-type macroscopic findings, shallow 
invasion of the gastric wall, and expansive growth 
type. In contrast, decreased expression of  FGFR-2 
IIIb in gastric cancer cells was associated with the 
proliferation and invasion of gastric cancer cells and 
a poor prognosis for the patient. FGFR-2 IIIb-specific 
antibody and probes for in situ hybridization analysis 
showed that expression of FGFR-2 IIIb increased in 
CRC.  FGFR-2 IIIb was expressed in 62.5% of CRC 
patients and localized at the center of the cancer 
nests (54). A high level of FGFR-2 IIIb expression 
was associated with a well-differentiated histological 
type and shallow wall invasion. As determined by in 
situ hybridization, both FGFR-2 IIIb and FGF-7 mRNA 
are expressed in CRC cells, and FGF-7 mRNA was 
recognized in neuroendocrine cells lying close to CRC 
cells (63). FGF-7 induced an increase in VEGF-A 
expression; thus, FGF-7 and its receptor FGFR-2 IIIb 
may be involved in tumor angiogenesis in CRC (65). 
Furthermore, FGF-7 enhances adhesion to type-IV 
collagen, one of the main components of the vascular 
basement membrane, via downregulation of Integrin 
alpha 2 and activation of ERK1/2 and focal adhesion 
kinase (FAK) signaling pathways (66). Co-expression 
of FGFR-2 IIIb and FGF-10 has been reported in 
CRC cells, and FGF-10 increased the growth rate 
of  FGFR-2 IIIb-positive CRC cell lines (64). These 
findings suggest that interactions of FGFR-2 IIIb, 
FGF-7, and FGF-10 may play important roles in CRC 
proliferation and tumor angiogenesis via autocrine 
and/or paracrine manners. We reported that FGFR-2 
IIIb was detectedt in 42 % of the pancreatic cancer 
cases, whereas FGF-7 immunoreactivity was detected 
in 34% of the cancer patients (62). The expression 
of FGFR-2 IIIb and FGF-7 correlated with venous 
invasion, vascular endothelial growth factor (VEGF)-A 
expression, and a poor prognosis, and may promote 
venous invasion and tumor angiogenesis in pancreatic 
cancers. Another ligand for FGFR-2 IIIb, FGF-10, 
induced pancreatic cancer cell migration and invasion 
via FGFR-2 IIIb (67). Moderate FGFR-2 IIIb-in situ 
hybridization signals were observed in pancreatic 
cancer cells. FGFR-2 IIIb was expressed in 86% of 
uterine cervical cancer cases, and histologically, 94% of 
patients with the keratinizing type and 79% of patients 

Table 1. FGFR-2 IIIb in normal tissues

 Organ Positive Negative

Colorectum Luminal surface of the epithelium  

Esophagus Basal to lower one-third of the epithelium  

Lung  Bronchial cells, alveolar cells

Pancreas Islet cells, alpha cells (rat) Ductal cells

Stomach Luminal surface of the epithelium, parietal cells  

Uterus Surface of squamous epithelium, vascular smooth muscle cells  

FGFR-2 variants in cancer
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cell lines and FGFR-2 IIIc stably transfected cells 
exhibited increased proliferation in vitro and formed 
larger subcutaneous and orthotopic tumors, the latter 
producing more liver metastases. We have previously 
reported that the expression levels of FGFR-2 
IIIc positively correlated with the presence of pre-
cancerous lesions in the uterine cervix, termed cervical 
intraepithelial neoplasia (CIN) (71). Furthermore, 
stable transfection of FGFR-2 IIIc in cervical cancer 
cell lines induced cancer cell growth. Therefore, 
FGFR-2 IIIc correlates with the carcinogenesis and 
aggressive growth of cervical cancer.

