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1. ABSTRACT

Understanding brain function and the compu-
tations that individual neurons and neuronal ensem-
bles carry out during cognitive functions is one of the 
biggest challenges in neuroscientific research. To this 
end, invasive electrophysiological studies have provid-
ed important insights by recording the activity of single 
neurons in behaving animals. To average out noise, 
responses are typically averaged across repetitions 
and across neurons that are usually recorded on dif-
ferent days. However, the brain makes decisions on 
short time scales based on limited exposure to sensory 
stimulation by interpreting responses of populations of 
neurons on a moment to moment basis. Recent stud-
ies have employed machine-learning algorithms in at-
tention and other cognitive tasks to decode the infor-
mation content of distributed activity patterns across 

neuronal ensembles on a single trial basis. Here, we 
review results from studies that have used pattern-
classification decoding approaches to explore the 
population representation of cognitive functions. These 
studies have offered significant insights into population 
coding mechanisms. Moreover, we discuss how such 
advances can aid the development of cognitive brain-
computer interfaces.

2. INTRODUCTION

Our ability to perceive the world around us is 
limited by our brain’s processing capacity. As a result, 
we only perceive, remember and respond to a fraction 
of the visual input that reaches our retinas. Typically, 
this is the part of the world that we attend to. Attention 
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serves to prioritize stimuli processing according to 
their physical salience or their relevance to current 
behavioral goals. In that sense, attention acts as a 
selection mechanism to facilitate processing of a 
subset of sensory information while irrelevant stimuli 
are filtered out. The ability to flexibly guide our attention 
to the most relevant stimuli according to the task at 
hand is a critical part of our cognition and necessary 
for normal behavior. Indeed, attention is known to 
be disrupted in several neuropsychiatric disorders, 
including attention deficit hyperactivity disorder, 
schizophrenia and Alzheimer’s disease. Thus, a 
thorough understanding of the neural mechanisms 
of attention is important for two reasons. First, it can 
provide important insights into the way information 
is selectively processed in the brain and into the 
mechanisms that underlie dynamic modulations in 
functional connectivity in line with current behavioral 
goals. Second, a detailed description of the neural 
circuits and computations carried out during attentive 
behavior is necessary in order to develop more 
effective treatments and interfaces that can aid people 
with attention and vision-related disorders.

The deployment of attention to particular 
locations in space is characterized as spatial attention. 
Several psychophysical studies have shown that 
covert shifts of attention (i.e. without movement of the 
eyes or head) result in improved stimulus detection 
and faster reaction times toward stimuli at the locus of 
attention over stimuli located elsewhere (1). However, 
attention can also be directed to particular features or 
objects. A typical example is looking for a familiar face 
in the crowd or for our car in a parking lot. In this case, 
we rely on the known characteristics of the object we 
search to guide the search more efficiently. As a result, 
all stimuli in our visual field that share the searched 
feature are more likely to attract our attention. For 
example, if we know that our friend wears a red jacket, 
all red items in the scene become more likely targets 
in the search process. This is called feature attention. 
Psychophysical studies have confirmed an interplay 
between spatial- and feature-based attention in visual 
search tasks (2–4).

In this review, we focus on current evidence 
that attention (mainly spatial attention) can be decoded 
by measuring population activity in the brain. We will 
review studies that have decoded population activity to 
predict behavior in attention and other cognitive tasks. 
Given that the non-human primate has proved to be 
an irreplaceable model to understand the complexity 
of the human brain and particularly cognitive functions, 
we will mainly focus on studies that have employed 
behaving macaques and electrophysiological methods, 
which allow a high enough spatial and temporal 
resolution to assess decoding principles in the brain. 
We first provide a brief description of the brain areas 
known to be involved in attention mechanisms 

(section 3). We then review activity measures that 
are known to be modulated by attention including 
firing rate responses, neural synchrony, response 
variability and inter-neuronal correlations (section 4). 
In section 5, we refer to the advantages of population 
analysis methods and in section 6, we briefly describe 
how pattern classification algorithms can be used 
to decode neural activity. Studies that have used 
machine-learning algorithms to decode population 
activity patterns in attention, visual processing and 
other functions are reviewed in section 7. In section 
8, we compare the efficacy of different neural signals 
in decoding approaches. Finally, in section 9, we 
discuss the implications of decoding approaches for 
the development of brain-machine interfaces (BMIs), 
which aim to restore function in human patients.

3. THE ATTENTION NETWORK

At the neuronal level, significant insights 
into the neural mechanisms of attention have been 
obtained from imaging and electrophysiological studies 
in humans and non-human primates. These studies 
have implicated a distributed network of brain areas 
in attention including visual areas in the occipital and 
temporal lobe as well as higher order brain areas in 
the prefrontal and parietal lobe (Figure 1) (for reviews 
see 5, 6, 7). Targeted invasive electrophysiological 
approaches that employ single-unit and multi-unit 
extracellular recordings in non-human primates have 
provided most of our knowledge on the distinct role of 
different brain areas in attentional mechanisms. These 
studies have shown that both in the dorsal and ventral 
visual stream, activity is modulated by spatial and 
feature-based attention (8–15). Although attentional 
modulation of neuronal responses has been reported 
almost in all brain areas with visually responsive 
neurons (including thalamic nuclei, the superior 
colliculus, areas V1, V2 etc.), most neurophysiological 
studies have focused on the effect of attention on 
neuronal responses in mid- and higher-level visual 
areas such as area V4, the inferior temporal cortex (IT) 
and the middle temporal area (area MT) (Figure 1).

Higher order areas in the prefrontal and 
parietal cortex have been suggested to be the 
source of these activity modulations in visual areas. 
Specifically, the prevailing view holds that parietal 
and prefrontal cortical areas provide top-down biasing 
signals that modulate processing in posterior visual 
areas by selectively enhancing activity of neuronal 
populations that encode the attended feature, object 
or location at the expense of irrelevant distracters 
(6, 16). Accordingly, prefrontal and parietal areas are 
suggested to be critical for the control of visual attention. 
In line with this view, lesions in these areas produce 
attentional deficits in both monkeys and humans (17–
21). Electrophysiological findings from monkeys have 
identified two areas within the parietofrontal network 



Figure 1. Cortical areas of the attention network. Lateral view of a left hemisphere of a macaque brain. The approximate locations of visual areas V1, V2, 
V4, MT, and IT are indicated on the brain in blue ellipses. Areas that are considered as attention control areas in the parietal lobe (LIP) and in the 
prefrontal cortex (PFC) are indicated in pink ellipses. Note that FEF is part of PFC. The brain surface was obtained from the atlas template in (183), 
through the Scalable Brain Atlas (184).
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as potential sources of attention-related signals, the 
lateral intraparietal area (LIP) in the parietal lobe and 
the frontal eye fields (FEF) in the prefrontal cortex (PFC) 
(Figure 1). Both LIP and FEF are thought to integrate 
information about the physical properties of the stimuli, 
together with information about expectations and current 
behavioural goals in order to construct a “saliency” map 
in which stimuli or spatial locations are represented by 
a level of activity that reflects their attentional priority 
(22, 23). It has been hypothesized that this map 
serves to provide a “top-down” biasing signal, which 
modulates sensory processing in earlier visual areas 
so that objects or locations of interest are optimally 
analyzed and distracting objects are essentially filtered 
out. Electrophysiological as well as deactivation studies 
in macaques have corroborated that FEF and LIP 
are both necessary and sufficient to guide attention. 
Microstimulation in FEF and LIP (i.e. injection of low 
amplitude currents into small populations of neurons) 
biases orienting to a stimulus and improves attentional 
performance (24, 25). On the other hand, deactivation 
of the same areas impairs attentional performance (21, 
26, 27). Findings from electrophysiological recordings 
during a covert attention task suggested that whereas 
LIP has a dominant role in guiding bottom-up, stimulus-
driven, exogenous attention, FEF and the nearby PFC 
have a more prominent role in top-down, goal-directed, 
endogenous attention establishing a possible distinction 
between the two areas in attentional functions (28). 
More recently, an additional distinction between the 
classical FEF in the anterior bank of the arcuate sulcus 

and the cortex anterior to it in the prefrontal lobe 
was suggested, with FEF being the source of spatial 
attention signals and the cortex anterior to it serving as 
the source of feature attention signals (29).

Although the areas and circuits involved 
in attention have been adequately described, 
the mechanisms that lead to an improvement in 
performance with attention are less well understood. It 
is widely accepted that attentional mechanisms lead to 
an improvement in the signal to noise ratio. In the next 
session, we briefly review measures of neural activity 
that are known to be modulated by attention and can 
lead to an enhancement of the signal to noise ratio.

4. NEURAL SIGNATURES OF ATTENTION

4.1. Firing rate

In electrophysiological studies, the effect of 
attention on visual processing is typically measured as 
an enhancement in the visual response or an increased 
sensitivity of single neurons to locations or objects of 
interest at the expense of distracting stimuli (8–15, 30). 
Specifically, when more than one stimuli exist inside 
the visual receptive field (RF) of a particular neuron the 
attended stimulus dominates the neuronal response 
consistent with the notion that attention serves to 
filter out irrelevant stimuli. This was initially described 
as a mechanism that biases the competition among 
representations of different stimuli in favor of the 
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attended one (6) and was later formalized as a contrast 
normalization function (31, 32). This modulation in firing 
rate with attention is multiplicative and the scaling of the 
neuronal response depends on the similarity between 
the preference of the neuron and the attended feature 
as predicted by the feature similarity gain model (14, 
33). It should be noted, that areas higher in the visual 
hierarchy show more pronounced activity modulation 
with attention (34). However, modulations of firing rate 
suggestive of a facilitation of the sensory representation 
of the attended stimulus have been reported in multiple 
brain areas at all levels of visual processing including 
the lateral geniculate nucleus (35), the superior 
colliculus (36–38), area V1 (10, 39–41), areas V2 and 
V4 (9–11, 13, 30, 42), the middle temporal (MT) and 
medial superior temporal (MST) areas (14, 15), IT (8, 
29), LIP (28, 43, 44), FEF (45–47) and dorsolateral 
PFC (29).

4.2. Neural Synchrony

An increase in the firing rate of selected 
neuronal populations is not the only means through 
which attention can enhance signal efficacy. More 
recent studies have shown that attention can also 
modulate neural synchrony (47–49, 50, for a review 
see, 51). Given that postsynaptic potentials have 
limited duration, inputs need to arrive close in time 
to be summed effectively and lead to the generation 
of an action potential in the postsynaptic cell. 
Moreover, rhythmic inputs that arrive at temporal 
windows during which the postsynaptic cell is 
more likely to be depolarized are more effective in 
transmitting information to the next stage. These 
two conditions that can potentially lead to more 
effective communication across selected neuronal 
populations can be implemented through oscillatory 
synchrony. Thus, synchronization or an enhancement 
of synchronization of activity in populations of neurons 
that encode the attended stimulus could render 
processing of the attended stimulus more effective 
over the representation of unattended stimuli. 
Oscillatory synchrony is typically measured using a 
signal that integrates activity within a small volume 
of cortex, the local field potential (LFP), by looking at 
phase locking of action potentials (spikes) to the LFP 
oscillations.

Accumulating evidence has suggested that 
indeed, attention leads to an enhancement of local 
gamma frequency (30–60 Hz) synchronization among 
neurons that encode the attended location or feature 
in both humans (52–55) and non-human primates 
in extrastriate visual areas (34, 42, 48, 50), frontal 
(e.g. FEF (47)) and parietal (e.g. LIP (49)) areas. 
This selective enhancement of synchronization in the 
gamma frequency range with a near zero lag phase 
locking could ensure synchronous firing of spikes by 
neurons that encode behaviorally relevant information 

and could thus lead to a preferential processing of 
attended features or locations in downstream areas. 
Indeed, two studies have provided direct evidence 
that selective routing of information related to attended 
stimuli is at least partially reflected in increased gamma 
band phase locking between neuronal groups in areas 
V1 and V4 that represent the attended stimulus (56, 
57). These together with other studies (47, 54) have 
also suggested that gamma synchrony with a non-zero 
phase lag across distant areas could ensure that inputs 
from one area arrive when the relevant population 
in the receiving area is at the maximally depolarized 
state and is, therefore, more excitable. Such a scheme 
would facilitate selective processing of the relevant 
inputs across areas (58).

Besides modulations in gamma synchrony, 
attention can also affect synchrony in lower frequencies. 
Several studies have shown that local low frequency 
synchronization in the alpha (8–14 Hz) and beta range 
(15–25 Hz) is reduced with spatial attention in visual 
cortices (34, 47, 48, 54, 59–64). Alpha band oscillatory 
activity, in particular, is enhanced for distracting stimuli 
and reduced for attended stimuli, in line with the view 
that alpha band activity is associated with inhibition 
of processing of external sensory inputs (65–68). 
Interestingly, studies that have examined the amplitude 
of oscillatory activity across different cortical layers 
and its modulation during attention have demonstrated 
layer-specific patterns for different rhythms, at least in 
visual cortical areas (34, 69–71).

4.3. Response variability

The response of individual neurons to 
repeated presentations of the same stimulus varies 
from trial to trial (72, 73). Spiking variability is typically 
measured using the Fano factor, defined as the spike 
count variance across trials normalized by the average 
spike count. Several factors can affect response 
variability. For example, the onset of a stimulus inside 
the neuronal RF leads to a decrease in the variability 
of neuronal response, an observation that has been 
reported across many cortical areas (74–76).

Attention related effects on response 
variability have been less clear. Although, an early V4 
study reported a modest, insignificant decrease in the 
Fano factor with attention (77), a more recent study 
found a robust attention induced decrease, which was 
stronger for putative inhibitory interneurons than for 
putative excitatory pyramidal cells (78). In the FEF, 
two studies reported no significant modulation with 
attention (75, 76), whereas more recently a decrease 
in the Fano factor was reported only for putative 
pyramidal cells (79). Cell-type specific effects have 
also been observed in the dorsolateral PFC, where 
task engagement differentially affects the response 
variability of putative pyramidal cells (80).
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A confound in the use of the Fano factor as 
an estimate of response variability is its dependence 
on the mean firing rate. In particular, as the mean firing 
rate increases, the Fano factor decreases. Recently, a 
model was introduced, which decomposes variability 
into a sum of a Poisson variance component and a 
component arising from slow fluctuations in neuronal 
excitability (i.e. gain) (81). Following this approach, 
it was reported that attention induces a reduction in 
gain variance in both putative pyramidal cells and 
interneurons in the FEF, with the reduction being more 
pronounced for putative interneurons (79).

In summary, most studies have found 
modest attention effects on response variability of 
single neurons and this effect appears to be cell-
type specific. Approaches insensitive to Fano factor 
biases may provide complementary information. 
Taking aside these restrictions, the effect of attention 
on response variability, although small on single 
neurons, may be maximized when calculated across 
the population.

4.4. Inter-neuronal correlations

Whether reductions in response variability 
lead to an increase in the signal to noise ratio, depends 
on the degree to which the sources of variability 
are correlated across a population of neurons. If 
the sources of variability are uncorrelated (e.g. they 
arise from variations in synaptic transmission and 
spike generation for each neuron) then, in principle, 
variability can be averaged out by pooling together 
a large number of neurons. However, correlated 
variability (e.g. arising from variability that is shared 
across a population of neurons due to shared inputs) 
cannot be averaged out simply by pooling together the 
responses from many neurons (82).

In the cortex, response variability is typically 
correlated between neurons. These correlations, 
usually referred to as noise correlations, are quantified 
for pairs of neurons as the Pearson correlation of 
the spike count responses across different trials. 
Correlation values are typically small and positive (in 
the order of 0.0.1.-0.2.5. (83)) and tend to become 
higher for pairs of neurons with overlapping receptive 
fields (84) and similar tuning properties (85, 86).

