### DNA replication machinery is required for development in Drosophila

### Hidetsugu Kohzaki<sup>1,2</sup>, Maki Asano<sup>3,4</sup>, Yota Murakami<sup>1,2</sup>

<sup>1</sup>Department of Viral Oncology, Institute for Virus Research, Kyoto University, Kyoto, Japan, <sup>2</sup>Department of Cell Biology, Institute for Virus Research, Kyoto University, Sakyo-ku, Kyoto, Japan 606-8507, <sup>3</sup>Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA, <sup>4</sup>Department of Molecular Cellular and Biochemistry, The Ohio State Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA

### TABLE OF CONTENTS

- 1. Abstract
- 2. Introduction
- 3. Materials and methods
  - 3.1. Fly stocks
  - 3.2. Quantitative reverse transcriptase-PCR
  - 3.3. Scanning electron microscope
- 4. Results
  - 4.1. Knockdown of DNA replication machinery by Act5C- and tubulin-Gal4 drivers was lethal during Drosophila development
  - 4.2. The knockdown of DNA replication machinery by eyeless-Gal4 driver resulted in abnormal eye-antenna structure.
  - 4.3. Small-eye phenotype of Cdc6 IR rescued by overexpressed Orc1 and Orc2
  - 4.4. The knockdown of DNA replication machinery by c323-Gal4 driver in follicle cells was sterile
  - 4.5. E2F1-DP transcription factor is involved in development
  - 4.6. Null mutants of protein degradation are maybe involved in development
  - 4.7. Mcm10 is maybe involved in wing formation
- 5. Discussion
  - 5.1. The knockdown of DNA replication machinery by several Gal4 drivers disturbed mitotic cell cycle, endoreplication, and gene amplification
- 6. Acknowledgement
- 7. References

### **1. ABSTRACT**

In Drosophila, some factors involved in chromosome replication seem to be involved in gene amplification and endoreplication, which are actively utilized in particular tissue development, but direct evidence has not been shown. Therefore, we examined the effect of depletion of replication factors on these processes. First, we confirmed RNAi knockdown can be used for the depletion of replication factors by comparing the phenotypes of RNAi knockdown and deletion or point mutants of the components of DNA licensing factor, MCM2, MCM4 and Cdt1. Next, we found that tissue-specific RNAi knockdown of replication factors caused tissuespecific defects, probably due to defects in DNA replication. In particular, we found that depletion inhibited gene amplification of the chorion gene in

follicle cells and endoreplication in salivary glands, showing that chromosomal DNA replication factors are required for these processes. Finally, using RNAi, we screened the genes for chromosomal DNA replication that affected tissue development. Interestingly, wing specific knockdown of Mcm10 induced wing formation defects. These results suggest that some components of chromosomal replication machinery are directly involved in tissue development.

### 2. INTRODUCTION

DNA replication machinery is essential for growth of all cells. Origin recognition complex is the platform of DNA replication initiation complex. Cdt1-Mcm2-7 is thought to be the licensing factor which solely directs the S phase per one cell cycle. A lot of evidence indicates that Mcm2-7 is also a replicative helicase (1). Recently, Botchan *et al.* showed that a complex including CDC45, Mcm2-7, and GINS (2) (CMG complex)(3) is the eukaryotic DNA replication fork complex in *Drosophila* embryo. DNA polymerases, including Pol $\alpha$ -primase, Pol $\delta$  and Pol $\epsilon$ , are the enzymes responsible for the elongation phase of DNA replication. The yeast CDC6 is a loader of Mcm2-7 onto DNA replication origin (4). However, higher eukaryotic CDC6 function has not been clarified.

Over many years, a lot of mutants become isolated. Among them, homozygotes are lethal during their development. Their tissue specificity is not known. In Drosophila, a tissue-specific RNAi knockdown system is available in combination with a Gal4-UAS system (5). The transgene of interest. which is expressed with a Gal4-dependent promoter, is introduced into the fly embryo. By crossing with a fly expressing Gal4 in a tissue-specific manner (Gal4 driver), one can obtain the flies that express the transgene in a tissue-specific manner. When the anti-sense RNA against the target gene is expressed using the tissue-specific Gal4 driver system, the RNA transcribed from the target DNA forms dsRNA, which could be destroyed by RNAi machinery, resulting in the depletion of the target gene product.

We have studied DNA replication and chromatin structure using polyoma virus (6,7) and the budding yeast *Saccharomyces serevisiae* (8,9). In particular, in *Drosophila* tissues, chromosomal abnormalities, including gene amplification and endoreplication, occur in a developmentally regulated manner (10,11,12). However, it is not known if the DNA replication machinery required for chromosome replication in the mitotic cell cycle is needed for gene amplification and endoreplication.

In this study, we performed knockdown of chromosomal DNA replication licensing factor complex subunits Mcm2, Mcm4, Cdt1, and CDC6. First, we showed that the RNAi knockdown of chromosomal DNA replication licensing factor complex subunits Mcm2, Mcm4, and Cdt1 could induce the same phenotype as that of the mutants that these genes exhibit. Next, we tried to knock down several genes seemingly involved in gene amplification and endoreplication by the RNAi system combined with Gal4 driver in Drosophila. We demonstrated that knockdown of DNA replication resulted in tissue-specific defects, probably through defects in DNA replication. These findings showed that chromosomal DNA replication machinery plays an active role in tissue development in Drosophila. Finally, using the RNAi system, we screened the DNA replication machinery genes.