6. REGULATION OF SPLICING

6.1. Normal cells

Alternative splicing vastly expands 
transcriptomic diversity, as evidenced by recent 
studies demonstrating that nearly all multi-exon human 
genes undergo alternative splicing (79, 80). The most 
well-known cis-element which regulates the splicing of 
FGFR-2 is an auxiliary cis-element, ISE/ISS-3 (Intronic 
Splicing Enhancer/Intronic Splicing Silencer-3) that 
functions specifically in epithelial cell types to enhance 
splicing of the upstream exon IIIb and silence the 
downstream exon IIIc (81). Binding of Fox-2 to ISE/
ISS-3 element has been shown to play an important 
role in FGFR-2 splicing regulation (46). Recently 
epithelial splicing regulatory protein 1 (ESRP1) and 
ESRP2 were reported as RNA-binding proteins that 
participate in the enhancement of splicing of the 

5.2. Cancer cells and tissues

FGFR-2 IIIc expression has been reported in 
prostate cancer, ovarian cancer, oral squamous cell 
carcinoma, breast cancer, bladder cancer, non-small-
cell lung cancer, colorectal cancer, and pancreatic 
cancer (32, 33, 69, 70, 72–75). Loss of FGFR-2 IIIb 
expression was associated with activation of FGFR-2 
IIIc expression, and/or a shift to more virulent behavior. 
A class switch from FGFR-2 IIIb to IIIc is related to 
the progression of prostate cancers (76). Furthermore, 
FGFR-2 IIIc expression in prostate and bladder cancer 
cells induced epithelial-mesenchymal transition 
(EMT) and a switch in splicing, which may play crucial 
roles in cancer metastasis (74, 77, 78). FGFR-2 IIIc-
positive cells were detected by immunohistochemistry 
in the following lesions, listed in order of increasing 
percentage: hyperplastic polyps < low-grade adenomas 
< high-grade adenomas < carcinomas (69). In CRC 
cases, FGFR-2 IIIc immunoreactivity was highly 
expressed in 26 of 95 patients with CRC (27%), and its 
expression was correlated with distant metastasis of 
the cancer. FGFR-2 IIIc-transfected CRC cells showed 
increased growth, soft agar colony formation, migration, 
and invasion. FGFR-2 IIIc was expressed in 4 of 4 
CRC cell lines, and FGFR-2 IIIc-transfected CRC cells 
formed larger tumors in subcutaneous tissues and the 
cecum of nude mice. FGFR-2 IIIc was expressed in 83 
of 117 pancreatic ductal adenocarcinoma cases, which 
correlated with decreased duration until development 
of liver metastasis after surgery (70). FGFR-2 IIIc was 
expressed in 6 of 6 pancreatic ductal adenocarinoma 

Table 2. FGFR-2 IIIc in normal tissues

Organ Positive Negative

Heart

Cardiomyocytes

 Pericardial cells  

Lung

Bronchial epithelial cells

 Alveolar epithelial cells  

Liver Hepatocytes Biliary ductal cells

Pancreas

Islet cells (weak) Ductal cells

  Acinar cells

Blood vessel

Endothelial cells

 Smooth muscle cells  

Colorectum Stromal fibroblasts Epithelium

Duodenum Duodenal epithelium Brunner’s glands

Kidney Renal tubules Glomeruli

Stomach Fundic gland Foveolar epithelium
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with 5-fluorouracil (5-FU) and Ki23057 produced 
synergistic anti-tumor effects in an animal model of 
gastric cancer (92), and Ki23057 was more effective 
when used in combination with irinotecan, paclitaxel, 
and etoposide for drug-resistant gastric cancer cells 
(93). A recent study demonstrated that monoclonal 
antibodies to FGFR-2 IIIb or IIIc variants successfully 
inhibited the growth of gastric tumor xenografts (94). 
A mutation in the soluble ectodomain of FGFR-2 IIIc, 
S252W, suppressed cell growth, angiogenesis, and 
metastasis of human breast cancer and prostate 
cancer cell lines in vitro and in vivo (95). In pancreatic 
ductal adenocarcinoma, suppression of FGFR-2 IIIc 
using siRNA targeting FGFR-2 IIIc mRNA expression 
inhibited cell proliferation in vitro (70). In addition, an 
anti-FGFR-2 IIIc antibody inhibited the proliferation and 
migration of pancreatic cancer cells. Fully human anti-
FGFR-2 IIIc monoclonal antibody inhibited the growth 
and migration of colorectal cancer cells in vitro (69).

8. CONCLUSION

FGFR-2 IIIb and IIIc variants play important 
and different roles on carcinogenesis and tumor 
progression in various cancers. Novel therapies 
against FGFR-2 IIIc or inhibition of alternative splicing 
from IIIb to IIIc isoforms may be an effective target for 
cancer therapy.
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