Recent studies have shown that correlations 
are modulated by a variety of sensory, motor and 
cognitive factors (see 83 for a review). With attention, 
noise correlations are reduced in V1 (87, 88), (but see 
84), V4 (59, 89, 90), MT (88, 91), MST (91) and FEF 
(92). Interestingly, although small in absolute values, 
the reduction in noise correlations with attention 
appears to account for the majority of improvement in 
signal quality, whereas, attention related increases in 
firing rate account only for a small proportion (89, 90).

When calculated as a function of window 
size, noise correlations tend to increase with larger 
time windows indicating that they reflect predominantly 
low frequency fluctuations (90). It is, thus, possible 
that correlations arise from the same mechanisms that 
cause the low frequency spike-LFP (47, 48) and spike-
spike (90) desynchronization with attention. Indeed, 
according to a recent model, shared excitability 
signals (i.e. gain) that fluctuate in strength, reduce 
their fluctuations as a result of attention (93). The 
reduction in these shared, low-frequency fluctuations 
accounts for the attention-driven decreases in noise 
correlations. As a further model prediction, the variance 
of pooled population activity, as captured by the LFPs, 
decreases with attention resulting in reduced LFP 
power in low frequencies, in line with experimental 
findings (48, see also paragraph 4.2.). Finally, the 
reduced shared modulation (noise) between neurons 
leads to low frequency desynchronization, as it is 
empirically observed with attention (90).

5. ADVANTAGES OF POPULATION  
ANALYSIS METHODS

To overcome the apparent noisiness in the 
responses of individual neurons, studies typically 
average single neuron responses across repetitions 
(trials) of similar behavioral context. In many cases, 
responses are subsequently averaged across neurons 
to obtain population estimates. Such averaging 
approaches allow for robust estimates of activity 
and despite their limitations have proven extremely 
useful in understanding the functional role of single 
neurons and brain areas. However, with the growing 
use of multi-electrode arrays that allow simultaneous 
recordings from a large number of neurons, datasets 
have (and will) become more diverse, and simple 
averaging across a heterogeneous population 
becomes inappropriate. Population analysis 
methods, such as those discussed in this review, can 
successfully address the challenges imposed by large 
and heterogeneous datasets by taking the diversity of 
neuronal responses into account.

Conventional analyses average responses 
across trials, yet, we reach decisions on a trial-by-trial 
basis. To achieve this our brain takes into account 
responses of populations of neurons, often in short 
time scales. Although this has been acknowledged 
for decades, the mechanisms underlying population 
representations have only recently started to be 
explored (94). As will be discussed in the following 
sections, analysis methods that consider the pattern 
of activity across neuronal ensembles provide insight 
into the spatial and temporal characteristics of the 
population code. This is critical in order to understand 
how representations are constructed in the brain 
on a moment to moment basis and to address the 
full complexity of brain function in realistic ways. In 
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addition, such methods can often predict the behavioral 
outcome, providing a link between neuronal population 
activity and behavior.

Population decoding approaches are more 
powerful in the sense that they are multidimensional. 
Thus, they can recover information that may not 
be prominent in single dimensions. For example, 
population analysis methods have revealed that in 
higher-order areas the same neuronal population 
carries information about different task parameters 
that can be extracted according to behavioral demands 
(paragraph 7.2.). Trial-averaging approaches may 
obscure such information especially if it is represented 
more sparsely in the population. Furthermore, decoding 
analyses can reveal transient representations at the 
population level that would be otherwise difficult to 
observe.

Cognitive processes, such as attention, 
are accompanied by several physiological changes 
in the brain (see section 4). These changes may 
convey information that is relevant to behavior or 
could simply provide mechanistic support to neuronal 
processes. Consider the example of a pacemaker 
cell that generates spikes at a constant frequency in 
order to synchronize activity in a network. The spiking 
of this cell does not carry any behaviorally relevant 
information, however, its activity is necessary for the 
computation itself. Population decoding analyses, 
such as those discussed in the following section, can 
help us understand which physiological modulations 
convey task-relevant information, and/or whether 
some of these changes serve computational purposes.

Finally, population decoding techniques have 
been successfully used in brain-machine interfaces 
(BMIs) that have been developed to aid patients with 
motor disabilities. Of particular interest are applications 
that interpret neuronal signals from higher-order areas 
to drive cognitive BMIs. We will briefly discuss these 
applications in section 9.

6. DECODING OF NEURAL ACTIVITY USING 
PATTERN-CLASSIFICATION ALGORITHMS

Information coding in the brain can be 
examined using two complementary approaches. 
The encoding perspective examines how sensory 
information and behavioral parameters are represented 
in the brain, whereas, the decoding perspective reads-
out the neuronal signals in order to reconstruct the 
stimulus presented or the internal state of the subject. 
In Bayesian terms, an encoding model would aim to 
estimate p(r|s), the conditional probability of obtaining 
a neuronal response r following presentation of 
stimulus s, whereas, a decoding model would estimate 
p(s|r), the probability of stimulus s being present given 
a response r. The two approaches are tightly coupled 

and both contribute to an understanding of coding 
principles in the brain.

A variety of different algorithms and 
approaches has been employed to decode neuronal 
activity. Multivariate pattern-classification methods 
have been widely used and have offered significant 
insights into the way large scale representations are 
formed in the brain. Classification methods work by 
defining a decision boundary in order to assign inputs 
to one of a given set of classes (Figure 2). Initially, data 
are divided into a training and a test set. During training, 
the classifier learns to discriminate between responses 
recorded under the different conditions (supervised 
learning) and defines the decision boundary. The 
test set is then used to estimate the performance 
of the classifier, which is typically calculated as the 
percentage of correct predictions. To avoid overfitting 
of the data, the generalization of the decision boundary 
needs to be evaluated on data never experienced by 
the classifier, thus, the training and test sets have to be 
drawn from different trials. Overfitting arises when the 
decision boundary fits idiosyncratic, noise patterns of 
the training set resulting in poor generalization during 
testing (Figure 2 C). Cross-validation methods become 
useful in datasets with a limited number of trials that 
do not allow the partitioning of data into separate 
training and test sets (95). Cross-validation methods 
initially divide data into k groups or folds. Data from 
k-1 of these groups are assigned to a training set and 
the remaining to a test set. To reduce variability, the 
classification performance is evaluated as the mean 
across such k leave-one-out permutations.

The shape of the decision boundary can be 
either linear or non-linear and its dimensionality is 
determined by the number of features (i.e. neurons 
or signals) included in the analysis. In the linear case, 
the decision boundary in a two-dimensional feature 
space would be a line (Figure 2 A). Accordingly, 
using n features, the decision boundary would be a 
hyperplane defined in an n-dimensional space (Figure 
2 D). Non-linear classifiers create complex, non-planar 
boundaries that, depending on the data structure, may 
provide better classification (Figure 2 B), however, they 
are more prone to overfitting (95) (Figure 2 C). Linear 
decoders are faster as they require the estimation of 
fewer parameters, which is advantageous in real time 
BMI applications. Moreover, they are more appealing 
given that their estimates can be used to construct 
plausible biological models (e.g. 96). Specifically, the 
estimates of a linear decoder are based on a weighted 
sum of the responses of several neurons. These 
weights could represent the synaptic weight of each 
neuron in its connection with a downstream readout 
neuron. Discussing the type of decoder that readout 
neurons may use to extract information is beyond the 
scope of this review. Instead, we consider decoding 
as an analysis tool that allows us to estimate how 



Figure 2. Pattern-classification approaches. A neural response from a single trial can be interpreted as a point in an N-dimensional feature space. 
Different colors (blue and grey) correspond to responses recorded under two experimental conditions. A. In this hypothetical 2-dimensional feature 
space a linear decoder is used to classify responses into two-categories. Giving the overlapping response distributions, a univariate, trial-averaging 
approach cannot separate responses between the two conditions. However, responses can be easily classified when considering the single-trial pattern 
of activity of two neurons. B. An example where a non-linear decision boundary produces more accurate results than a linear boundary. C. Non-linear 
classifiers are more prone to overfitting. In this case, the decision boundary fits idiosyncratic, noise patterns and will result in poor generalization. D. In 
a 3-dimensional feature space the decision boundary is a plane. Accordingly, using n features, the decision boundary would be a hyperplane defined in 
an n-dimensional space.

Decoding attention from neuronal populations

227 © 1996-2018

much information can be extracted from a population 
of neurons, the information carried by different types of 
signals and examine factors that may limit information.

In order to produce accurate estimates, 
pattern-classification algorithms, typically, require 
more samples (trials) than features (neurons or 
signals). Intuitively, as the dimensionality of the 
feature space increases, more samples are required 
in order to increase predictive power. This limitation 
is known as the “curse of dimensionality” (95). Some 
classification algorithms are more sensitive to this 
problem than others. For example, linear discriminant 
(LD) classifiers require, in practice, more samples 
than features, whereas, kernel methods such as 
support vector machines (SVM) are more resilient 
to this problem (see also 97). When the number of 
available trials is inadequate, dimensionality reduction 
methods such as principal component (PCA) or 
independent component analysis (ICA) can be used 

to tackle this issue. In summary, due to the limitation 
of dimensionality, researchers should be cautious 
when comparing performance between classifiers 
trained under different conditions. In order to avoid an 
underestimation of accuracy, the dimensionality (i.e. 
number of neurons or signals) and the number of trials 
need to be equal in the classifiers under comparison.

In addition to classification algorithms, 
information theoretic approaches, in the Shannon 
or Fisher sense, have also been used to estimate 
the information content of neural signals (98). These 
approaches provide complementary information and both 
are used to quantify sensory or behavioral information 
carried in neuronal responses. Information theoretic 
approaches produce in some cases more accurate 
estimates than classification approaches (99); however, 
they are more sensitive to the curse of dimensionality 
and introduce biases when a limited number of samples 
is available (100). Thus, pattern-classification algorithms 
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become more appropriate for the analysis of large 
neuronal populations.

7. INSIGHTS INTO POPULATION CODING OF 
COGNITIVE FUNCTIONS USING DECODING  
APPROACHES

In the following paragraphs, we discuss 
how cognitive information can be decoded from 
brain signals such as extracellularly recorded action 
potentials (spikes) and LFPs. First, we briefly review 
the current evidence that attention-related information 
can be decoded from neural signals using machine-
learning algorithms. In subsequent paragraphs, we 
discuss aspects of the neural code that can be best 
appreciated by using population decoding approaches.

7.1. Population coding of attention

Machine-learning methods have been widely 
employed to decode movement related parameters 
from signals recorded in cortical areas involved in 
movement planning, preparation and execution (101, 
102). This bias is justified by the obvious utility of such 
approaches in the development of BMIs that can restore 
motor function in human patients. Recent studies, 
however, have extended the applicability of these 
methods to explore whether cognitive functions can 
also be decoded using similar approaches. The results 
so far have contributed to a better understanding of 
the way cognition is mediated by neuronal populations 
and they have opened up new possibilities for the 
development of cognitive BMIs.

A number of studies have employed 
machine-learning decoding methods to examine 
whether attentional variables can be decoded from 
population activity in areas of the attention network. 
They have demonstrated that the location of attention 
can be decoded with very high accuracy from the 
spiking activity of neuronal populations in extrastriate 
and frontal areas including the lateral PFC (103, 104), 
FEF (92, 105–107), MT (108), and V4 (107). These 
results from single-trial population analyses are in line 
with the results obtained from univariate approaches. 
For example, accuracies in FEF are overall higher 
and reach significance earlier than in V4 (107) in 
agreement with the notion that the FEF provide top-
town feedback to V4 during spatial attention (47). 
Furthermore, decoding object identity from an IT 
population, indicated that the main effect of directing 
attention to an object presented in an array with other 
objects, was to restore information towards a state in 
which the object was shown alone (109). This result 
is in line with previous findings, which have shown 
that when multiple stimuli co-exist within the RF of a 
single neuron, attention modulates the response of 
the neuron so that it responds as if only the attended 
stimulus is present (8, 13). However, it extends this 

initial observation to highlight how activity in the entire 
population of IT neurons changes to represent the 
attended stimulus. Thus, it advances our knowledge 
on how object recognition is implemented in the brain 
while at the same time it allows the construction of 
more detailed, biologically plausible models of object 
recognition.

Important clues into the way distractors 
are encoded at the population level and how this 
representation affects the deployment of attention 
have also been provided by recent studies that used 
decoding approaches. Early, psychophysical studies 
had demonstrated that peripheral cues capture 
attention involuntary and can affect task performance 
(110). Single-trial population approaches have more 
recently examined the effect of distractors on decoding 
the locus of attention. Following a distractor change, 
a substantial decrease in the information conveyed 
in spiking activity about the location of attention was 
found in lateral PFC (103) and in the FEF (92), and a 
loss of information about object identity was reported 
in IT (109). A similar interference by the distractor 
was observed while decoding the locus of attention 
from LFP signals, particularly for frequencies above 
60Hz (104). Effects on spikes and LFPs in the high-
gamma range (120–256Hz) were identical. Distractor 
interference in the mid-gamma (60–120Hz) range 
was about half as that observed in the high-gamma 
range. Distractor interference was observed during 
both correct and error trials, however, in correct trials 
this effect was transient and rapidly recovered to 
previous levels. Moreover, both in FEF and in lateral 
PFC population activity following a distractor change 
was highly predictive of behavioral outcome (92, 103).

To summarize, decoding approaches that 
consider the pattern of activity across neuronal 
ensembles, complement conventional univariate 
analyses and provide a better understanding of 
attentional mechanisms at the population level. Given 
that our perception of the world is based on transient 
activity patterns of billions of neurons, decoding 
approaches promise to bridge neuronal population 
activity and behavior. In the following paragraphs, 
we discuss how decoding methods can improve 
our understanding of different aspects of population 
coding by providing examples from electrophysiology 
approaches employed in attention or other cognitive 
tasks.

7.2. Mixed selectivity and adaptive coding

Higher-level structures, such as the 
parietal, prefrontal and cingulate cortices, have 
been implicated in several different functions and 
behaviors and it has been suggested that they 
control flexible cognitive behavior (e.g. visual 
attention). A long-standing question is whether 
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this diversity and flexibility is implemented through 
different subsets of neurons that are specialized for 
particular behaviors or variables, or through a single 
population that participates in different behaviors 
by flexibly and dynamically adjusting responses 
within the network. Recent studies have provided 
insights into the way representations of behavioral 
variables are constructed at the population level in 
higher order functions and how these are modified 
by behavioral context.

In the posterior parietal cortex (PPC) of 
the rat independent information about decision 
and multi-modal sensory variables can be reliably 
decoded from the same neurons indicating that 
the same population can carry different types of 
information, which can be extracted according to 
the animal’s needs (111). These results suggest 
that our perception and our ability to make 
choices based on multi-modal sensory information 
depend on extracting information from distributed 
dynamic patterns of activity in the same neuronal 
population. Similar patterns of mixed selectivity and 
adaptive coding at the population level have been 
demonstrated in monkey PFC. Neurons encoding 
whether two stimuli were identical or not, carried 
sufficient information to decode stimulus position 
(112). In another study, analysis of the pattern of 
neural activity at the population level in PFC showed 
that the response pattern to identical stimuli, adapted 
according to the different behavioral context so that 
the state of the population reflected a shift in coding 
depending on the initial instruction (113). In addition, 
activity of a large proportion of single neurons in the 
orbitofrontal cortex (OFC) dynamically switched 
between representations of objects associated 
with different reward values, as the population 
representation switched between different choice 
options, suggesting that the information carried by 
single cells changes dynamically depending on the 
network state (114).