### 3. MATRERIALS AND METHODS

#### 3.1. Fly stocks

Fly stocks were maintained under standard conditions. The RNAi knockdown lines were obtained from the National Institute of Genetics (Mishima, Japan) and Vienna Drosophila RNAi Center (Vienna, Austria). C323a-Gal4 (yw), sp/CyOGFP (yw), pre/ TM6BGFP (yw), Gla/CyoGFP, E2Fi1, Dpa1, lat1, dpa1, rL074, dup, and geminin were received from the Bloomington Drosophila Stock Center (Indiana, USA). *Eyeless-Gal4/Cyo, Actin 5C/TM3(GFP), tubulin-Gal4/TM6B(GFP), Vg-Gal4, en-Gal4, and Sg-Gal4/FM7* were gifts from Dr. Masamitsu Yamaguchi. Orc2 mutant k43, E2F1 91, UAS-Orc1, UAS-Orc2, and UAS-CDC6 were received from Dr. Maki Asano. Other lines are listed in Table 1. All RNAi flies were received from the Vienna Drosophila RNAi Center (VDRC).

### 3.2. Quantitative reverse transcriptase-PCR

Total RNA was isolated using Trizol Reagent (Invitrogen). Oligi dT primers and a Takara high fidelity RNA PCT kit (Takara, Kyoto, Japan) were used for generation of complementary DNA. Thereafter, real-time PCR was performed using a SYBR Green I kit (Takara) and the Applied Biocystems 7500 real-time PCR system (Applied Biosystems, Foster City, CA, USA). RNA expression efficiencies decreased to 25% in every case.

### 3.3. Scanning electron microscope

The eyes of the mutant flies were observed with a VE-7800 scanning electron microscope (Keyence, Osaka, Japan) in the high vacuum mode.

### 4. RESULTS

# 4.1. Knockdown of DNA replication machinery by Act5C- and tubulin-Gal4 drivers was lethal during Drosophila development

The tissue-specific knockdown of gene expression in RNAi knockdown flies resembled the Cre-loxP system in mice. In *Drosophila*, various flies temporally expressing Gal4 in various specific tissues (Gal4 driver) have been stocked. A fly having UASshRNA interference transgene construct crosses to the Gal4 driver. The mRNA of the target gene of UASshRNA was eliminated temporally and spatially in a tissue-specific manner. The fly Figure was downloaded from Flybase, which is a database of *Drosophila* DNA, chromosomes, proteins, fly mutants, and stocks.

In the initial strategy for researching RNAi availability in *Drosophila*, we aimed to compare the phenotypes of the flies in which the particular genes were knocked down in the embryonic stage and

| Table 1. List of Drosophila mu | utants |
|--------------------------------|--------|
|--------------------------------|--------|

| Mutants                    | Source                                   |
|----------------------------|------------------------------------------|
| k43                        | Bloomington Center                       |
| Lat1                       | Bloomington Center                       |
| SH0065                     | Szeged Center                            |
| rL074                      | Center                                   |
| Dpa1                       | Center                                   |
| SH0520                     | Szeged Center                            |
| Dupa1                      | Bloomington Center                       |
| Dupa3                      | Bloomington Center                       |
| Dup enhancer trap          | Bloomington Center                       |
| GemininK09107              | Bloomington Center                       |
| GemininK1409               | Bloomington Center                       |
| Psf1 enhancer trap         | Bloomington Center                       |
| SH0805(Psf1 enhancer trap) | Szeged Center                            |
| Cdc7 enhancer trap         | Bloomington Center                       |
| CycE01672                  | M. Lilly, NIH                            |
| MH30                       | J.S. Lipsick, Stanford University        |
| MH107                      | J.S. Lipsick, Stanford University        |
| E2F1 91                    | Bloomington Center                       |
| E2Fi2                      | Bloomington Center                       |
| DPa1                       | Bloomington Center                       |
| Cyclin A                   | Bloomington Center                       |
| Cdc20 <sup>FZY</sup>       | Bloomington Center                       |
| Cdh1 <sup>FZR</sup>        | Bloomington Center                       |
| Rca1/Emi1                  | Bloomington Center                       |
| Cyclin A & Rca1/Emi1       | Bloomington Center                       |
| UAS-ORC1-GFP               | M. Asano, Duke University Medical Center |
| UAS-ORC2-GFP               | M. Asano, Duke University Medical Center |
| UAS-CDC6                   | M. Asano, Duke University Medical Center |
| UAS-GFP-GFP                | M. Asano, Duke University Medical Center |

whole body and their mutants. First, we performed knockdown of DNA replication machinery by Act5Cand *tubulin*-Gal4 drivers, which express target genes in whole body. The knockdown of Mcm2, Mcm4, Cdt1, and Cdc6 resulted in lethality (Tables 2, 3). We compared the lethal phases of Act5C- and tubulin-Gal4 drivers (Table. 4). The data showed almost the same phenotype. Next, we searched the lethal phases of null mutants. The knockdown of these genes led to lethality before the 3rd larvae stage and the flies never grew to adults. However, their homologous mutants (Table 5), rL074 (Mcm2 enhancer trap line (13); β-galactosidase was inserted in mcm2 promoter), dpa1 (transcription factor DP mutant), dupa3 (Drosophila cdt1 mutant), and dup enhancer trap line (dup enhancer trap line; β-galactosidase was inserted in cdt1 promoter) showed the same phenotype as the knockdown flies of these

genes. These findings showed that RNAi knockdown methods have an equal effect on mutants.

# 4.2. The knockdown of DNA replication machinery by *eyeless-Gal4* driver resulted in abnormal eye-antenna structure

We tried to knock down components of DNA replication machinery in tissues that undergo mitotic cell cycles. We choose the eyeless-Gal4 driver, which mainly expresses target genes in the eye-antennal primordia and central nervous system in the eye imaginal disc of the late embryo that is in the growing stage. As shown in Figure 1, knockdown of any of Mcm2, Mcm4, Cdc6, Cdc45, Psf2, Pol $\alpha$ , Pol $\epsilon$  and Pol $\delta$  caused a small-eye phenotype (Figure 1 and Table 6). In severe cases, eye and antenna were completely lost. In the case of

| Table 2. Lethal | phase of knockdown | experiments by | y Gal4 driver Act5C-Gal4 |
|-----------------|--------------------|----------------|--------------------------|
|-----------------|--------------------|----------------|--------------------------|

| Responder (UAS-IR) | Chromosome linkage | Phenotype (adult)     | Adult escaper /total flies (%) |
|--------------------|--------------------|-----------------------|--------------------------------|
| Mcm2               | Ш                  | Lethal                | 0 (N=194)                      |
| Mcm3               | III                | Lethal                | 0 (N=7)                        |
| Mcm4IR-1           | 11                 | Lethal                | 0.5.4 (N=185)                  |
| Mcm4IR-2           | Ш                  | Lethal                | 0.3.3 (N=305)                  |
| Mcm5IR-1           | Ш                  | Lethal                | 0 (N=340)                      |
| Mcm5IR-2           |                    | Lethal                | 0 (N=131)                      |
| Cdc6IR-3           | 11                 | Lethal                | 0.5.3 (N=375)                  |
| Cdc6IR-1           | III                | Lethal                | 0.8.8 (N=114)                  |
| Cdt1IR-1           | 11                 | Lethal                | 0.8.7 (N=230)                  |
| Cdt1IR-2           | ш                  | Lethal                | 0.4.9 (N=406)                  |
| Orc4IR-3           | 11                 | Lethal                | 2.0.0 (N=250)                  |
| Orc4IR-2           |                    | Lethal                | 7.8.5 (N=395)                  |
| Orc5IR-1           |                    | Lethal                | 0.5.7 (N=350)                  |
| Orc5IR-2           |                    | Lethal                | 0.5.5 (N=182)                  |
| Orc6               |                    | Severe growth defect* | 13.0.7 (N=176)                 |
| Cdc45IR-1          |                    | Lethal                | 0.3.0 (N=334                   |
| Cdc45IR-2          |                    | Lethal                | 2.9.2 (N=137)                  |
| RPA70IR-1          |                    | Lethal                | 1.2.3 (N=316)                  |
| RPA70IR-2          |                    | Lethal                | 0.3.2 (N=317)                  |
| Psf1 (VDRC)        |                    | Lethal                | 0 (N=163)                      |
| Psf1 IR-3          |                    | Lethal                | 0.8.9 (N=225)                  |
| Psf2 IR-4          |                    | Lethal                | 0 (N=116)                      |
| Psf2 IR-1          |                    | Lethal                | 1.9.4 (N=155)                  |
| Rfc3 IR-1          |                    | Lethal                | 1.5.6 (N=321)                  |
| Rfc3 IR-9          |                    | Lethal                | 1.8.2 (N=329)                  |
| Mcm10              |                    | Lethal                | 7.8.7 (N=127)                  |
| Polα180IR-1        |                    | Lethal                | 0 (N=125)                      |
| Polα180IR-3        |                    | Lethal                | 0 (N=169)                      |
| Polα50IR-1         |                    | Lethal                | 0 (N=19)                       |
| Polα50IR-2         |                    | Lethal                | 0 (N=262)                      |
| Polα73IR-1         |                    | Lethal                | 0 (N=106)                      |
| Polα73IR-2         |                    | Lethal                | 0 (N=73)                       |
| Polô IR-1          |                    | Lethal                | 6.1.8 (N=372)                  |
| Polô IR-2          |                    | Lethal                | 0 (N=20)                       |
| Polɛ255IR-1        |                    | Lethal                | 0 (N=196)                      |
| Pole255IR-2        |                    | Lethal                | 2.9.6 (N=109)                  |
| DP IR-1            |                    | Lethal                | 0 (N=109)                      |
| DP IR-2            |                    | Lethal                | 5.1.5 (N=136)                  |
| Cul-4              |                    | Lethal                | 0 (N=78)                       |
| Cul-1              |                    | Severe growth defect* | 14.3.9 (N=132)                 |
| dskip-1/SkpA       |                    | Lethal                | 0.6.5 (N=153)                  |
| Rbx1/Roc1          |                    | Lethal                | 1.5.4 (N=130)                  |
| Roc1b/Roc2         |                    | Lethal                | 0 (N=149)                      |
| Elongin C          |                    | Severe growth defect* | 14.1.2 (N=255)                 |
| yw                 |                    | Normal                | (N=270)                        |

*Act5C-Gal4* is expressed in the whole body from early phase. \*Severe growth defect: below 20% of adult escapers