The mixed selectivity observed in higher-
order areas has a high-dimensional neuronal 
representation that could provide the basis for the 
remarkable adaptability of neuronal responses in these 
structures (115), a prerequisite for complex cognitive 
behavior (116). Adaptive coding may be the result 
of activity dependent short-term synaptic plasticity 
mechanisms (113, 117, 118). Discussing the origins 
and mechanisms of adaptive coding is beyond the 
scope of this review. One should, however, note that 
attentional control is essentially one example of such 
adaptive coding as it requires facilitation of a subset of 
inputs and filtering of other inputs in a flexible manner 
according to the behavioral demands. Thus, studying 
adaptive coding in higher order brain areas allows us to 
explore mechanisms that may well underlie attentional 
behavior.

7.3. Temporal population dynamics

Decoding approaches can also provide 
insights into the stationarity of the temporal code i.e. 
whether encoding of information changes over time 
or whether the representation of the decoded variable 
remains constant in time. If neuronal populations 
encode information in a non-stationary manner, 
the interconnection weights within a network are 
expected to change in time. An extreme realization 
of such a dynamic representation would be observed 
if different neurons encoded information at different 
time periods. Such fundamental questions remain 
largely unexplored. One way to examine population 
dynamics in time is to train a classifier at one time 
period and test with data from another time period. If 
the contributions of individual cells within the network 
remain the same over time, a classifier trained at one 
time should generalize equally well at other times. On 
the other hand, if population dynamics change in time, 
the generalization of a decoder over time will be poor.

Using such a cross-temporal pattern analysis, 
Crowe et al (119) suggested that task-relevant 
information is encoded dynamically in parietal area 
7a of the macaque. They showed that during a spatial 
cognitive task, the neural representation of space 
changed dynamically, with distinct neurons being 
activated sequentially over time, although the value of 
the spatial variable remained the same. Interestingly, 
the representation of task-irrelevant information was 
stationary. Dynamic coding of task relevant information 
has also been found in IT (120) and in parietal area 
LIP (121). Importantly, whereas in LIP encoding of 
spatial attention was found to be non-stationary, the 
FEF population seemed to encode spatial attention 
in a more stationary way, and this temporally stable 
representation was more prominent for the attention 
selective cells in FEF (121). This finding indicates that 
although spatial attention signals can be decoded from 
both LIP and FEF, the nature of the representation 
of the locus of attention is different in the two areas. 
Likewise, stationary patterns of PFC activity were 
observed in the delay period of an association task 
(113). In contrast, both task-relevant and irrelevant 
information in the PFC was represented dynamically 
in a categorization task (120). Therefore, the temporal 
representation of task-critical information is neither 
area- nor task-specific. Rather, analysis of the time-
resolved pattern of activity across the population in 
different areas and tasks is necessary to obtain insight 
into the nature of specific representations at different 
stages of processing in the brain.

Additional analyses providing a deeper 
understanding of the potential origin of the observed 
network dynamics will be most useful in future studies. 
As mentioned above, the fact that a classifier trained at 
a given time is unable to decode patterns observed at 
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another time, could mean that different neurons encode 
information at different periods in the task. In a match-
to-category task, Meyers et al (120) removed the most 
category selective cells in one time bin and trained and 
tested the classifier in other time bins. If the same cells 
encoded information over the entire period under study, 
eliminating the most selective cells in one time bin should 
have lowered performance at other times. The authors 
found that this was not the case. Removing the most 
selective neurons at one time period, reduced accuracy 
in that period but accuracies in other time periods were 
unaffected. This finding suggests that different neurons 
carry task relevant information at different trial periods. 
Another source of non-stationarity in the population 
could be the transient selectivity profiles of individual 
neurons. Indeed, Meyers et al (112) described some 
highly-selective PFC cells that carried task-relevant 
information in a transient manner. The contribution 
of such highly-selective cells becomes even more 
pronounced in populations that rely on a small subset 
of neurons, as will be discussed in the following section. 
Thus, although information about the stationarity of the 
neural code is important in order to understand how 
representations of behavioral variables are constructed 
in the brain, additional analyses is required in order to 
understand the origin of non-stationarity. A more recent 
study demonstrated that despite the strong dynamic 
pattern and heterogeneity of individual PFC neurons, 
the population representation during working memory 
maintenance was stable across time, in agreement with 
the notion that working memory relies on persistent 
activity patterns. Interestingly, it was shown that 
this stable mnemonic representation coexisted with 
dynamic coding patterns observed during different task 
periods (122).

Besides examining population dynamics in 
the same trial, exploring temporal dynamics in longer 
timescales that may span several trials can provide 
important insights into the variability of network 
dynamics. A recent study showed that, in the mouse 
PPC, not only the responses of individual neurons 
varied across trials, but also different sets of neurons 
could be active in trials of similar behavioral context 
(123). The transition from one activation pattern to 
another occurred at a timescale of several seconds. 
Interestingly, the transition between different activation 
patterns was not random; activation of a particular set 
of neurons was predictive of future activation patterns. 
Furthermore, the initial activation pattern in each trial 
depended upon the activation patterns in the previous 
trial. Insightful approaches such as this can help us 
better understand population dynamics in the brain and 
assess neuronal variability under a different perspective.

7.4. Sparse and distributed information coding

A fundamental issue relevant to population 
coding is the number of neurons that are required 

at a given time to obtain a reliable representation 
of a stimulus and guide behavior. Decoding 
analysis can provide insights into the sparseness 
of information in the population code by calculating 
decoding performance as a function of the number 
of contributing neurons. In this context, sparseness 
refers to the number of neurons in a population that 
encode information, as opposed to the more commonly 
used term in relation to spiking activity, which refers 
to the proportion of neurons that are active at a given 
time (124). In other words, sparseness, in the context 
discussed here, does not refer to how often neurons 
in the population fire but to the information content in 
spiking activity.

Surprisingly, only a small subset of highly 
task-selective cells is sufficient to obtain a decoding 
accuracy almost as high as that of the whole population. 
Neuronal ensembles in IT and PFC comprising as 
few as 8 to 16 of the most selective cells contained 
nearly all of the cognitive information present in the 
entire population (103, 112, 120). Likewise, a sparse 
pattern of information coding has been observed 
with orientation discrimination in V1 (125) or saccade 
direction in LIP (126) and lateral PFC (127, 128). What 
are the implications of such a sparse representation 
for neuronal coding? It is possible that downstream 
neurons extract information from a small subpopulation 
of highly informative cells. Such a representation 
would have the advantage of reducing connectivity 
and metabolic requirements (129). Another possibility 
is that highly informative cells represent the output of 
the computations, whereas, less informative cells may 
contribute to the actual computations (103).

Although these ideas remain to be tested, 
decoding studies have reported that even the less 
selective neurons still contain significant amounts 
of redundant information. Univariate analyses that 
average responses across cells would label those 
neurons as task non-informative. However, taking into 
account the pattern of activity across the population 
of those cells reveals that they can carry considerable 
information (103, 112, 120). This suggests that although 
a small number of neurons may determine decoding 
performance, the rest of the population still contains 
substantial amounts of task-relevant information. To 
further explore the properties of distributed coding, 
Rigotti et al (130) asked whether task-selectivity is 
important at all for the neural code in PFC. To examine 
this, they removed task selectivity from each cell’s 
response by replacing the firing rate responses to a 
particular task-relevant aspect by the average response 
to different task-aspects. Interestingly, they found that 
as task complexity increased within the trial, decoding 
accuracy increased towards the performance obtained 
from the intact population, indicating that information 
is distributed across the population even when it is not 
present in individual cells.
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7.5. Temporal resolution of information code

Decoding approaches allow insights into the 
timescale of information coding. Two main hypotheses 
have been proposed about the way information is 
carried in spiking activity. The rate-coding hypothesis 
holds that information is carried in the average firing 
rate within a time window, whereas, the temporal-
coding hypothesis states that the precise timing of 
spikes transmits additional information, beyond that 
carried by the average firing rate (see 131 for a review). 
Decoding studies have examined the information 
carried in different time windows by comparing 
performance using time windows of different lengths. 
Using small bins one extracts information primarily 
from the timing of individual spikes rather than from 
the average level of activity as it is the case when 
using longer time windows. Decoding the location of 
attention was optimal for time windows longer than 
80–100ms in the FEF (106) and lateral PFC (103). 
Similarly, decoding of category information in IT and 
PFC was optimal for 150ms time windows, with shorter 
bins resulting in lower accuracies (120). These findings 
do not necessarily point against a temporal code but, 
instead, indicate that more information is carried by 
the average firing rate as measured using longer time 
windows. Although decoding of spatial attention is 
optimal for windows longer than 80–100ms, significant 
information is carried in bins as small as 20ms (103, 
106). Another study demonstrated that robust category 
classification can be achieved from IT neurons using 
bins as small as 12.5.-50ms (132). Time bins of 
12.5.ms that contain on average 0 to 2 spikes decode 
category information with accuracies higher than 80%, 
pointing to a sparse spiking representation.

In summary, results so far suggest that 
cognitive information is optimally decoded in time 
windows of a few hundreds of milliseconds, which 
points to rate-coding schemes. Nevertheless, several 
studies have found that significant information is 
also carried in finer temporal scales in line with the 
temporal-coding hypothesis. It should be noted that 
temporal coding can be assessed using a variety of 
parameters and the interested reader can refer to 
recent reviews (e.g. 133).

7.6. The role of correlations

A critical question is how inter-neuronal 
correlations affect the amount of information carried by 
a neuronal population (134). Some theoretical studies 
have suggested that for similarly tuned neurons, 
correlations limit information (82, 135). However, other 
studies have noted that under certain assumptions, 
correlations may actually increase the information 
carried by populations of neurons (136), especially 
in heterogeneous populations (137). Recently, it was 
suggested that not all types of correlations affect 

information coding (138). Specifically, the authors used 
a network model to show that information decreases 
only in the presence of a particular type of correlations, 
termed differential correlations (correlations 
proportional to the product of the derivatives of the 
tuning curves of the neurons in the population). 
However, the contribution of this type of correlation to 
overall correlations is likely to be small.

Experimentally, it has been demonstrated 
that attention, reduces inter-neuronal correlations 
(see paragraph 4.4.). However, it is not clear, whether 
reduced correlations alter the amount of information 
carried by the population, and if so in which direction. 
The prevailing view is that if correlations do limit 
information, processes such as attention that reduce 
correlations become beneficial by increasing the 
amount of information carried by single neurons and 
neuronal populations (89, 90). However, a recent 
theoretical study suggested that correlations within the 
population may be the result of trial to trial fluctuations in 
the attentional state and that fluctuations in the strength 
of attention (gain) do not affect decoding performance 
(139). If this is the case then the experimentally 
observed decrease in response variability is not an 
attentional mechanism that increases the amount of 
information. Interestingly, the authors showed that 
trial-to-trial fluctuations in the attentional state during 
feature attention introduce differential correlations that 
may actually limit (saturate) information.

Decoding approaches provide a 
straightforward way to evaluate the effect of correlations 
on the information that can be extracted from neuronal 
ensembles. In addition, decoding methods can 
examine the effect of correlations on large neuronal 
populations, an approach that can be more informative 
about the actual role of correlations in the brain than 
the pairwise Pearson correlations typically calculated 
between neurons (see paragraph 4.4.). The effect of 
correlations on population coding can be examined 
by shuffling trials in the original dataset in order to 
destroy the correlation structure. Subsequently, the 
information extracted from the original dataset using 
the correlations-aware classifier is compared to the 
information extracted from the shuffled dataset using a 
correlations-ignorant classifier. To preserve the tuning 
properties of individual cells, shuffling of trials recorded 
under the same stimulus condition is carried out.

A number of studies have assessed the 
role of inter-neuronal correlations in the encoding 
and decoding of stimulus- and movement-related 
information. Noise correlations were found to have a 
positive, albeit small, impact on decoded information 
from pairs or small populations of neurons (140), but 
effects were more pronounced for larger ensembles 
(141). More recently, it was reported that correlations 
improved the decoding of saccade direction and 
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eye position from small populations of, on average, 
seven LIP neurons (142). Examining inter-neuronal 
correlations within larger populations allows for a more 
realistic estimate of the actual effect of correlations 
in the brain. Using multi-electrode arrays, one study 
reported that V1 correlations significantly increased 
the decoding accuracy for stimulus orientation (125) 
(but see 143, 144). Decoding of motion direction also 
improved when MT correlations were considered (145). 
Some studies have examined the effect of correlations 
using LFP signals. Taking temporal correlations into 
account improved, on average, decoding performance 
in predicting the saccade goal by 5–10% in PFC (128). 
In contrast, correlations did not affect decoding of 
hand-movement direction from four simultaneously 
recorded LFP signals in the motor cortex (146), 
whereas in the parietal reach region (PRR) they 
even reduced decoding accuracy (147). Whether 
the diversity of results reflects region- and function-
specific particularities or is due to methodological 
differences (e.g. the use of the raw LFP signal (146) 
or its spectral components (128, 147)) remains to be 
examined. Overall, in the type of tasks listed above, in 
most cases, correlations appear to increase decoded 
information, although, the effect in some cases is 
modest.

In contrast, correlations appear to be 
detrimental during attention. Tremblay et al (103) 
recorded simultaneously from 32 electrodes placed 
in the lateral PFC while monkeys were performing 
a spatial attention task. The authors used spiking 
activity to compare classification accuracies between 
the original and the shuffled dataset. Interestingly, 
taking correlations into account led to a small (6%) 
but significant decrease in the accuracy of decoding 
the locus of attention. Eliminating the correlation 
structure between similarly tuned neurons and 
maintaining all other correlations, yielded similar 
accuracies to the shuffled dataset, indicating that 
the lower accuracy in the original dataset was 
mainly caused by the correlations between similarly 
tuned units. The effect of removing correlations 
from simultaneously recorded LFP signals during 
attention was even more pronounced. Eliminating 
correlations improved decoding accuracy in the mid-
gamma frequency range (60–100Hz) by up to 14% 
but only during the attention epoch (104). Accuracies 
in other task epochs, at least in the mid-gamma 
range, were mostly unaffected, suggesting that the 
effect of correlations on decoding performance was 
attention specific. These observations are in line with 
those of an earlier study that decoded the locus of 
attention from small ensembles (2–4 neurons) in area 
V1 during a perceptual grouping task (148). Decoding 
accuracies improved when correlations were ignored 
but only for ensembles that encoded the same object. 
Conversely, correlations improved decoding accuracy 
for ensembles encoding different objects.

At first, these results appear to be in 
agreement with the notion that attention reduces 
correlations and as a result the amount of information 
about the attended object carried by the population is 
increased (89, 90). This is not directly demonstrated 
by the decoding studies above, but is instead implied 
by the fact that eliminating correlations improves the 
decoding accuracy of attention location. It would be 
useful in future studies to directly assess the effect 
of correlations in object information with attention. 
Previous studies evaluated information about object 
identity with and without attention (109). Accordingly, 
future studies could perform a direct estimation of 
object identity information after taking into account or 
ignoring correlations. Moreover, given that correlations 
predominantly reflect low frequency oscillations (see 
paragraph 4.4.), one would expect that disrupting 
correlations would predominantly affect the information 
carried by low frequencies. Notably, the improvement in 
decoding spatial attention after removing correlations 
was more evident in the 60–100Hz range (104). Future 
studies should aim to explain how the disruption in low 
frequency oscillations may increase the information 
carried by higher frequencies.

The results presented above highlight the 
importance of inter-neuronal correlations in information 
coding. It should be noted that technological advances 
that allow simultaneous recordings from a large 
number of sites and neurons have gradually become 
available only in the last decade. As a result, most 
studies up to now have used decoding approaches in 
pseudopopulations of neurons recorded over different 
sessions. An obvious limitation of this approach is 
that it ignores the role of inter-neuronal correlations 
in information coding. Although these studies have 
contributed significant knowledge on coding principles, 
the use of larger and more realistic datasets is essential 
to crack the neural code at the population level.