| Responder (UAS-IR) | Chromosome linkage | Phenotype (adult)      | Adult escaper/total flies (%) |
|--------------------|--------------------|------------------------|-------------------------------|
| Mcm2               | 111                | Lethal                 | 0 (N=133)                     |
| Mcm3               |                    | Lethal                 | 0 (N=154)                     |
| Mcm4IR-1           | 11                 | Lethal                 | 1.6.4 (N=427)                 |
| Mcm4IR-2           | III                | Lethal                 | 2.0.9 (N=335)                 |
| Mcm5IR-1           | III                | Lethal                 | 0 (N=280)                     |
| Mcm5IR-2           | III                | Lethal                 | 0 (N=106)                     |
| Cdc6IR-3           | 11                 | Lethal                 | 0 (N=194)                     |
| Cdc6IR-1           |                    | Lethal                 | 0 (N=52)                      |
| Cdt1IR-1           |                    | Lethal                 | 4.6.1 (N=347)                 |
| Cdt1IR-2           | III                | Lethal                 | 0 (N=152)                     |
| Orc4IR-3           | 11                 | Lethal                 | 0 (N=137)                     |
| Orc4IR-2           |                    | Lethal                 | 0.8.3 (N=360)                 |
| Orc5IR-1           |                    | Lethal                 | 0 (N=179)                     |
| Orc5IR-2           |                    | Lethal                 | 2.2.6 (N=265)                 |
| Orc6               |                    | Lethal                 | 2.5.6 (N=265)                 |
| Cdc45IR-1          |                    | Lethal                 | 0 (N=39)                      |
| Cdc45IR-2          |                    | Lethal                 | 0 (N=57)                      |
| RPA70IR-1          |                    | Lethal                 | 0 (N=75)                      |
| RPA70IR-2          |                    | Lethal                 | 0 (N=105)                     |
| Psf1 IR-1          |                    | Lethal                 | 0 (N=173)                     |
| Psf1 IR-2          |                    | Lethal                 | 0 (N=137)                     |
| Psf2 IR-4          |                    | Lethal                 | 0.0.9 (N=231)                 |
| Psf2 IR-1          |                    | Lethal                 | 1.6.1 (N=186)                 |
| Rfc3 IR-1          |                    | Lethal                 | 0 (N=178)                     |
| Rfc3 IR-9          |                    | Lethal                 | 0 (N=129)                     |
| Mcm10              |                    | Almost Normal*         | 64.2.9 (N=340)                |
| Polα180IR-1        |                    | Lethal                 | 2.5.4 (N=276)                 |
| Polα180IR-3        |                    | Lethal                 | 7.0.8 (N=113)                 |
| Polα50IR-1         |                    | Lethal                 | 1.3.6 (N=220)                 |
| Polα50IR-2         |                    | Severe growth defect** | 18.0.2 (N=250)                |
| Polα73IR-1         |                    | Lethal                 | 0 (N=105)                     |
| Polα73IR-2         |                    | Lethal                 | 0 (N=150)                     |
| Polô125KDa IR-1    |                    | Lethal                 | 0 (N=215)                     |
| Polδ125KDa IR-2    |                    | Lethal                 | 0 (N=126)                     |
| Polɛ255IR-1        |                    | Lethal                 | 1.1.8 (N=254)                 |
| Pole255IR-2        |                    | Slight growth defect   | 31.4.8 (N=162)                |
| DP IR-1            |                    | Lethal                 | 2.0.4 (N=98)                  |
| DP IR-2            |                    | Lethal                 | 4.7.9 (N=146)                 |
| Cul-4              |                    | Lethal                 | 0 (N=78)                      |
| Cul-1              |                    | Severe growth defect** | 14.3.9 (N=132)                |
| dskip-1/SkpA       |                    | Lethal                 | 0 (N=20)                      |
| Rbx1/Roc1          |                    | Lethal                 | 1.5.4 (N=130)                 |
| Roc1b/Roc2         |                    | Lethal                 | 0 (N=132)                     |
| Elongin C          |                    | Severe growth defect** | 12.1.2 (N=132)                |
|                    | 111                | Severe growth delect   | 12.1.2 (11-132)               |

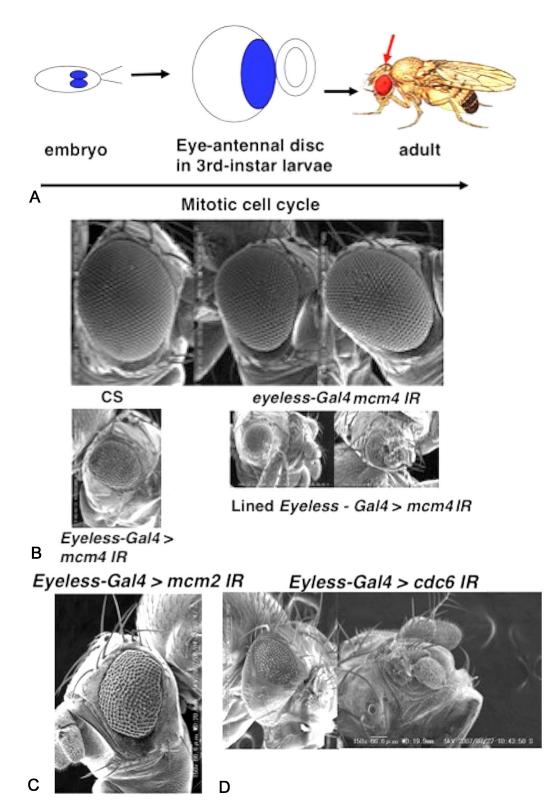
Tubulin-p-Gal4 is expressed in the whole body from early phase. \* Almost Normal: above 60% of adult escapers \*\* Severe growth defect: below 20% of adult escapers \*\*\* Slight growth defect: about 30% of adult escapers

### Table 4. Lethal phase of Actin5C-Gal4 or tubulin-p-Gal4>>IR

| Responder (UAS-IR) | Act5C-Gal4 | Tubulin-p-Gal4 |
|--------------------|------------|----------------|
| Orc5               | L-P        | -L             |
| Mcm2               | L          | L              |
| Mcm4               | -L         | -L             |
| Mcm5               | L-P        | L-P            |
| CDC6               | P-A        | L              |
| Cdt1               | -L         | - L            |

Stage of lethal phase shows P, L, and A. P: papae, L: larvae, A: adult

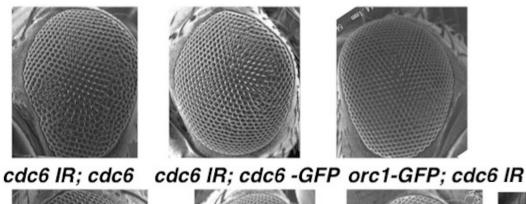
#### **Table 5.** Lethal phase of null mutants


| Gene                 | Mutant                     | Chromosome linkage | Stage of lethality |
|----------------------|----------------------------|--------------------|--------------------|
| Orc2                 | k43                        | 111                | P-A                |
| Orc3                 | Lat1                       | 11                 | L-P                |
| Orc3                 | SH0065                     | 11                 | L-P                |
| Mcm2                 | rL074                      | 111                | P-A                |
| Mcm4                 | Dpa1                       | 11                 | L-P                |
| Mcm4                 | SH0520                     | 11                 | L-P                |
| Cdt1                 | Dupa1                      | 11                 | P                  |
| Cdt1                 | Dupa3                      | 11                 | L                  |
| Cdt1                 | Dup enhancer trap          | 11                 | L                  |
| Geminin              | GemininK09107              | 11                 | L                  |
| Geminin              | GemininK1409               | 11                 | L                  |
| Psf1                 | Psf1 enhancer trap         | 11                 | P                  |
| Psf2                 | SH0805(Psf1 enhancer trap) | 11                 | - L                |
| Cdc7                 | Cdc7 enhancer trap         | X                  | P-A                |
| CycE                 | CycE01672                  | 11                 | P-A                |
| Myb                  | MH30                       | X                  | L-P                |
| Myb                  | MH107                      | X                  | L                  |
| E2F1                 | E2F1 91                    | 111                | L                  |
| E2F1                 | E2Fi2                      | Ш                  | L-P                |
| DP                   | DPa1                       | Ш                  | - L                |
| Cyclin A             | Cyc A                      | 111                | Embryonic lethal   |
| Cdc20 <sup>FZY</sup> | fzy <sup>4</sup>           | 11                 | Embryonic lethal   |
| Cdh1 <sup>FZR</sup>  | Rap                        | Х                  | Embryonic lethal   |
| Rca1/Emi1            | Rca1 <sup>1</sup>          | 11                 | Embryonic lethal   |
| Cyclin A & Rca1/Emi1 |                            |                    | Embryonic lethal   |

Stage of lethal phase shows P, L, and A. P: papae, L: larvae, A: adult

Cdt1, we could not find adults having an eyeless-Gal4 or Cdt1 RNAi construct. These findings suggest that the knockdown of Cdt1 led to lethality, probably because of a headless phenotype. Morphogenesis in multicellular organisms is associated with patterned cell proliferation. As a rule, the size of an organ and its shape are specific. Knockdown of DNA replication machinery terminated the fate; therefore, the specificity disappeared.

# 4.3. Small-eye phenotype of Cdc6 IR rescued by overexpressed Orc1 and Orc2


Cdc6 and Orc1 have high similarity of amino acid sequences. In *S. pombe*, overproduction of Cdc6 homologue and Cdc18 induces re-replication. Thus, we investigated whether Cdc6IR is rescued by overexpression of Orc1 and Orc2 (Figure 2 and Table 7).



**Figure 1.** Knockdown in eye-antenna development, including mitotic cell cycle. A. Eyeless-Gal4 is expressed in eye-antennal primordia in late embryo. In third-instar larvae, eyeless-Gal4 is expressed in the anterior of the eye disc. As a result, the eye structure changed. B. Small eyes were found by the knockdown of Mcm4, which is a subunit of MCM complex, a licensing factor/putative replicative helicase complex. CS: Carton S; *eyeless-Gal4*: *eyeless-Gal4*, *mcm4-IR (UAS-mcm4)*; ">": two lines were crossed. "Lined" shows the flies have *eyeless-Gal4* and *UAS-mcm4* every generation. C. The knockdown of Mcm2, which is a subunit of MCM complex. D. The knockdown of CDC6, which is an essential factor for the formation of pre-replicative complex on the replication origins. E. RNAi-dependent knockdown of DNA replication machinery by eyeless-Gal4 driver: target proteins were CDC45, Psf2 (which is a subunit of GINS), Polα-primase 180KDa, 73KDa subunit, Polε 255KDa subunit, Polδ 255KDa subunit and Rfc3(one subunit RFC).

### Table 6. Lethal phase of knockdown experiments by Gal4 driver eyeless-Gal4

| Responder (UAS-IR) | Chromosome linkage | Phenotype (adult)            |
|--------------------|--------------------|------------------------------|
| Mcm2               | ш                  | Small eye (49.2.6%; N = 136) |
| Mcm4               | П                  | Small eye (100%; N= 90)      |
| CDC6               | П                  | Small eye (53.7.7%; N= 106)  |
| Cdt1               | П                  | Headless (0%; N = 130)       |
| CDC45              | П                  | Small eye (75.0.0%; N = 48)  |
| Psf2               | П                  | Small eye (18.0.3%; N= 124)  |
| Rfc3               | П                  | Small eye (31.7.5%; N = 126) |
| Mcm10              | П                  | Small eye (67.6.1%; N = 71)  |
| Polα 180KDa        | ш                  | Small eye (6.2.5%; N=112)    |
| Polα 73KDa         | 11                 | Small eye (6.2.5%; N=112)    |
| Polô 125KDa        | П                  | Small eye (33.3.3%; N = 126) |
| Polɛ255KDaIR-1     | П                  | Small eye (38.6.1%; N = 313) |
| Polɛ255KDaIR-2     | 111                | Small eye (25.7.6%; N = 198) |



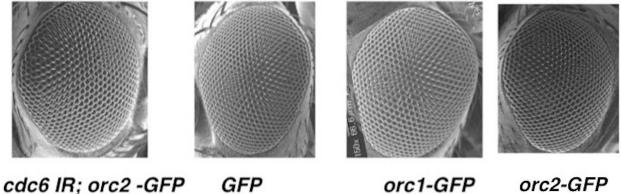



Figure 2. Small-eye phenotype of Cdc6 IR rescued by overexpressed Orc1, Orc2–GFP, and UAS-GFP.