7.7. Contribution of the LFP signal

While most studies have focused on decoding 
information from spiking activity, more recent studies 
have examined the information conveyed by LFP 
signals. LFPs are the low frequency components of 
the mean extracellular electric field potentials recorded 
around the electrode tip and reflect the summed 
population activity of local synaptic currents within 
a volume of neural tissue that contains hundreds or 
thousands of neurons. LFP signals are sensitive to 
suprathreshold as well as to subthreshold synaptic 
activity, reflect the balance between excitation and 
inhibition and carry information about the local 
network state (149–152). Thus, they are likely to carry 
complementary information, beyond that measured 
from spike signals. Moreover, the blood oxygen level-
dependent (BOLD) contrast measured with fMRI is 
better correlated with the LFP signal (152), especially 



Decoding attention from neuronal populations

233 © 1996-2018

in the gamma frequency range (153), therefore, LFP 
decoding results could help interpret aspects of multi-
voxel pattern analysis (MVPA) performed with fMRI 
(154, 155), and relate these results to extracellularly 
recorded neural signals. Importantly, LFP signals are 
robust compared to the more noisy spiking signals, 
and are likely to be useful for decoding purposes, 
particularly for chronic implants used in BMIs.

LFP oscillatory activity is modulated by 
attention in a frequency specific manner, as described 
in paragraph 4.2. Here, we review studies that 
decoded information from different frequency bands of 
the LFP signal in an attempt to examine the amount of 
information carried by oscillatory activity in the brain 
and the role of different frequency bands in information 
coding.

Information content in different frequency 
bands appears to be modality- and area- specific. For 
example, stimulus related information in the gamma 
band (60–100Hz) was higher for visual compared 
to auditory stimuli (156) and information about hand 
movement direction in the motor cortex was higher 
in the delta frequency range (less than 4Hz) (157). 
Cognitive information on the other hand, can be 
primarily extracted from higher frequency oscillations. 
Specifically, the location of attention could be reliably 
decoded from LFP signals in the lateral PFC from 
frequencies above 60Hz with performance being 
optimal in the high-gamma range (120–250Hz) (104). 
Frequencies below 60Hz carried information about 
stimulus location and saccade direction but no attention 
related information. Attention has also been reliably 
decoded from signals obtained through epidural, 
ECoG electrodes placed over the visual cortex (mainly 
area V4), with maximal accuracy between 60–80Hz 
and accuracies significantly above chance for 
frequencies in the entire gamma range (~30–200Hz) 
(158). Unpublished results from our lab indicate that 
decoding of attention in FEF and V4 is optimal for 
signals in the mid- and high-gamma range (60–140Hz), 
with accuracies in the low-gamma range (30–60Hz) 
carrying also substantial information. Performance 
in other frequency bands is lower but significantly 
above chance indicating that small amounts of 
information are also contained in frequencies lower 
than gamma. Interestingly, in the FEF, but not in V4, 
we also observed increased accuracy in the theta 
range (4–8Hz). Decoding attention location from 
MT signals resulted in somewhat different results. 
Performance was optimal in the low- and mid-gamma 
range (30–120Hz) and significantly above chance in 
lower frequencies (1–30Hz), but was at chance level in 
the high-gamma range (121–200Hz) (108). Similar to 
most attention studies, reward value information in the 
orbitofrontal cortex (OFC) was reliably decoded from 
frequencies in the high-gamma (70–200Hz) but also 
in the theta (4–8Hz) range (114). Accuracies obtained 

from other frequency bands were significantly lower 
but mostly above chance. Thus, these first studies 
indicate that gamma (including mid- and high-gamma 
frequencies) oscillations carry significant information 
about the location of attention with lower frequencies 
also contributing substantial information. Given that 
only recently studies have started to exploit LFP 
signals for decoding purposes a number of questions 
remain open. These include whether particular 
frequencies are associated with somewhat different 
aspects of attentional function, whether other aspects 
of attention besides its spatial focus can be similarly 
decoded from LFP signals and what the source of 
some of the discrepancies mentioned above might 
be. Discrepancies between studies could be due to 
differences between areas that reflect idiosyncratic 
characteristics of the local circuits, differences in the 
recording depth (128), or simply differences arising 
from the analysis.

A methodological concern relative to the 
analysis of low frequencies is that time windows into 
which LFPs are considered should be long enough 
to include more than one cycles of each frequency of 
interest. Intuitively, when several cycles are considered, 
variability is reduced and the signal becomes more 
informative. Surprisingly, robust decoding information 
was obtained in the theta range with windows as small 
as 80ms in the OFC study, and 100ms in our study, 
with both windows containing less than a theta cycle. 
Similarly, in another study, information about sensory 
stimuli could be reliably extracted from low frequencies 
even when only a fraction of a cycle was considered 
(156). Although stimulus information did increase 
for longer windows in all frequency bands as a 
consequence of increased signal reliability, information 
in high frequencies (above 50Hz) increased more 
dramatically when longer windows (a few tens of 
cycles) were considered. Given these observations, 
the dependence of cognitive information on the length 
of the analysis window for the different frequency 
bands seems to be a factor that should be explored 
more thoroughly. Future studies that will examine such 
issues will provide useful insight into the information 
carried by the LFP signal in different timescales.

It has been previously pointed out that high-
gamma activity is strongly correlated with spiking 
activity as a consequence of the energy in the LFP 
signal associated with spiking transients and the 
contribution of small spikes that cannot be filtered out 
(159). This close relationship between high-gamma 
oscillations and spiking activity has been observed in 
decoding studies. The information content of spikes 
and gamma LFP oscillations (in frequencies above 
60Hz) was significantly correlated (104). Furthermore, 
the authors of this study reported that attention could be 
reliably decoded by training the classifier with spiking 
data and testing it with LFP data (frequencies above 
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Unpublished results from our lab are in line with those 
of (164) and (128). Classification of attention location 
in the 60–140Hz range yields comparable results with 
that from spiking activity in both FEF and V4.

Overall, current findings suggest that in 
certain cases, spiking and LFP signals convey 
different amounts of information, and this depends on 
the task, the cortical area and the decoded variable. 
However, methodological differences between studies 
should also be acknowledged. For example, while 
decoding saccade direction from LFPs, one study 
used as an input to the classifier the frequency with 
the highest discriminability in the 30–100Hz range, 
which was site-specific (164), whereas a second study 
considered information across all frequencies using a 
dimensionality reduction approach (128), and a third 
study concatenated power spectra across different 
frequency bands and recording sites (163). The 
first two approaches ensure that the spike and LFP 
classifiers have the same dimensionality, which is not 
the case with the third approach. Thus, it is possible 
that the differences in the performance of the LFP 
decoder may arise due to theoretical limitations such 
as the “curse of dimensionality” discussed in section 6.

Another issue, that is of utmost importance 
for the development of BMI applications, is how stable 
the decoding is over time for spikes and LFPs. In 
chronically implanted arrays, signal deteriorates over 
time due to slight movement of the array within the 
tissue but also due to the inflammatory response to the 
foreign object, resulting in gliosis around the electrode 
tips (165). As a result, the amplitude of action potentials 
recorded from the electrodes is reduced over time and 
the signal to noise ratio decreases (166). In principle, 
the LFP represents activity within a larger volume of 
brain tissue compared to spikes, thus, it can provide a 
more reliable signal for decoding purposes in the long 
term. In line with this, the stability of a fixed classifier, 
i.e. a classifier that is trained in the first day of 
recording and is used for testing signals in subsequent 
sessions, decayed faster for spikes than for LFPs over 
the period of one month (104). Although these results 
are promising for the use of LFPs in BMI applications, 
one long-term study reported that the advantages 
of LFP decoders in terms of signal stability were 
modest (167). Nevertheless, LFP signals were more 
long-lasting and provided reliable decoding when the 
spike signal completely decayed (168). Technological 
advances and the development of different recording 
probes may help to prolong the stability of recording 
signals that can be used for years long decoding in 
BMI applications.

In summary, many studies have demonstrated 
that the LFP signal is a reliable source for decoding 
behavioral information from neural activity. The degree 
to which it provides additional information to the spike 

60Hz), indicating that the information content in these 
two signals is very similar. Nevertheless, after applying 
methods that clean the LFP signal from potentially 
contaminating spike components recorded on the 
same electrode (160), decoding accuracy of attention 
location in the high-gamma range was affected only 
marginally (104). Although it is possible that remnants 
of low amplitude spiking activity could be still present in 
the LFP signal following the cleaning procedure, these 
results suggest that the high-frequency LFP reflects, at 
least to a degree, a signal different to the spiking one, 
which may well carry similar information. In visual and 
auditory cortices, redundancy between spike and LFP 
signals was larger for high frequencies, however, it 
was small in magnitude and accounted for only 10% of 
information (156). These results are informative for the 
potential use of LFPs in BMI applications. Moreover, 
they highlight the importance of using decoding 
approaches to better understand the role of different 
oscillatory frequency bands in information processing 
and the relation of high-frequency oscillations to spiking 
activity as they allow comparisons on a common scale.

8. COMPARISON BETWEEN DIFFERENT 
SIGNAL TYPES

A critical question is whether the different 
types of electrophysiological signals carry different 
amounts of information. For example, it has been 
noted that spiking recordings are biased towards 
larger, pyramidal cells, thus, they mostly represent the 
output of a cortical area. In contrast, components of 
the LFP signal arise from synchronized dendrosomatic 
processing of synaptic inputs (161) and peri-synaptic 
activity (151) thus, they are considered to mainly reflect 
the inputs to a cortical region and local processing 
activity. As a consequence, LFP and spike signals 
may carry different information. One way to examine 
the information conveyed by spikes and LFPs is to 
compare the performance of decoders based on the 
two signal types. Decoding of object identity in IT 
was reported to be comparable for spikes and LFPs 
in the alpha and beta frequency range but was lower 
for high-frequency LFP oscillations (162). In cognitive 
tasks, decoding of spatial attention in the lateral PFC 
was higher for spikes than for LFPs (104). The same 
pattern was observed while decoding reward value 
from the OFC (114).

Some studies have suggested that spikes 
and LFPs may convey information about different 
behavioral variables. In the parietal reach region (PRR), 
for example, behavioral state was better predicted by 
LFPs, whereas, reaching and saccade direction by 
spikes (163). Behavioral state could also be decoded 
optimally from LFP frequencies in the 0–20Hz range in 
LIP, but not from firing rate responses (164). Saccade 
direction in LIP (164) and PFC (128) was decoded with 
comparable accuracy from both spike and LFP signals. 



application would be advantageous for patients who 
cannot move their eyes. The studies reviewed here 
raise the additional possibility to operate devices such 
as spelling boards with attention signals. The degree 
to which this can be achieved in practice remains to 
be explored. An EEG-based spelling board resulted in 
poor performance when operated with covert attention, 
however, performance markedly improved when it 
was operated with overt attention (178). Given that 
attention and eye movement representations reside in 
overlapping parietal and prefrontal structures, another 
possibility would be to use a conjunction of attention 
and saccade intention signals to design more effective 
applications.

Besides enhancing our understanding 
of population coding mechanisms of attention, 
decoding studies can provide insights that can 
help determine the optimal design parameters of 
cognitive and attention based BMIs. The finding that 
a few highly informative cells are sufficient to obtain 
a decoding accuracy almost as high as that of the 
whole population allows for two possible methods 
for feature extraction. One possibility would be to 
apply a feature selection method that will identify the 
most informative cells and use these for decoding. 
However, although performance is influenced by the 
most selective neurons, task-relevant information 
is distributed across the population as discussed in 
previous sections. Thus, a second possibility would be 
to use the whole population for decoding, which results 
in comparable performance (e.g. 120). Although both 
approaches result in equivalent accuracies, the latter 
might be preferable as feature extraction procedures 
require additional computational time. A further 
limitation of using single unit activity as input to BMIs 
is that the spike-sorting process used to isolate units 
requires significant computational time and resources 
that might be a limiting factor in real time applications. 
Moreover, in chronically implanted arrays, due to 
glial scar tissue formation near the electrodes, the 
amplitude of action potentials decreases over time 
(166). Furthermore, it may not be possible to record 
from the same units across days as less than half of 
the original single units remain stable over a two-week 
period (179). To overcome these limitations, another 
option would be to use voltage-thresholded, multiunit 
activity as input to BMIs. In early recording sessions 
multiunit performance was found to be comparable, 
albeit somewhat lower, to that of single units in 
decoding attention (103) or arm movement direction 
(180, 181). However, over a recording period of 
several months, multiunit activity decoders do not lose 
performance (166) and as signal quality deteriorates, 
they outperform single-unit decoders (167).

Several studies have demonstrated that 
robust decoding performance can be obtained from 
LFP signals as discussed in the previous sections. 

signal depends on the task, the cortical area and the 
decoded variable. In cases where information is carried 
in the low- and mid- frequency components, the LFP 
can provide complementary information to that of the 
spiking signal. In contrast, information in the higher 
frequencies (above 60Hz) appears to be redundant.

9. IMPLICATIONS FOR THE DEVELOPMENT 
OF BRAIN-MACHINE INTERFACES (BMIs)

Brain-machine interfaces (BMIs) are 
applications that allow communication between the 
brain and the outside world. BMI research has had 
revolutionary results and applications in the past years 
with particular emphasis given to the development 
of interfaces that can drive prosthetic devises (e.g. 
artificial limbs) to aid patients with motor disabilities. 
Applications of BMIs include moving a cursor on a 
screen or controlling a prosthetic arm for reaching 
and grasping, using brain signals (101, 169–171). 
Although BMI research has primarily emphasized 
motor functions, recent studies have highlighted the 
importance of using signals from areas processing 
cognitive information to control cognitive BMIs. 
Cognitive BMIs can be used for at least two types 
of applications (172). First, for the development of 
neurofeedback and cognitive control applications for 
patients with cognitive disorders (e.g. attention deficit 
hyperactivity disorder) or neurodegenerative diseases 
(e.g. Parkinson’s disease). In such applications, the 
behavioral information of interest is extracted from 
brain signals using decoding methods. Patients learn 
to control their brain signals, through cognitive control, 
to improve their cognitive function. Second, cognitive 
BMIs can be used for the development of applications 
that aid communication of paralyzed patients or 
patients with neurodegenerative diseases that affect 
motor function. Devices, such as spelling boards, can 
be operated by controlling a computer cursor using 
signals decoded from motor and premotor cortices 
(173, 174). In paralyzed patients, training the decoder 
with actual movements is not possible, therefore, users 
are initially asked to imagine that they are controlling 
the movement of the cursor and once the decoder 
is trained, it translates neuronal activity associated 
with movement intention to control the actual cursor. 
Another option to operate communication devices is 
by means of eye movements or movements of facial 
muscles. However, there are cases that eye tracking 
cannot be performed accurately (e.g. due to ptosis) or 
cases that patients lose the ability of muscle control. 
A number of studies have demonstrated that saccade 
direction or saccade parameters such as amplitude or 
timing, can be decoded from the delay period activity, 
i.e. before the actual saccade occurs, in LIP (126, 
164, 175), FEF (176) and lateral PFC (127, 128). A 
recent study went one step further and developed a 
BMI that decoded eye movement intentions without 
the animal performing a saccade (177). Such an 
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on a moment to moment basis. Moreover, decoding 
information approaches have quantified the amount 
of information carried by different signals in the brain 
(e.g. spikes, LFPs) and have evaluated the utility of 
these signals in BMI applications. Few studies so far 
have explored whether information about cognitive 
variables can be decoded from brain activity and 
even fewer have addressed whether cognitive signals 
can be used to help patients with cognitive or motor 
disabilities. Although these studies have provided 
important insights into the population representation 
of cognitive processes, many questions remain to be 
addressed in the future. Despite the fact that the field 
of cognitive BMIs is still young, the results so far have 
pointed to new directions of research and have opened 
up new possibilities for restoring communication and 
motor functions in patients.