# 4.4. The knockdown of DNA replication machinery by *c323-Gal4* driver in follicle cells was sterile

Each cell or tissue has its specific cell cycle in *Drosophila* (10,11). In follicle cells, endoreplication and gene amplification occur to amplify the genes encoding egg shell protein for eggshell formation (10,11,14). We performed knockdown of DNA replication machinery by *c323a-Gal4* driver, which expresses target gene products in follicle cells from stage 7, at which stage endoreplication and gene amplification occur. As shown in Figure 8, knockdown of replication proteins, Mcm2, Mcm4, and Cdc6, caused a sterile phenotype or growth defect. These findings suggest that endoreplication and gene amplification in follicle cells were suppressed, resulting

### Table 7. Phenotype of overexpression by c323a-Gal4

| Responder<br>(UAS) | Chromosome linkage | Phenotype (adult) |
|--------------------|--------------------|-------------------|
| ORC1GFP*           | Ш                  | Female sterile    |
| ORC1GFP*           | ш                  | Female sterile    |
| ORC2GFP*           | ш                  | Female sterile    |
| CDC6GFP**          | Ш                  | Normal            |
| CDC6GFP**          | Ш                  | Normal            |

\* Indicated heterozygous cdc6-GFP. \*\* Showed homozygous cdc6-GFP.

### Table 8. Lethal phase of knockdown experiments by Gal4 driver c323a

| Responder (UAS-IR) | Chromosome linkage | Phenotype (adult) |
|--------------------|--------------------|-------------------|
| Mcm4               | Ш                  | Female sterile    |
| CDC6               | Ш                  | Female sterile    |
| CDC45              | Ш                  | Female sterile    |
| Psf2               | Ш                  | Female sterile    |
| Rfc3               | Ш                  | Female sterile    |
| Polα 180KDa        | ш                  | Female sterile    |
| Polα 73KDa         | Ш                  | Female sterile    |
| Ροίδ               | 11                 | Female sterile    |

 Table 9. Summary of phenotypes induced by knockdown of Mcm10 with each Gal4 driver

| Gal4 driver    | Phenotype      |
|----------------|----------------|
| Act5C          | Lethal         |
| Tubulin-p-Gal4 | Wing phenotype |
| SD             | Wing phenotype |
| Vg             | Normal         |
| en             | Normal         |
| Eyeless        | Normal         |

in a defect in oogenesis (15). On the other hand, Orc1, Orc2, and Cdc6 were overexpressed by *c323a*. Cdc6 overexpression showed normal development, but Orc1 and Orc2 cases showed female sterility.

## 4.5. E2F1-DP transcription factor is involved in development

E2F1-DP heterodimer is a key regulator of cell cycle progression (16,17,18). In *Drosophila*, the factors have another function, chorion gene amplification (19,20). We checked this function in development. Null mutants showed lethality up to larvae (Table 5). We then performed the knockdown of DP by Act5c and tubulinp-Gal4. DP knockdown with act5C (act5c>>DP IR) or tublin-p-Gal4 (tublin-p-Gal4>>DP IR) showed lethal mutagenesis in flies. As DP needs transcription factor E2F1 function (16), these findings showed that E2F1-DP is involved in development (Tables 2, 3, and 5).

# 4.6. Null mutants of protein degradation are maybe involved in development

Protein degradation is a key step in the cell cycle. Cul-4, Cul-1, and Rbx1 are components of SCF complex (21). Cyclin A, Cdc20FZY, Cdh1FZR, and Rca1/Emi1 are components of APC (21,22,23,24). We showed *Drosophila* Orc complex was degraded by APC (25). We studied the effects of these proteins in development (Table 5). We then performed the knockdown of components of SCF complex by Act5c and tubulin-p-Gal4. We found these flies have lethality (Tables 2, 3). These findings showed that SCF complex is involved in development (Tables 2, 3, and 5).

#### 4.7. Mcm10 is maybe involved in wing formation

We hypothesized that DNA replication machinery contributes to development directly. First,

### Table 10. Phenotype of SD-Gal4 > IR

| Responder (UAS-IR) | Chromosome linkage | Phenotype (adult) |
|--------------------|--------------------|-------------------|
| Mcm3               | III                | Normal            |
| Mcm10              | III                | Wing phenotype    |
| Polα 50KDaIR-2     | III                | Wing phenotype    |
| Pole255KDaIR-1     | II                 | Normal            |



Figure 3. Gene amplification of *Drosophila* follicle cell. A. The amplified region in follicle cells has a so-called onionskin structure. This region, which codes proteins necessary for egg formation and development. B. RNAi knockdown of DNA replication machinery by c323a Gal4 driver.

we performed the knockdown of DNA replication machinery by several Gal4 drivers for screening (Table 9). Surprisingly, knockdown of Mcm10 by *tubulin-p-* and *SD-Gal4* led to wing formation defects. The knockdown of Mcm10 by wing-specific Gal4 and *SD-Gal4* showed wing defects, but not by *Vg* or *en-Gal4* driver. We performed the knockdown of several DNA replication machineries, including Mcm3 and Polɛ255KDa, by *SD-Gal4*, but we could not find a wing phenotype (Table 10). These findings suggest that Mcm10 has another function in addition to its function in DNA replication.

### 5. DISCUSSION

#### 5.1.The knockdown of DNA replication machinery by several Gal4 drivers disturbed mitotic cell cycle, endoreplication, and gene amplification

In this study, to show the function of the replication machineries during development *in vivo*, we performed systematic knockdown of the genes involved in DNA replication machinery and found that many of the gene knockdowns abolished several *Drosophila* tissue organizations. We investigated the relationship between transcription factors and DNA replication origin selection (27). During development, origin seems to be selected strictly (10,11). As transcription factors are terminal targets of signal transduction, we proposed these factors may contribute the selection (28). Therefore, well-controlled DNA replication is an essential part of precise development in many tissues (28,29,30).

In tissues of several insects, including Drosophila, and plants, chromosomal abnormalities, including gene amplification and endoreplication, occur in a developmentally regulated manner (31,32) (Figure 3A). However, it is not known if DNA replication machinery is needed for these developmental stages. As shown in Table 3B, c323a Gal4 or CS cross mcm4 and cdc6. c323a-Gal4 > mcm4 and c323a-Gal4 > cdc6 bore less eggs than CS. These data show that all knockdown lines of DNA replication factors tested were female sterile (Table 8). C323a-Gal4 expresses follicle cells and it is known that gene amplification is essential in follicle cells. This suggests that DNA replication machinery is needed for not only mitotic cell cycle but also gene amplification. Though one can imagine the inhibition of DNA replication components can easily affect development of most organs, our exhaustive findings provide evidence that support this hypothesis.

Chromosomal abnormalities, including translocation, inversion, gene amplification, and endoreplication, induce polyploidy or aneuploidy, which is associated with almost all cancer cells. Many kinds of leukemic cells have chromosomal translocation and

express resulting oncogenic chimeric proteins. For example, in acute myeloblastic leukemia (AML) M2 phase, t (8; 21) chromosomal translocation is found in many cases, and as a result, oncogenic Runx1 (AML1)-ETO (MTG8) is expressed (33). In clinical trials, suppression of the expression of the chimeric protein has been a target in many approaches. For effective repression, RNA interference (RNAi) therapy may be a powerful tool.

### 6. ACKNOWLEDGEMENTS

We thank Dr. Masamitsu Yamaguchi, Dr. Kaeko Kamei and their lab members for their technical advice. We thank Dr. Tadashi Uemura and the members of his lab for their dedicated support and helpful assistance. This work was partially supported by the Japanese Leukemia Research Fund. H.K. was supported by a KIT VL grant and the Memorial Fund on the 44 Meeting Annual of the Japan Society for Clinical, Laboratory Automation. Y.M. was supported by a Grant-in-Aid for Scientific Research on Priority Areas from the Japan Society for the Promotion of Science.

### 7. REFERENCES

- M. Pacek, A.V. Titter, Y. Kubota, H. Takisawa, J. C. Walter: Localization of MCM2-7, Cdc45, and GINS to the site of DNA unwinding during eukaryotic DNA replication. *Mol. Cell* 21, 581–587 (2006) DOI: 10.1016/j.molcel.2006.01.030
- A. Gambus, R.C. Jones, A. Sanchez-Diaz, M. Kanemaki, F. van Deursen, R. D. Edmondson, K. Labib: GINS maintains association of Cdc45 with MCM in replisome progression complexes at eukaryotic DNA replication folks. *Nat. Cell Biol.* 8, 358–366 (2006) DOI: 10.1038/ncb1382
- S.E. Moyer, P.W. Lewis, M.R. Botchan: Isolation of the Cdc45/Mcm2-7/GINS (CMG) complex, a candidate for the eukaryotic DNA replication folk helicase. *Proc. Natl. Acad. Sci. USA* 103, 10236–10241 (2006) DOI: 10.1073/pnas.0602400103
- J.C. Randell, J.L. Bowers, H.K. Rodriguez, S.P. Bell: Sequential ATP hydrolysis by Cdc6 and ORC directs loading of the Mcm2-7 helicase. *Mol. Cell* 21, 29–39 (2006) DOI: 10.1016/j.molcel.2005.11.023
- 5. G. J. Hannon: RNAi a guide to gene silencing. Cold Spring Harbor Laboratory Press. New York (2003)

- K. Ito, M. Asano, P. Huges, H. Kohzaki, C. Masutani, F. Hanaoka, T. Kerppola, T. Curran, Y. Murakami, Y. Ito: C-Jun stimulates origin-dependent DNA unwinding by polyomavirus large T antigen. *EMBO J.* 15, 5636–5646 (1996).
- Y. Murakami, L.F. Chen, M. Sanechika, H. Kohzaki, Y. Ito: Transcription factor Runx1 recruits the polyomavirus replication origin to replication factories. *J. Cell. Biochem.* 100, 1313–1323 (2007) DOI: 10.1002/jcb.21115
- H. Kohzaki, Y. Ito, Y. Murakami: Contextdependent modulation of the replication activity of *Saccharomyces cerevisiae* autonomously replicating sequences by transcription factors. *Mol. Cell. Biol.* 19, 7428–7435 (1999) DOI: 10.1002/jcb.21115
- 9. H. Kohzaki, Y. Murakami: Faster and easier chromatin immunoprecipitation assay with high sensitivity. *Proteomics* 7, 10–14 (2007) DOI: 10.1002/pmic.200600283
- B.R. Calvi, M.A. Lilly, A. C. Spradling: Cell cycle control of chorion gene amplification. *Genes & Dev.* 12, 734–744 (1998) DOI: 10.1101/gad.12.5.734
- L.A. Lee, T.L. Orr-Weaver: Regulation of cell cycles in Drosophila Development: Intrinsic and Extrinsic Cues. *Annu. Rev. Genet.* 37, 545–578 (2003)
- M.I. Aladjem: Replication in context:dynamic regulateon of DNA replication patterns in metazoans. *Nature reviews Genetics* 8, 588–600 (2007) DOI: 10.1038/nrg2143
- L. Manseau, A. Baradaran, D. Brower, A. Dudhu, F. Elefant, H. Phan, A.V. Philp, M. Yang, D. Glover, K. Kaiser, K. Palter, S. Selleck: Gal4 enhancer traps expressed un the embryo, larval brain, imaginal discs, and ovary of Drosophila. *Developmental Dynamics* 209, 310–322 (1997) DOI:10.1002/(sici)1097-0177(199707)209:3 <310::aid-aja6>3.3.co;2-o
- J.M. Claycomb, M. Benasutti, G. Bosco, D.D. Fenger, T.L. Orr-Weaver: Gene amplification as a developmental strategy: Isolation of two Developmental Amplicons in *Drosophila*. *Dev. Cell* 6, 145–155 (2004) DOI: 10.1016/s1534-5807(03)00398-8