11. ACKNOWLEDGEMENT

This work was funded by the Program 
“Research Projects for Excellence IKY/SIEMENS”.

12. REFERENCES

1.	 M. I. Posner: Orienting of attention. Q J Exp 
Psychol, 32(1), 3–25 (1980)
DOI: 10.1080/00335558008248231

2.	 K. R. Cave and J. M. Wolfe: Modeling the 
role of parallel processing in visual search. 
Cogn Psychol, 22(2), 225–71 (1990)
DOI: 10.1016/0010-0285(90)90017-X

3.	 A. M. Treisman and G. Gelade: A feature-
integration theory of attention. Cogn 
Psychol, 12(1), 97–136 (1980)
DOI: 10.1016/0010-0285(80)90005-5

4.	 J. M. Wolfe: Guided Search 2.0. - a Revised 
Model of Visual-Search. Psychonomic 
Bulletin & Review, 1(2), 202–238 (1994)
DOI: 10.3758/BF03200774

5.	 M. Corbetta and G. L. Shulman: Control of 
goal-directed and stimulus-driven attention 
in the brain. Nat Rev Neurosci, 3(3), 201–
15. (2002)
DOI: 10.1038/nrn755

6.	 R. Desimone and J. Duncan: Neural 
mechanisms of selective visual attention. 
Annu Rev Neurosci, 18, 193–222 (1995)
DOI: 10.1146/annurev.ne.18.030195.001205

7.	 S. Kastner and L. G. Ungerleider: Mechanisms 
of visual attention in the human cortex. Annu 
Rev Neurosci, 23, 315–41 (2000)
DOI: 10.1146/annurev.neuro.23.1.315

Depending on the task and cortical area, LFP 
classifiers have comparable, and in some cases, better 
performance than spike decoders. Although, it has 
been previously hypothesized that LFP signals may be 
more stable over time, the advantages of LFP signals 
in decoding stability seem to be modest in the long 
term (167), however, they provide a reliable decoding 
source when the spike signal completely decays (168). 
Taking into account the reduction in signal quality 
over time, combining spike and LFP features may be 
beneficial in terms of signal stability and robustness. 
In terms of decoding performance, combining signals 
may be beneficial in cases that significant information 
can be decoded from non-redundant components of 
the LFP such as low- and mid- frequency oscillations. 
In contrast, in cases that information is conveyed 
primarily by the high-frequency components, combining 
the two signals may not necessarily result in superior 
performance given the redundancy between the two 
signals.

In cognitive tasks, optimal decoding 
performance can be achieved by averaging spiking 
activity in time windows of a few hundred milliseconds 
(paragraph 7.5.). Likewise, LFP decoding accuracy 
improves with longer windows, in all frequency 
bands, as a result of increased signal reliability 
(156). Intuitively, longer windows average away 
more noise and result in more accurate predictions. 
However, a critical performance factor in online 
applications is the information transfer rate capacity 
(ITRC) that measures the rate of information transfer 
(bits/sec). With longer windows accuracy increases 
but the ITRC decreases; thus, one needs to 
determine the optimal accuracy vs. speed ratio for 
real time decoding that can be efficiently used in BMI 
applications (182).

Finally, although inter-neuronal correlations in 
most cases increase the amount of information carried 
by a population, they become detrimental in decoding 
the locus of attention from spikes (103) and more 
so from LFP signals (104). Thus, in attention based 
BMI applications it might be beneficial to decorrelate 
signals in order to increase classification performance.

10. CONCLUSION

We have reviewed studies that employed 
pattern-classification algorithms in the analysis of 
neural data to understand attention and other cognitive 
functions. The results show that decoding information 
approaches can reveal aspects of population 
coding that remain undetected in single-neuron, 
trial averaging methods. Decoding information from 
populations of neurons on a single trial basis allows 
a deeper understanding of how distributed activity 
patterns across different neurons can be read out in 
the brain to form our perception and cognitive behavior 

Decoding attention from neuronal populations

236 © 1996-2018

https://doi.org/10.1080/00335558008248231
https://doi.org/10.1016/0010-0285(90)90017-X
https://doi.org/10.1016/0010-0285(80)90005-5
https://doi.org/10.3758/BF03200774
https://doi.org/10.1038/nrn755
https://doi.org/10.1146/annurev.ne.18.030195.001205
https://doi.org/10.1146/annurev.neuro.23.1.315


Proc Natl Acad Sci U S A, 100(7), 4263–8 
(2003)
DOI: 10.1073/pnas.0730772100 

19.	 M. M. Mesulam: A cortical network for 
directed attention and unilateral neglect. 
Ann Neurol, 10(4), 309–25 (1981)
DOI: 10.1002/ana.410100402

20.	 A. F. Rossi, N. P. Bichot, R. Desimone and 
L. G. Ungerleider: Top down attentional 
deficits in macaques with lesions of lateral 
prefrontal cortex. J Neurosci, 27(42), 
11306–14 (2007)
DOI: 10.1523/JNEUROSCI.2939-07.2007

21.	 C. Wardak, E. Olivier and J. R. Duhamel: A 
deficit in covert attention after parietal cortex 
inactivation in the monkey. Neuron, 42(3), 
501–8 (2004)
DOI: 10.1016/S0896-6273(04)00185-0

22.	 J. Gottlieb: From thought to action: the 
parietal cortex as a bridge between 
perception, action, and cognition. Neuron, 
53(1), 9–16 (2007)
DOI: 10.1016/j.neuron.2006.12.009

23.	 K. G. Thompson and N. P. Bichot: A visual 
salience map in the primate frontal eye field. 
Prog Brain Res, 147, 251–62 (2005)
DOI: 10.1016/s0079-6123(04)47019-8

24.	 E. B. Cutrell and R. T. Marrocco: Electrical 
microstimulation of primate posterior 
parietal cortex initiates orienting and alerting 
components of covert attention. Exp Brain 
Res, 144(1), 103–13 (2002)
DOI: 10.1007/s00221-002-1032-x

25.	 T. Moore and M. Fallah: Control of eye 
movements and spatial attention. Proc Natl 
Acad Sci U S A, 98(3), 1273–6 (2001)
DOI: 10.1073/pnas.98.3.1273

26.	 I. E. Monosov and K. G. Thompson: 
Frontal eye field activity enhances object 
identification during covert visual search. J 
Neurophysiol, 102(6), 3656–72 (2009)
DOI: 10.1152/jn.00750.2009

27.	 C. Wardak, G. Ibos, J. R. Duhamel and 
E. Olivier: Contribution of the monkey 
frontal eye field to covert visual attention. J 
Neurosci, 26(16), 4228–35 (2006)
DOI: 10.1523/JNEUROSCI.3336-05.2006

28.	 T. J. Buschman and E. K. Miller: Top-down 
versus bottom-up control of attention 
in the prefrontal and posterior parietal 

8.	 L. Chelazzi, J. Duncan, E. K. Miller and R. 
Desimone: Responses of neurons in inferior 
temporal cortex during memory-guided 
visual search. J Neurophysiol, 80(6), 2918–
40. (1998)

9.	 L. Chelazzi, E. K. Miller, J. Duncan and R. 
Desimone: Responses of neurons in macaque 
area V4 during memory-guided visual search. 
Cereb Cortex, 11(8), 761–72. (2001)
DOI: 10.1093/cercor/11.8.761

10.	 S. J. Luck, L. Chelazzi, S. A. Hillyard and 
R. Desimone: Neural mechanisms of spatial 
selective attention in areas V1, V2, and V4 
of macaque visual cortex. J Neurophysiol, 
77(1), 24–42. (1997)

11.	 J. Moran and R. Desimone: Selective attention 
gates visual processing in the extrastriate 
cortex. Science, 229, 782–784 (1985)
DOI: 10.1126/science.4023713

12.	 B. C. Motter: Focal attention produces 
spatially selective processing in visual 
cortical areas V1, V2, and V4 in the presence 
of competing stimuli. J Neurophysiol, 70(3), 
909–19 (1993)

13.	 J. H. Reynolds, L. Chelazzi and R. Desimone: 
Competitive mechanisms subserve attention 
in macaque areas V2 and V4. J Neurosci, 
19(5), 1736–53 (1999)

14.	 S. Treue and J. C. Martinez Trujillo: 
Feature-based attention influences motion 
processing gain in macaque visual cortex. 
Nature, 399(6736), 575–9 (1999)
DOI: 10.1038/21176

15.	 S. Treue and J. H. Maunsell: Attentional 
modulation of visual motion processing 
in cortical areas MT and MST. Nature, 
382(6591), 539–41 (1996)
DOI: 10.1038/382539a0

16.	 B. Noudoost, M. H. Chang, N. A. Steinmetz 
and T. Moore: Top-down control of visual 
attention. Curr Opin Neurobiol, 20(2), 183–
90 (2010)
DOI: 10.1016/j.conb.2010.02.003

17.	 J. Duncan: Disorganization of Behavior 
after Frontal-Lobe Damage. Cognitive 
Neuropsych, 3(3), 271–290 (1986)
DOI: 10.1080/02643298608253360

18.	 S. R. Friedman-Hill, L. C. Robertson, R. 
Desimone and L. G. Ungerleider: Posterior 
parietal cortex and the filtering of distractors. 

Decoding attention from neuronal populations

237 © 1996-2018

https://doi.org/10.1073/pnas.0730772100 
https://doi.org/10.1002/ana.410100402
https://doi.org/10.1523/JNEUROSCI.2939-07.2007
https://doi.org/10.1016/S0896-6273(04)00185-0
https://doi.org/10.1016/j.neuron.2006.12.009
https://doi.org/10.1016/s0079-6123(04)47019-8
https://doi.org/10.1007/s00221-002-1032-x
https://doi.org/10.1073/pnas.98.3.1273
https://doi.org/10.1152/jn.00750.2009
https://doi.org/10.1523/JNEUROSCI.3336-05.2006
https://doi.org/10.1093/cercor/11.8.761
https://doi.org/10.1126/science.4023713
https://doi.org/10.1038/21176
https://doi.org/10.1038/382539a0
https://doi.org/10.1016/j.conb.2010.02.003
https://doi.org/10.1080/02643298608253360


39.	 J. L. Herrero, M. J. Roberts, L. S. 
Delicato, M. A. Gieselmann, P. Dayan 
and A. Thiele: Acetylcholine contributes 
through muscarinic receptors to attentional 
modulation in V1. Nature, 454(7208), 
1110–4 (2008)
DOI: 10.1038/nature07141

40.	 C. J. McAdams and R. C. Reid: Attention 
modulates the responses of simple cells in 
monkey primary visual cortex. J Neurosci, 
25(47), 11023–33 (2005)
DOI: 10.1523/JNEUROSCI.2904-05.2005

41.	 P. S. Khayat, H. Spekreijse and P. R. 
Roelfsema: Attention lights up new object 
representations before the old ones fade 
away. J Neurosci, 26(1), 138–42 (2006)
DOI: 10.1523/JNEUROSCI.2784-05.2006

42.	 N. P. Bichot, A. F. Rossi and R. Desimone: 
Parallel and serial neural mechanisms for 
visual search in macaque area V4. Science, 
308(5721), 529–34 (2005)
DOI: 10.1126/science.1109676

43.	 J. W. Bisley and M. E. Goldberg: Neuronal 
activity in the lateral intraparietal area and 
spatial attention. Science, 299(5603), 81–6 
(2003)
DOI: 10.1126/science.1077395

44.	 J. P. Gottlieb, M. Kusunoki and M. E. 
Goldberg: The representation of visual 
salience in monkey parietal cortex. Nature, 
391, 481–484 (1998)
DOI: 10.1038/35135

45.	 K. G. Thompson, N. P. Bichot and J. D. 
Schall: Dissociation of visual discrimination 
from saccade programming in macaque 
frontal eye field. J Neurophysiol, 77(2), 
1046–50 (1997)

46.	 N. P. Bichot and J. D. Schall: Saccade target 
selection in macaque during feature and 
conjunction visual search. Vis Neurosci, 
16(1), 81–9 (1999)
DOI: 10.1017/S0952523899161042

47.	 G. G. Gregoriou, S. J. Gotts, H. Zhou and 
R. Desimone: High-frequency, long-range 
coupling between prefrontal and visual 
cortex during attention. Science, 324(5931), 
1207–10 (2009)
DOI: 10.1126/science.1171402

48.	 P. Fries, J. H. Reynolds, A. E. Rorie and 
R. Desimone: Modulation of oscillatory 
neuronal synchronization by selective visual 

cortices. Science, 315(5820), 1860–2 
(2007)
DOI: 10.1126/science.1138071 

29.	 N. P. Bichot, M. T. Heard, E. M. DeGennaro 
and R. Desimone: A Source for Feature-
Based Attention in the Prefrontal Cortex. 
Neuron, 88(4), 832–44 (2015)
DOI: 10.1016/j.neuron.2015.10.001 

30.	 C. J. McAdams and J. H. Maunsell: Attention 
to both space and feature modulates 
neuronal responses in macaque area V4. J 
Neurophysiol, 83(3), 1751–5 (2000)

31.	 J. H. Reynolds and D. J. Heeger: The 
normalization model of attention. Neuron, 
61(2), 168–85 (2009)
DOI: 10.1016/j.neuron.2009.01.002 

32.	 J. Lee and J. H. Maunsell: A normalization 
model of attentional modulation of single unit 
responses. PLoS ONE, 4(2), e4651 (2009)
DOI: 10.1371/journal.pone.0004651 

33.	 J. C. Martinez-Trujillo and S. Treue: Feature-
based attention increases the selectivity 
of population responses in primate visual 
cortex. Curr Biol, 14(9), 744–51 (2004)
DOI: 10.1016/j.cub.2004.04.028 

34.	 E. A. Buffalo, P. Fries, R. Landman, T. J. 
Buschman and R. Desimone: Laminar 
differences in gamma and alpha coherence 
in the ventral stream. Proc Natl Acad Sci U 
S A, 108(27), 11262–7 (2011)
DOI: 10.1073/pnas.1011284108 

35.	 K. McAlonan, J. Cavanaugh and R. H. 
Wurtz: Guarding the gateway to cortex 
with attention in visual thalamus. Nature, 
456(7220), 391–4 (2008)
DOI: 10.1038/nature07382 

36.	 R. M. McPeek and E. L. Keller: Saccade 
target selection in the superior colliculus 
during a visual search task. J Neurophysiol, 
88(4), 2019–34 (2002)

37.	 A. Ignashchenkova, P. W. Dicke, T. 
Haarmeier and P. Thier: Neuron-specific 
contribution of the superior colliculus to overt 
and covert shifts of attention. Nat Neurosci, 
7(1), 56–64 (2004)
DOI: 10.1038/nn1169

38.	 R. J. Krauzlis, L. P. Lovejoy and A. Zenon: 
Superior Colliculus and Visual Spatial 
Attention. Annu Rev Neurosci (2013)
DOI: 10.1146/annurev-neuro-062012-170249

Decoding attention from neuronal populations

238 © 1996-2018

https://doi.org/10.1038/nature07141
https://doi.org/10.1523/JNEUROSCI.2784-05.2006
https://doi.org/10.1126/science.1077395
https://doi.org/10.1038/35135
https://doi.org/10.1017/S0952523899161042
https://doi.org/10.1126/science.1171402
https://doi.org/10.1126/science.1138071 
https://doi.org/10.1016/j.neuron.2015.10.001 
https://doi.org/10.1016/j.neuron.2009.01.002 
https://doi.org/10.1371/journal.pone.0004651 
https://doi.org/10.1016/j.cub.2004.04.028 
https://doi.org/10.1073/pnas.1011284108 
https://doi.org/10.1038/nature07382 
https://doi.org/10.1038/nn1169
https://doi.org/10.1146/annurev-neuro-062012-170249


57.	 I. Grothe, S. D. Neitzel, S. Mandon and A. K. 
Kreiter: Switching neuronal inputs by differential 
modulations of gamma-band phase-coherence. 
J Neurosci, 32(46), 16172–80 (2012)
DOI: 10.1523/JNEUROSCI.0890-12.2012

58.	 A. M. Bastos, J. Vezoli and P. Fries: 
Communication through coherence with 
inter-areal delays. Curr Opin Neurobiol, 31, 
173–80 (2015)
DOI: 10.1016/j.conb.2014.11.001

59.	 G. G. Gregoriou, A. F. Rossi, L. G. Ungerleider 
and R. Desimone: Lesions of prefrontal 
cortex reduce attentional modulation of 
neuronal responses and synchrony in V4. 
Nat Neurosci, 17(7), 1003–11 (2014)
DOI: 10.1038/nn.3742

60.	 A. Bollimunta, J. Mo, C. E. Schroeder 
and M. Ding: Neuronal mechanisms and 
attentional modulation of corticothalamic 
alpha oscillations. J Neurosci, 31(13), 4935–
43 (2011)
DOI: 10.1523/JNEUROSCI.5580-10.2011

61.	 P. Fries, T. Womelsdorf, R. Oostenveld and R. 
Desimone: The effects of visual stimulation 
and selective visual attention on rhythmic 
neuronal synchronization in macaque area 
V4. J Neurosci, 28(18), 4823–35 (2008)
DOI: 10.1523/JNEUROSCI.4499-07.2008

62.	 M. Bauer, R. Oostenveld, M. Peeters and 
P. Fries: Tactile spatial attention enhances 
gamma-band activity in somatosensory 
cortex and reduces low-frequency activity 
in parieto-occipital areas. J Neurosci, 26(2), 
490–501 (2006)
DOI: 10.1523/JNEUROSCI.5228-04.2006

63.	 G. Thut, A. Nietzel, S. A. Brandt 
and A. Pascual-Leone: Alpha-band 
electroencephalographic activity over 
occipital cortex indexes visuospatial 
attention bias and predicts visual target 
detection. J Neurosci, 26(37), 9494–502 
(2006)
DOI: 10.1523/JNEUROSCI.0875-06.2006

64.	 M. S. Worden, J. J. Foxe, N. Wang and G. V. 
Simpson: Anticipatory biasing of visuospatial 
attention indexed by retinotopically specific 
alpha-band electroencephalography 
increases over occipital cortex. J Neurosci, 
20(6), RC63 (2000)

65.	 B. F. Handel, T. Haarmeier and O. Jensen: 
Alpha oscillations correlate with the 

attention. Science, 291(5508), 1560–1563  
(2001)
DOI: 10.1126/science.1055465

49.	 Y. B. Saalmann, I. N. Pigarev and T. R. 
Vidyasagar: Neural mechanisms of visual 
attention: how top-down feedback highlights 
relevant locations. Science, 316(5831), 
1612–5 (2007)
DOI: 10.1126/science.1139140

50.	 K. Taylor, S. Mandon, W. A. Freiwald and 
A. K. Kreiter: Coherent oscillatory activity 
in monkey area v4 predicts successful 
allocation of attention. Cereb Cortex, 15(9), 
1424–37 (2005)
DOI: 10.1093/cercor/bhi023

51.	 G. G. Gregoriou, S. Paneri and P. Sapountzis: 
Oscillatory synchrony as a mechanism of 
attentional processing. Brain Res, 1626, 
165–82 (2015)
DOI: 10.1016/j.brainres.2015.02.004

52.	 T. Gruber, M. M. Muller, A. Keil and T. Elbert: 
Selective visual-spatial attention alters induced 
gamma band responses in the human EEG. 
Clin Neurophysiol, 110(12), 2074–85 (1999)
DOI: 10.1016/S1388-2457(99)00176-5

53.	 M. M. Muller and A. Keil: Neuronal 
synchronization and selective color 
processing in the human brain. J Cogn 
Neurosci, 16(3), 503–22 (2004)
DOI: 10.1162/089892904322926827

54.	 M. Siegel, T. H. Donner, R. Oostenveld, 
P. Fries and A. K. Engel: Neuronal 
synchronization along the dorsal visual 
pathway reflects the focus of spatial 
attention. Neuron, 60(4), 709–19 (2008)
DOI: 10.1016/j.neuron.2008.09.010

55.	 C. Tallon-Baudry, O. Bertrand, M. A. Henaff, 
J. Isnard and C. Fischer: Attention modulates 
gamma-band oscillations differently in the 
human lateral occipital cortex and fusiform 
gyrus. Cereb Cortex, 15(5), 654–62  
(2005)
DOI: 10.1093/cercor/bhh167

56.	 C. A. Bosman, J. M. Schoffelen, N. Brunet, 
R. Oostenveld, A. M. Bastos, T. Womelsdorf, 
B. Rubehn, T. Stieglitz, P. De Weerd and P. 
Fries: Attentional stimulus selection through 
selective synchronization between monkey 
visual areas. Neuron, 75(5), 875–88  
(2012)
DOI: 10.1016/j.neuron.2012.06.037

Decoding attention from neuronal populations

239 © 1996-2018

https://doi.org/10.1523/JNEUROSCI.0890-12.2012
https://doi.org/10.1016/j.conb.2014.11.001
https://doi.org/10.1038/nn.3742
https://doi.org/10.1523/JNEUROSCI.5580-10.2011
https://doi.org/10.1523/JNEUROSCI.4499-07.2008
https://doi.org/10.1523/JNEUROSCI.5228-04.2006
https://doi.org/10.1523/JNEUROSCI.0875-06.2006
https://doi.org/10.1126/science.1055465
https://doi.org/10.1126/science.1139140
https://doi.org/10.1093/cercor/bhi023
https://doi.org/10.1016/j.brainres.2015.02.004
https://doi.org/10.1016/S1388-2457(99)00176-5
https://doi.org/10.1162/089892904322926827
https://doi.org/10.1016/j.neuron.2008.09.010
https://doi.org/10.1093/cercor/bhh167
https://doi.org/10.1016/j.neuron.2012.06.037


G. S. Corrado, W. T. Newsome, A. M. Clark, 
P. Hosseini, B. B. Scott, D. C. Bradley, M. 
A. Smith, A. Kohn, J. A. Movshon, K. M. 
Armstrong, T. Moore, S. W. Chang, L. H. 
Snyder, S. G. Lisberger, N. J. Priebe, I. M. 
Finn, D. Ferster, S. I. Ryu, G. Santhanam, 
M. Sahani and K. V. Shenoy: Stimulus onset 
quenches neural variability: a widespread 
cortical phenomenon. Nat Neurosci, 13(3), 
369–78 (2010)
DOI: 10.1038/nn.2501

75.	 M. H. Chang, K. M. Armstrong and T. Moore: 
Dissociation of response variability from firing 
rate effects in frontal eye field neurons during 
visual stimulation, working memory, and 
attention. J Neurosci, 32(6), 2204–16 (2012)
DOI: 10.1523/JNEUROSCI.2967-11.2012

76.	 B. A. Purcell, R. P. Heitz, J. Y. Cohen and 
J. D. Schall: Response variability of frontal 
eye field neurons modulates with sensory 
input and saccade preparation but not visual 
search salience. J Neurophysiol, 108(10), 
2737–50 (2012)
DOI: 10.1152/jn.00613.2012

77.	 C. J. McAdams and J. H. Maunsell: Effects 
of attention on the reliability of individual 
neurons in monkey visual cortex. Neuron, 
23(4), 765–73 (1999)
DOI: 10.1016/S0896-6273(01)80034-9

78.	 J. F. Mitchell, K. A. Sundberg and J. H. 
Reynolds: Differential attention-dependent 
response modulation across cell classes 
in macaque visual area V4. Neuron, 55(1), 
131–41 (2007)
DOI: 10.1016/j.neuron.2007.06.018

79.	 A. Thiele, C. Brandt, M. Dasilva, S. 
Gotthardt, D. Chicharro, S. Panzeri and C. 
Distler: Attention Induced Gain Stabilization 
in Broad and Narrow-Spiking Cells in the 
Frontal Eye-Field of Macaque Monkeys. J 
Neurosci, 36(29), 7601–12 (2016)
DOI: 10.1523/JNEUROSCI.0872-16.2016

80.	 C. Hussar and T. Pasternak: Trial-to-trial 
variability of the prefrontal neurons reveals 
the nature of their engagement in a motion 
discrimination task. Proc Natl Acad Sci U S 
A, 107(50), 21842–7 (2010)
DOI: 10.1073/pnas.1009956107

81.	 R. L. Goris, J. A. Movshon and E. P. 
Simoncelli: Partitioning neuronal variability. 
Nat Neurosci, 17(6), 858–65 (2014)
DOI: 10.1038/nn.3711

successful inhibition of unattended stimuli. J 
Cogn Neurosci, 23(9), 2494–502 (2011)
DOI: 10.1162/jocn.2010.21557

66.	 S. P. Kelly, E. C. Lalor, R. B. Reilly and J. J. 
Foxe: Increases in alpha oscillatory power 
reflect an active retinotopic mechanism for 
distracter suppression during sustained 
visuospatial attention. J Neurophysiol, 95(6), 
3844–51 (2006)
DOI: 10.1152/jn.01234.2005

67.	 S. Palva and J. M. Palva: New vistas for 
alpha-frequency band oscillations. Trends 
Neurosci, 30(4), 150–8 (2007)
DOI: 10.1016/j.tins.2007.02.001

68.	 W. Klimesch: Alpha-band oscillations, 
attention, and controlled access to stored 
information. Trends Cogn Sci, 16(12), 606–
17 (2012)
DOI: 10.1016/j.tics.2012.10.007

69.	 A. Maier, G. K. Adams, C. Aura and D. 
A. Leopold: Distinct superficial and deep 
laminar domains of activity in the visual 
cortex during rest and stimulation. Front 
Syst Neurosci, 4 (2010)
DOI: 10.3389/fnsys.2010.00031

70.	 D. Xing, C. I. Yeh, S. Burns and R. M. 
Shapley: Laminar analysis of visually evoked 
activity in the primary visual cortex. Proc Natl 
Acad Sci U S A, 109(34), 13871–6 (2012)
DOI: 10.1073/pnas.1201478109

71.	 T. van Kerkoerle, M. W. Self, B. Dagnino, M. 
A. Gariel-Mathis, J. Poort, C. van der Togt 
and P. R. Roelfsema: Alpha and gamma 
oscillations characterize feedback and 
feedforward processing in monkey visual 
cortex. Proc Natl Acad Sci U S A, 111(40), 
14332–41 (2014)
DOI: 10.1073/pnas.1402773111

72.	 M. N. Shadlen and W. T. Newsome: The 
variable discharge of cortical neurons: 
implications for connectivity, computation, 
and information coding. J Neurosci, 18(10), 
3870–96 (1998)

73.	 D. J. Tolhurst, J. A. Movshon and A. F. Dean: 
The statistical reliability of signals in single 
neurons in cat and monkey visual cortex. 
Vision Res, 23(8), 775–85 (1983)
DOI: 10.1016/0042-6989(83)90200-6

74.	 M. M. Churchland, B. M. Yu, J. P. 
Cunningham, L. P. Sugrue, M. R. Cohen, 

Decoding attention from neuronal populations

240 © 1996-2018

https://doi.org/10.1038/nn.2501
https://doi.org/10.1523/JNEUROSCI.2967-11.2012
https://doi.org/10.1152/jn.00613.2012
https://doi.org/10.1016/S0896-6273(01)80034-9
https://doi.org/10.1016/j.neuron.2007.06.018
https://doi.org/10.1523/JNEUROSCI.0872-16.2016
https://doi.org/10.1073/pnas.1009956107
https://doi.org/10.1038/nn.3711
https://doi.org/10.1162/jocn.2010.21557
https://doi.org/10.1152/jn.01234.2005
https://doi.org/10.1016/j.tins.2007.02.001
https://doi.org/10.1016/j.tics.2012.10.007
https://doi.org/10.3389/fnsys.2010.00031
https://doi.org/10.1073/pnas.1201478109
https://doi.org/10.1073/pnas.1402773111
https://doi.org/10.1016/0042-6989(83)90200-6


92.	 E. Astrand, C. Wardak, P. Baraduc and 
S. Ben Hamed: Direct Two-Dimensional 
Access to the Spatial Location of Covert 
Attention in Macaque Prefrontal Cortex. 
Curr Biol, 26(13), 1699–704 (2016)
DOI: 10.1016/j.cub.2016.04.054

93.	 N. C. Rabinowitz, R. L. Goris, M. Cohen 
and E. P. Simoncelli: Attention stabilizes 
the shared gain of V4 populations. Elife, 4, 
e08998 (2015)
DOI: 10.7554/eLife.08998

94.	 R. Yuste: From the neuron doctrine to neural 
networks. Nat Rev Neurosci, 16(8), 487–97 
(2015)
DOI: 10.1038/nrn3962

95.	 R. O. Duda, P. E. Hart and D. G. Stork: 
Pattern classification. Wiley, New York 
(2001)

96.	 M. Jazayeri and J. A. Movshon: Optimal 
representation of sensory information by 
neural populations. Nat Neurosci, 9(5), 690–
6 (2006)
DOI: 10.1038/nn1691

97.	 E. Astrand, P. Enel, G. Ibos, P. F. Dominey, 
P. Baraduc and S. Ben Hamed: Comparison 
of classifiers for decoding sensory and 
cognitive information from prefrontal 
neuronal populations. PLoS One, 9(1), 
e86314 (2014)
DOI: 10.1371/journal.pone.0086314

98.	 R. Quian Quiroga and S. Panzeri: Extracting 
information from neuronal populations: 
information theory and decoding approaches. 
Nat Rev Neurosci, 10(3), 173–85 (2009)
DOI: 10.1038/nrn2578

99.	 I. Kanitscheider, R. Coen-Cagli, A. Kohn and 
A. Pouget: Measuring Fisher information 
accurately in correlated neural populations. 
PLoS Comput Biol, 11(6), e1004218 (2015)
DOI: 10.1371/journal.pcbi.1004218

100.	S. Panzeri, R. Senatore, M. A. Montemurro 
and R. S. Petersen: Correcting for the 
sampling bias problem in spike train 
information measures. J Neurophysiol, 
98(3), 1064–72 (2007)
DOI: 10.1152/jn.00559.2007

101.	J. M. Carmena, M. A. Lebedev, R. E. 
Crist, J. E. O’Doherty, D. M. Santucci, D. 
F. Dimitrov, P. G. Patil, C. S. Henriquez 
and M. A. Nicolelis: Learning to control a 

82.	 E. Zohary, M. N. Shadlen and W. T. Newsome: 
Correlated neuronal discharge rate and its 
implications for psychophysical performance. 
Nature, 370(6485), 140–3 (1994)
DOI: 10.1038/370140a0

83.	 M. R. Cohen and A. Kohn: Measuring and 
interpreting neuronal correlations. Nat 
Neurosci, 14(7), 811–9 (2011)
DOI: 10.1038/nn.2842

84.	 J. Poort and P. R. Roelfsema: Noise 
correlations have little influence on the 
coding of selective attention in area V1. 
Cereb Cortex, 19(3), 543–53 (2009)
DOI: 10.1093/cercor/bhn103

85.	 W. Bair, E. Zohary and W. T. Newsome: 
Correlated firing in macaque visual area MT: 
time scales and relationship to behavior. J 
Neurosci, 21(5), 1676–97 (2001)