- L. Lu, H. Zhang, J. Tower: Functionally distinct, sequence-specific replicator and origin elements are required for Drosophila chorion gene amplification. *Genes & Dev.* 14, 134–146 (2001) DOI: 10.1101/gad.822101
- I. Royzman, A.J. Whittaker, T.L. Orr-Weaver: Mutations in Drosophila DP and E2F distinguish G1-S progression from an associated transcriptional program. *Genes* & *Dev.* 11. 1999–2011 (1997) DOI: 10.1101/gad.11.15.1999
- M. V. Frolov, D.S. Huen, O. Stevaux D.K. Dimova, K. Balczarek-Strang, M.Elsdon, N. J. Dyson: Functional antagonism between E2F family members. *Genes & Dev.* 15, 2146–2160 (2001) DOI: 10.1101/gad.903901
- D.K. Dimova, O. Stevaux, M. V. Frolov, N. J. Dyson: Cell cycle-dependent and cell cycle- independent control of transcription by *Drosophila* E2F/Rb pathway. *Genes & Dev.* 17, 2308–2320 (2003) DOI: 10.1101/gad.1116703
- G. Bosco, W. Du, T.L. Orr-Weaver: DNA replication control through interaction of E2F-Rb and the origin recognition complex. *Nature Cell Biol.* 3, 289–295 (2001) DOI: 10.1038/35060086
- S. Shibutani, L.M. Swanhart, R.J. Duronio: Rbf1-independent termination of E2f1-target gene expression during early *Drosophila* embryonesis. *Development* 134, 467–478 (2007) DOI: 10.1242/dev.02738
- 21. J.R. Skaar, M. Pagano: Control of cell growth by the SCF and APC/C ubiquitin ligases. *Curr. Opin. Cell Biol.* 21 (6), 816–824 (2009) DOI: 10.1016/j.ceb.2009.08.004
- 22. S.J. Sigrist, C.F. Lehner: *Drosophila fizzyrelated* down-regulates Mitotic cyclins and is required for cell proliferation arrest and entry into end-replication. *Cell* 90, 671–681 (1997) DOI: 10.1016/s0092-8674(00)80528-0
- V. Schaeffer, C. Althauser, H.R. Shcherbata, W.M. Deng, H. Ruohola-Baker: Notchdependent Fizzy-related /Hec1/Cdh1 expression is required for the mitotic-toendocycle transition in *Drosophila* follicle cells. *Curr. Biol.* 14, 630–636 (2004) DOI: 10.1016/j.cub.2004.03.040

- 24. R. Grosskortenhaus, F. Sprenger: Rca1 inhibits APC-Cdh1<sup>Fzr</sup> and is required to prevent cyclin degradation in G2. *Dev. Cell* 2, 29–40 (2002) DOI: 10.1016/s1534-5807(01)00104-6
- M. Araki, R.P. Wharton, Z. Tang, H. Yu, M. Asano: Degradation of origin recognition complex large subunit by the anaphasepromoting complex in *Drosophila*. *EMBO J*. 33, 6115–6126 (2003) DOI: 10.1093/emboj/cdg573
- T.W. Christensen, B.K. Tye: MCM10 interacts with members of the prereplication complex and is required for proper chromosome condensation. *Mol. Biol. Cell.* 14 (6), 2206– 2215 (2003) DOI: 10.1091/mbc.e02-11-0706
- H. Kohzaki, Y. Murakami: Transcription factors and DNA replication origin selection. *BioEssays* 27, 1107–1116 (2005) DOI: 10.1002/bies.20316
- E.L. Beall, J.R. Manak, S. Zhou, M. Bell, J. S. Lipsick, M.R. Botchan: Role for a *Drosophila* Myb-containing protein complex in site-specific DNA replication. *Nature* 420, 833–837 (2002) DOI: 10.1038/nature01228
- 29. Y. J. Machida, J.L. Hamlin, A. Dutta: Right place, right time, and only once: replication initiation metazoans. *Cell* 123, 13–24 (2005) DOI: 10.1016/j.cell.2005.09.019
- O. Hyrien: Peaks cloaked in the mist: the landscape of mammalian replication origins. *J. Cell Biol.* 208 (2), 147–160 (2015) DOI: 10.1083/jcb.201407004
- 31. J.M. Claycomb, T,L. Orr-Weaver: Developmental gene amplification: insight DNA replication and gene expression. *Trends Genet.* 21 (3), 149–162 (2005) DOI: 10.1016/j.tig.2005.01.009
- S.A. Gerbi, F.D. Urnov: Differential DNA replication in insects. DNA replication in eukaryotic cells. Cold Spring Harbor Laboratory Press. New York (1996)
- H. Kohzaki, K. Ito, G. Huang, H.G. Wee, Y. Murakami, Y. Ito: Block of granulocytic differentiation of 32Dcl3 cells by AML1/ETO (MTG8) but not by highly expressed Bcl-2. *Oncogene* 18, 4055–4062 (1999) DOI: 10.1038/sj.onc.1202735

**Key Words:** DNA replication, Tissue specific RNAi-knockwown, Drosophila, Gene Amplification, Endoreplication, Development

**Send correspondence to:** Hidetsugu Kohzaki, Faculty of Allied Health Science, Yamato University, Faculty of Allied Health Science, Yamato University, Suita, Osaka 564-0082, Japan, Tel: 81-6-6384-8010, Fax: 81-6-6384-8010, E-mail: charaznable.k@gmail.com