86.	 M. L. Leavitt, F. Pieper, A. Sachs, R. Joober 
and J. C. Martinez-Trujillo: Structure of 
spike count correlations reveals functional 
interactions between neurons in dorsolateral 
prefrontal cortex area 8a of behaving 
primates. PLoS One, 8(4), e61503 (2013)
DOI: 10.1371/journal.pone.0061503

87.	 J. L. Herrero, M. A. Gieselmann, M. Sanayei 
and A. Thiele: Attention-induced variance 
and noise correlation reduction in macaque 
V1 is mediated by NMDA receptors. Neuron, 
78(4), 729–39 (2013)
DOI: 10.1016/j.neuron.2013.03.029

88.	 D. A. Ruff and M. R. Cohen: Attention 
Increases Spike Count Correlations between 
Visual Cortical Areas. J Neurosci, 36(28), 
7523–34 (2016)
DOI: 10.1523/JNEUROSCI.0610-16.2016

89.	 M. R. Cohen and J. H. Maunsell: Attention 
improves performance primarily by reducing 
interneuronal correlations. Nat Neurosci, 
12(12), 1594–600 (2009)
DOI: 10.1038/nn.2439

90.	 J. F. Mitchell, K. A. Sundberg and J. H. 
Reynolds: Spatial attention decorrelates 
intrinsic activity fluctuations in macaque 
area V4. Neuron, 63(6), 879–88 (2009)
DOI: 10.1016/j.neuron.2009.09.013

91.	 A. Zenon and R. J. Krauzlis: Attention 
deficits without cortical neuronal deficits. 
Nature, 489(7416), 434-U124 (2012)
DOI: 10.1038/nature11497

Decoding attention from neuronal populations

241 © 1996-2018

https://doi.org/10.1016/j.cub.2016.04.054
https://doi.org/10.7554/eLife.08998
https://doi.org/10.1038/nrn3962
https://doi.org/10.1038/nn1691
https://doi.org/10.1371/journal.pone.0086314
https://doi.org/10.1038/nrn2578
https://doi.org/10.1371/journal.pcbi.1004218
https://doi.org/10.1152/jn.00559.2007
https://doi.org/10.1038/370140a0
https://doi.org/10.1038/nn.2842
https://doi.org/10.1093/cercor/bhn103
https://doi.org/10.1371/journal.pone.0061503
https://doi.org/10.1016/j.neuron.2013.03.029
https://doi.org/10.1523/JNEUROSCI.0610-16.2016
https://doi.org/10.1038/nn.2439
https://doi.org/10.1016/j.neuron.2009.09.013
https://doi.org/10.1038/nature11497


cortex. Proc Natl Acad Sci U S A, 108(21), 
8850–5 (2011)
DOI: 10.1073/pnas.1100999108

110.	J. Jonides: Voluntary Versus Automatic 
Control Over the Mind’s Eye’s Movement. 
In: Attention and Performance IX. Ed J. B. 
Long&A. D. Baddely. Lawrence Erlbaum 
Associates Hillsdale, NJ (1981)

111.	D. Raposo, M. T. Kaufman and A. K. 
Churchland: A category-free neural 
population supports evolving demands 
during decision-making. Nat Neurosci, 
17(12), 1784–92 (2014)
DOI: 10.1038/nn.3865

112.	E. M. Meyers, X. L. Qi and C. Constantinidis: 
Incorporation of new information into 
prefrontal cortical activity after learning 
working memory tasks. P Natl Acad Sci U S 
A, 109(12), 4651–4656 (2012)
DOI: 10.1073/pnas.1201022109

113.	M. G. Stokes, M. Kusunoki, N. Sigala, H. 
Nili, D. Gaffan and J. Duncan: Dynamic 
coding for cognitive control in prefrontal 
cortex. Neuron, 78(2), 364–75 (2013)
DOI: 10.1016/j.neuron.2013.01.039

114.	E. L. Rich and J. D. Wallis: Decoding 
subjective decisions from orbitofrontal 
cortex. Nat Neurosci, 19(7), 973–80 (2016)
DOI: 10.1038/nn.4320

115.	J. Duncan: An adaptive coding model of 
neural function in prefrontal cortex. Nat Rev 
Neurosci, 2(11), 820–9 (2001)
DOI: 10.1038/35097575

116.	S. Fusi, E. K. Miller and M. Rigotti: Why neurons 
mix: high dimensionality for higher cognition. 
Curr Opin Neurobiol, 37, 66–74 (2016)
DOI: 10.1016/j.conb.2016.01.010

117.	D. V. Buonomano and W. Maass: State-
dependent computations: spatiotemporal 
processing in cortical networks. Nat Rev 
Neurosci, 10(2), 113–25 (2009)
DOI: 10.1038/nrn2558

118.	R. S. Zucker and W. G. Regehr: Short-term 
synaptic plasticity. Annu Rev Physiol, 64, 
355–405 (2002)
DOI: 10.1146/annurev.physiol.64.092501. 
114547

119.	D. A. Crowe, B. B. Averbeck and M. V. 
Chafee: Rapid sequences of population 

brain-machine interface for reaching and 
grasping by primates. PLoS Biol, 1(2), E42 
(2003)
DOI: 10.1371/journal.pbio.0000042

102.	N. Hatsopoulos, J. Joshi and J. G. O’Leary: 
Decoding continuous and discrete motor 
behaviors using motor and premotor cortical 
ensembles. J Neurophysiol, 92(2), 1165–74 
(2004)
DOI: 10.1152/jn.01245.2003

103.	S. Tremblay, F. Pieper, A. Sachs and J. 
Martinez-Trujillo: Attentional filtering of 
visual information by neuronal ensembles in 
the primate lateral prefrontal cortex. Neuron, 
85(1), 202–15 (2015)
DOI: 10.1016/j.neuron.2014.11.021

104.	S. Tremblay, G. Doucet, F. Pieper, A. 
Sachs and J. Martinez-Trujillo: Single-
Trial Decoding of Visual Attention from 
Local Field Potentials in the Primate 
Lateral Prefrontal Cortex Is Frequency-
Dependent. J Neurosci, 35(24), 9038–49 
(2015)
DOI: 10.1523/JNEUROSCI.1041-15.2015

105.	K. M. Armstrong, M. H. Chang and T. Moore: 
Selection and maintenance of spatial 
information by frontal eye field neurons. J 
Neurosci, 29(50), 15621–9 (2009)
DOI: 10.1523/JNEUROSCI.4465-09.2009

106.	S. Farbod Kia, E. Astrand, G. Ibos and S. 
Ben Hamed: Readout of the intrinsic and 
extrinsic properties of a stimulus from un-
experienced neuronal activities: towards 
cognitive neuroprostheses. J Physiol Paris, 
105(1–3), 115–22 (2011)
DOI: 10.1016/j.jphysparis.2011.07.015

107.	P. Sapountzis, S. Anastasakis, R. 
Desimone and G. G. Gregoriou: Decoding 
covert attention from simultaneous 
recordings in prefrontal and visual cortex. 
In: AREADNE Research in Encoding and 
Decoding of Neural Ensembles. Ed N. G. 
Hatsopoulos & J. S. Pezaris. Santorini, 
Greece (2014)

108.	M. Esghaei and M. R. Daliri: Decoding of 
visual attention from LFP signals of macaque 
MT. PLoS One, 9(6), e100381 (2014)
DOI: 10.1371/journal.pone.0100381

109.	Y. Zhang, E. M. Meyers, N. P. Bichot, T. 
Serre, T. A. Poggio and R. Desimone: Object 
decoding with attention in inferior temporal 

Decoding attention from neuronal populations

242 © 1996-2018

https://doi.org/10.1073/pnas.1100999108
https://doi.org/10.1038/nn.3865
https://doi.org/10.1073/pnas.1201022109
https://doi.org/10.1016/j.neuron.2013.01.039
https://doi.org/10.1038/nn.4320
https://doi.org/10.1038/35097575
https://doi.org/10.1016/j.conb.2016.01.010
https://doi.org/10.1038/nrn2558
https://doi.org/10.1146/annurev.physiol.64.092501.114547
https://doi.org/10.1371/journal.pbio.0000042
https://doi.org/10.1152/jn.01245.2003
https://doi.org/10.1016/j.neuron.2014.11.021
https://doi.org/10.1523/JNEUROSCI.1041-15.2015
https://doi.org/10.1523/JNEUROSCI.4465-09.2009
https://doi.org/10.1016/j.jphysparis.2011.07.015
https://doi.org/10.1371/journal.pone.0100381


movement goals from local field potentials 
in macaque cortex. J Neurosci, 31(50), 
18412–22 (2011)
DOI: 10.1523/JNEUROSCI.4165-11.2011

129.	S. B. Laughlin and T. J. Sejnowski: 
Communication in neuronal networks. 
Science, 301(5641), 1870–4 (2003)
DOI: 10.1126/science.1089662

130.	M. Rigotti, O. Barak, M. R. Warden, X. J. 
Wang, N. D. Daw, E. K. Miller and S. Fusi: 
The importance of mixed selectivity in 
complex cognitive tasks. Nature, 497(7451), 
585–90 (2013)
DOI: 10.1038/nature12160

131.	R. C. deCharms and A. Zador: Neural 
representation and the cortical code. Annu 
Rev Neurosci, 23, 613–47 (2000)
DOI: 10.1146/annurev.neuro.23.1.613

132.	C. P. Hung, G. Kreiman, T. Poggio and J. J. 
DiCarlo: Fast readout of object identity from 
macaque inferior temporal cortex. Science, 
310(5749), 863–6 (2005)
DOI: 10.1126/science.1117593

133.	S. Panzeri, N. Brunel, N. K. Logothetis 
and C. Kayser: Sensory neural codes 
using multiplexed temporal scales. Trends 
Neurosci, 33(3), 111–20 (2010)
DOI: 10.1016/j.tins.2009.12.001

134.	A. Kohn, R. Coen-Cagli, I. Kanitscheider 
and A. Pouget: Correlations and Neuronal 
Population Information. Annu Rev Neurosci, 
39, 237–56 (2016)
DOI: 10.1146/annurev-neuro-070815-013851

135.	K. H. Britten, W. T. Newsome, M. N. 
Shadlen, S. Celebrini and J. A. Movshon: A 
relationship between behavioral choice and 
the visual responses of neurons in macaque 
MT. Visual Neuroscience, 13(1), 87–100 
(1996)
DOI: 10.1017/S095252380000715X

136.	L. F. Abbott and P. Dayan: The effect of 
correlated variability on the accuracy of a 
population code. Neural Comput, 11(1), 91–
101 (1999)
DOI: 10.1162/089976699300016827

137.	A. S. Ecker, P. Berens, A. S. Tolias and M. 
Bethge: The effect of noise correlations in 
populations of diversely tuned neurons. J 
Neurosci, 31(40), 14272–83 (2011)
DOI: 10.1523/JNEUROSCI.2539-11.2011

activity patterns dynamically encode 
task-critical spatial information in parietal 
cortex. J Neurosci, 30(35), 11640–53 
(2010)
DOI: 10.1523/JNEUROSCI.0954-10.2010

120.	E. M. Meyers, D. J. Freedman, G. Kreiman, 
E. K. Miller and T. Poggio: Dynamic 
population coding of category information 
in inferior temporal and prefrontal cortex. J 
Neurophysiol, 100(3), 1407–19 (2008)
DOI: 10.1152/jn.90248.2008

121.	E. Astrand, G. Ibos, J. R. Duhamel and S. 
Ben Hamed: Differential dynamics of spatial 
attention, position, and color coding within 
the parietofrontal network. J Neurosci, 35(7), 
3174–89 (2015)
DOI: 10.1523/JNEUROSCI.2370-14.2015

122.	J. D. Murray, A. Bernacchia, N. A. Roy, C. 
Constantinidis, R. Romo and X. J. Wang: 
Stable population coding for working 
memory coexists with heterogeneous neural 
dynamics in prefrontal cortex. Proc Natl 
Acad Sci U S A, 114(2), 394–399 (2017)
DOI: 10.1073/pnas.1619449114

123.	A. S. Morcos and C. D. Harvey: History-
dependent variability in population dynamics 
during evidence accumulation in cortex. Nat 
Neurosci, 19(12), 1672–1681 (2016)
DOI: 10.1038/nn.4403

124.	B. A. Olshausen and D. J. Field: Sparse 
coding of sensory inputs. Curr Opin 
Neurobiol, 14(4), 481–487 (2004)
DOI: 10.1016/j.conb.2004.07.007

125.	A. B. Graf, A. Kohn, M. Jazayeri and J. A. 
Movshon: Decoding the activity of neuronal 
populations in macaque primary visual 
cortex. Nat Neurosci, 14(2), 239–45 (2011)
DOI: 10.1038/nn.2733

126.	A. B. Graf and R. A. Andersen: Inferring 
eye position from populations of lateral 
intraparietal neurons. Elife, 3, e02813 (2014)
DOI: 10.7554/eLife.02813

127.	C. B. Boulay, F. Pieper, M. Leavitt, J. Martinez-
Trujillo and A. J. Sachs: Single-trial decoding 
of intended eye movement goals from 
lateral prefrontal cortex neural ensembles. J 
Neurophysiol, 115(1), 486–99 (2016)
DOI: 10.1152/jn.00788.2015

128.	D. A. Markowitz, Y. T. Wong, C. M. Gray 
and B. Pesaran: Optimizing the decoding of 

Decoding attention from neuronal populations

243 © 1996-2018

https://doi.org/10.1523/JNEUROSCI.4165-11.2011
https://doi.org/10.1126/science.1089662
https://doi.org/10.1038/nature12160
https://doi.org/10.1146/annurev.neuro.23.1.613
https://doi.org/10.1126/science.1117593
https://doi.org/10.1016/j.tins.2009.12.001
https://doi.org/10.1146/annurev-neuro-070815-013851
https://doi.org/10.1017/S095252380000715X
https://doi.org/10.1162/089976699300016827
https://doi.org/10.1523/JNEUROSCI.2539-11.2011
https://doi.org/10.1523/JNEUROSCI.0954-10.2010
https://doi.org/10.1152/jn.90248.2008
https://doi.org/10.1523/JNEUROSCI.2370-14.2015
https://doi.org/10.1073/pnas.1619449114
https://doi.org/10.1038/nn.4403
https://doi.org/10.1016/j.conb.2004.07.007
https://doi.org/10.1038/nn.2733
https://doi.org/10.7554/eLife.02813
https://doi.org/10.1152/jn.00788.2015


brain-machine interfaces. J Neural Eng, 
10(4), 046005 (2013)
DOI: 10.1088/1741-2560/10/4/046005

148.	J. Poort, A. Pooresmaeili and P. R. 
Roelfsema: Multi-neuron representations 
of visual attention. In: Understanding visual 
population codes: towards a common 
multivariate framework for cell recording and 
functional imaging. Ed N. Kriegeskorte&G. 
Kreiman. MIT Press, (2012)

149.	G. Buzsaki, C. A. Anastassiou and C. 
Koch: The origin of extracellular fields and 
currents--EEG, ECoG, LFP and spikes. Nat 
Rev Neurosci, 13(6), 407–20 (2012)
DOI: 10.1038/nrn3241

150.	U. Mitzdorf: Current source-density method and 
application in cat cerebral cortex: investigation 
of evoked potentials and EEG phenomena. 
Physiol Rev, 65(1), 37–100 (1985)

151.	N. K. Logothetis: What we can do and what 
we cannot do with fMRI. Nature, 453(7197), 
869–78 (2008)
DOI: 10.1038/nature06976

152.	N. K. Logothetis: The underpinnings of the 
BOLD functional magnetic resonance imaging 
signal. J Neurosci, 23(10), 3963–71 (2003)

153.	M. J. Bartolo, M. A. Gieselmann, V. 
Vuksanovic, D. Hunter, L. Sun, X. Chen, L. 
S. Delicato and A. Thiele: Stimulus-induced 
dissociation of neuronal firing rates and 
local field potential gamma power and its 
relationship to the resonance blood oxygen 
level-dependent signal in macaque primary 
visual cortex. Eur J Neurosci, 34(11), 1857–
70 (2011)
DOI: 10.1111/j.1460-9568.2011.07877.x

154.	P. Sapountzis, D. Schluppeck, R. Bowtell 
and J. W. Peirce: A comparison of fMRI 
adaptation and multivariate pattern 
classification analysis in visual cortex. 
Neuroimage, 49(2), 1632–40 (2010)
DOI: 10.1016/j.neuroimage.2009.09.066

155.	J. D. Haynes and G. Rees: Decoding mental 
states from brain activity in humans. Nat 
Rev Neurosci, 7(7), 523–34 (2006)
DOI: 10.1038/nrn1931

156.	A. Belitski, S. Panzeri, C. Magri, N. K. 
Logothetis and C. Kayser: Sensory 
information in local field potentials and 
spikes from visual and auditory cortices: 

138.	R. Moreno-Bote, J. Beck, I. Kanitscheider, 
X. Pitkow, P. Latham and A. Pouget: 
Information-limiting correlations. Nat 
Neurosci, 17(10), 1410–7 (2014)
DOI: 10.1038/nn.3807

139.	A. S. Ecker, G. H. Denfield, M. Bethge and 
A. S. Tolias: On the Structure of Neuronal 
Population Activity under Fluctuations in 
Attentional State. J Neurosci, 36(5), 1775–
89 (2016)
DOI: 10.1523/JNEUROSCI.2044-15.2016

140.	B. B. Averbeck, P. E. Latham and A. Pouget: 
Neural correlations, population coding and 
computation. Nat Rev Neurosci, 7(5), 358–
66 (2006)
DOI: 10.1038/nrn1888

141.	B. B. Averbeck and D. Lee: Effects of noise 
correlations on information encoding and 
decoding. J Neurophysiol, 95(6), 3633–44 
(2006)
DOI: 10.1152/jn.00919.2005

142.	A. B. Graf and R. A. Andersen: Predicting 
oculomotor behaviour from correlated 
populations of posterior parietal neurons. 
Nat Commun, 6, 6024 (2015)
DOI: 10.1038/ncomms7024

143.	P. Berens, A. S. Ecker, R. J. Cotton, W. J. Ma, 
M. Bethge and A. S. Tolias: A fast and simple 
population code for orientation in primate V1. 
J Neurosci, 32(31), 10618–26 (2012)
DOI: 10.1523/JNEUROSCI.1335-12.2012

144.	D. Nikolic, S. Hausler, W. Singer and W. 
Maass: Distributed fading memory for 
stimulus properties in the primary visual 
cortex. PLoS Biol, 7(12), e1000260 (2009)
DOI: 10.1371/journal.pbio.1000260

145.	J. S. McDonald, C. W. Clifford, S. S. Solomon, 
S. C. Chen and S. G. Solomon: Integration 
and segregation of multiple motion signals 
by neurons in area MT of primate. J 
Neurophysiol, 111(2), 369–78 (2014)
DOI: 10.1152/jn.00254.2013

146.	C. Mehring, J. Rickert, E. Vaadia, S. 
Cardosa de Oliveira, A. Aertsen and S. 
Rotter: Inference of hand movements from 
local field potentials in monkey motor cortex. 
Nat Neurosci, 6(12), 1253–4 (2003)
DOI: 10.1038/nn1158

147.	E. J. Hwang and R. A. Andersen: The utility 
of multichannel local field potentials for 

Decoding attention from neuronal populations

244 © 1996-2018

https://doi.org/10.1088/1741-2560/10/4/046005
https://doi.org/10.1038/nrn3241
https://doi.org/10.1038/nature06976
https://doi.org/10.1111/j.1460-9568.2011.07877.x
https://doi.org/10.1016/j.neuroimage.2009.09.066
https://doi.org/10.1038/nrn1931
https://doi.org/10.1038/nn.3807
https://doi.org/10.1523/JNEUROSCI.2044-15.2016
https://doi.org/10.1038/nrn1888
https://doi.org/10.1152/jn.00919.2005
https://doi.org/10.1038/ncomms7024
https://doi.org/10.1523/JNEUROSCI.1335-12.2012
https://doi.org/10.1371/journal.pbio.1000260
https://doi.org/10.1152/jn.00254.2013
https://doi.org/10.1038/nn1158


tissue response to chronically implanted 
silicon microelectrode arrays. Exp Neurol, 
195(1), 115–26 (2005)
DOI: 10.1016/j.expneurol.2005.04.020

166.	C. A. Chestek, V. Gilja, P. Nuyujukian, J. 
D. Foster, J. M. Fan, M. T. Kaufman, M. 
M. Churchland, Z. Rivera-Alvidrez, J. P. 
Cunningham, S. I. Ryu and K. V. Shenoy: 
Long-term stability of neural prosthetic 
control signals from silicon cortical arrays 
in rhesus macaque motor cortex. J Neural 
Eng, 8(4), 045005 (2011)
DOI: 10.1088/1741-2560/8/4/045005

167.	J. A. Perge, S. Zhang, W. Q. Malik, M. L. 
Homer, S. Cash, G. Friehs, E. N. Eskandar, J. 
P. Donoghue and L. R. Hochberg: Reliability 
of directional information in unsorted spikes 
and local field potentials recorded in human 
motor cortex. J Neural Eng, 11(4), 046007 
(2014)
DOI: 10.1088/1741-2560/11/4/046007

168.	D. Wang, Q. Zhang, Y. Li, Y. Wang, J. Zhu, 
S. Zhang and X. Zheng: Long-term decoding 
stability of local field potentials from silicon 
arrays in primate motor cortex during a 2D 
center out task. J Neural Eng, 11(3), 036009 
(2014)
DOI: 10.1088/1741-2560/11/3/036009

169.	M. D. Serruya, N. G. Hatsopoulos, L. 
Paninski, M. R. Fellows and J. P. Donoghue: 
Instant neural control of a movement signal. 
Nature, 416(6877), 141–2 (2002)
DOI: 10.1038/416141a

170.	L. R. Hochberg, D. Bacher, B. Jarosiewicz, 
N. Y. Masse, J. D. Simeral, J. Vogel, S. 
Haddadin, J. Liu, S. S. Cash, P. van der 
Smagt and J. P. Donoghue: Reach and 
grasp by people with tetraplegia using a 
neurally controlled robotic arm. Nature, 
485(7398), 372–5 (2012)
DOI: 10.1038/nature11076

171.	L. R. Hochberg, M. D. Serruya, G. M. 
Friehs, J. A. Mukand, M. Saleh, A. H. 
Caplan, A. Branner, D. Chen, R. D. Penn 
and J. P. Donoghue: Neuronal ensemble 
control of prosthetic devices by a human 
with tetraplegia. Nature, 442(7099), 164–71 
(2006)
DOI: 10.1038/nature04970

172.	E. Astrand, C. Wardak and S. Ben Hamed: 
Selective visual attention to drive cognitive 
brain-machine interfaces: from concepts 

time scales and frequency bands. J Comput 
Neurosci, 29(3), 533–45 (2010)
DOI: 10.1007/s10827-010-0230-y

157.	J. Rickert, S. C. Oliveira, E. Vaadia, A. 
Aertsen, S. Rotter and C. Mehring: Encoding 
of movement direction in different frequency 
ranges of motor cortical local field potentials. 
J Neurosci, 25(39), 8815–24 (2005)
DOI: 10.1523/JNEUROSCI.0816-05.2005

158.	D. Rotermund, U. A. Ernst, S. Mandon, K. 
Taylor, Y. Smiyukha, A. K. Kreiter and K. 
R. Pawelzik: Toward high performance, 
weakly invasive brain computer interfaces 
using selective visual attention. J Neurosci, 
33(14), 6001–11 (2013)
DOI: 10.1523/JNEUROSCI.4225-12.2013

159.	S. Ray and J. H. Maunsell: Different origins 
of gamma rhythm and high-gamma activity 
in macaque visual cortex. PLoS Biol, 9(4), 
e1000610 (2011)
DOI: 10.1371/journal.pbio.1000610

160.	T. P. Zanos, P. J. Mineault and C. C. 
Pack: Removal of spurious correlations 
between spikes and local field potentials. J 
Neurophysiol, 105(1), 474–86 (2011)
DOI: 10.1152/jn.00642.2010

161.	U. Mitzdorf: Properties of the evoked 
potential generators: current source-density 
analysis of visually evoked potentials in the 
cat cortex. Int J Neurosci, 33(1–2), 33–59 
(1987)
DOI: 10.3109/00207458708985928

162.	D. A. Kaliukhovich and R. Vogels: Decoding 
of repeated objects from local field potentials 
in macaque inferior temporal cortex. PLoS 
One, 8(9), e74665 (2013)
DOI: 10.1371/journal.pone.0074665

163.	H. Scherberger, M. R. Jarvis and R. A. 
Andersen: Cortical local field potential 
encodes movement intentions in the posterior 
parietal cortex. Neuron, 46(2), 347–54 (2005)
DOI: 10.1016/j.neuron.2005.03.004

164.	B. Pesaran, J. S. Pezaris, M. Sahani, P. P. 
Mitra and R. A. Andersen: Temporal structure 
in neuronal activity during working memory 
in macaque parietal cortex. Nat Neurosci, 
5(8), 805–11 (2002)
DOI: 10.1038/nn890

165.	R. Biran, D. C. Martin and P. A. Tresco: 
Neuronal cell loss accompanies the brain 

Decoding attention from neuronal populations

245 © 1996-2018

https://doi.org/10.1016/j.expneurol.2005.04.020
https://doi.org/10.1088/1741-2560/8/4/045005
https://doi.org/10.1088/1741-2560/11/4/046007
https://doi.org/10.1088/1741-2560/11/3/036009
https://doi.org/10.1038/416141a
https://doi.org/10.1038/nature11076
https://doi.org/10.1038/nature04970
https://doi.org/10.1007/s10827-010-0230-y
https://doi.org/10.1523/JNEUROSCI.0816-05.2005
https://doi.org/10.1523/JNEUROSCI.4225-12.2013
https://doi.org/10.1371/journal.pbio.1000610
https://doi.org/10.1152/jn.00642.2010
https://doi.org/10.3109/00207458708985928
https://doi.org/10.1371/journal.pone.0074665
https://doi.org/10.1016/j.neuron.2005.03.004
https://doi.org/10.1038/nn890


interface without spike sorting. J Neural 
Eng, 6(5), 055004 (2009)
DOI: 10.1088/1741-2560/6/5/055004

181.	S. Todorova, P. Sadtler, A. Batista, S. Chase 
and V. Ventura: To sort or not to sort: the 
impact of spike-sorting on neural decoding 
performance. J Neural Eng, 11(5), 056005 
(2014)
DOI: 10.1088/1741-2560/11/5/056005

182.	G. Santhanam, S. I. Ryu, B. M. Yu, A. Afshar 
and K. V. Shenoy: A high-performance brain-
computer interface. Nature, 442(7099), 
195–8 (2006)
DOI: 10.1038/nature04968

183.	E. Calabrese, A. Badea, C. L. Coe, G. 
R. Lubach, Y. Shi, M. A. Styner and G. A. 
Johnson: A diffusion tensor MRI atlas of 
the postmortem rhesus macaque brain. 
Neuroimage, 117, 408–16 (2015)
DOI: 10.1016/j.neuroimage.2015.05.072

184.	R. Bakker, P. Tiesinga and R. Kotter: The 
Scalable Brain Atlas: Instant Web-Based 
Access to Public Brain Atlases and Related 
Content. Neuroinformatics, 13(3), 353–66 
(2015)
DOI: 10.1007/s12021-014-9258-x

Key Words: Visual Attention, Decoding, Machine-
Learning Algorithm, Spikes, LFPs, Correlated 
Variability, Neuronal Synchronization, Review

Send correspondence to: Panagiotis 
Sapountzis, Foundation for Research and 
Technology Hellas, Institute of Applied and 
Computational Mathematics, N. Plastira 100, 
GR 70013, Heraklion Crete, Greece. Tel: 30-
2810-394857, Fax: 30-2810-394840, E-mail: 
pasapoyn@iacm.forth.gr

to neurofeedback and rehabilitation 
applications. Front Syst Neurosci, 8, 144 
(2014)
DOI: 10.3389/fnsys.2014.00144

173.	P. Nuyujukian, J. C. Kao, S. I. Ryu and K. 
V. Shenoy: A Nonhuman Primate Brain–
Computer Typing Interface. Proceedings of 
the IEEE, 105(1), 66–72 (2017)
DOI: 10.1109/JPROC.2016.2586967

174.	B. Jarosiewicz, A. A. Sarma, D. Bacher, N. 
Y. Masse, J. D. Simeral, B. Sorice, E. M. 
Oakley, C. Blabe, C. Pandarinath, V. Gilja, 
S. S. Cash, E. N. Eskandar, G. Friehs, J. M. 
Henderson, K. V. Shenoy, J. P. Donoghue 
and L. R. Hochberg: Virtual typing by people 
with tetraplegia using a self-calibrating 
intracortical brain-computer interface. Sci 
Transl Med, 7(313), 313ra179 (2015)
DOI: 10.1126/scitranslmed.aac7328

175.	F. Bremmer, A. Kaminiarz, S. Klingenhoefer 
and J. Churan: Decoding Target Distance 
and Saccade Amplitude from Population 
Activity in the Macaque Lateral Intraparietal 
Area (LIP). Front Integr Neurosci, 10, 30 
(2016)
DOI: 10.3389/fnint.2016.00030

176.	S. Ohmae, T. Takahashi, X. Lu, Y. Nishimori, 
Y. Kodaka, I. Takashima and S. Kitazawa: 
Decoding the timing and target locations 
of saccadic eye movements from neuronal 
activity in macaque oculomotor areas. J 
Neural Eng, 12(3), 036014 (2015)
DOI: 10.1088/1741-2560/12/3/036014

177.	A. B. Graf and R. A. Andersen: Brain-
machine interface for eye movements. Proc 
Natl Acad Sci U S A, 111(49), 17630–5 
(2014)
DOI: 10.1073/pnas.1419977111

178.	M. S. Treder and B. Blankertz: (C)overt 
attention and visual speller design in an 
ERP-based brain-computer interface. 
Behavioral and Brain Functions, 6 (2010)
DOI: 10.1186/1744-9081-6-28

179.	A. S. Dickey, A. Suminski, Y. Amit and N. 
G. Hatsopoulos: Single-unit stability using 
chronically implanted multielectrode arrays. 
J Neurophysiol, 102(2), 1331–9 (2009)
DOI: 10.1152/jn.90920.2008

180.	G. W. Fraser, S. M. Chase, A. Whitford and 
A. B. Schwartz: Control of a brain-computer 

Decoding attention from neuronal populations

246 © 1996-2018

https://doi.org/10.1088/1741-2560/6/5/055004
https://doi.org/10.1088/1741-2560/11/5/056005
https://doi.org/10.1038/nature04968
https://doi.org/10.1016/j.neuroimage.2015.05.072
https://doi.org/10.1007/s12021-014-9258-x
https://doi.org/10.3389/fnsys.2014.00144
https://doi.org/10.1109/JPROC.2016.2586967
https://doi.org/10.1126/scitranslmed.aac7328
https://doi.org/10.3389/fnint.2016.00030
https://doi.org/10.1088/1741-2560/12/3/036014
https://doi.org/10.1073/pnas.1419977111
https://doi.org/10.1186/1744-9081-6-28
https://doi.org/10.1152/jn.90920.2008

