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1. ABSTRACT

An increasing amount of evidence reveals 
that an orchestrated interplay between myeloid 
subpopulations in the hematopoietic system plays 
a significant role in supporting normal functions of 
the immune system and facilitating homeostatic 
restoration upon exogenous or endogenous insults. 
Heme oxygenase-1 (HO-1), a microsomal enzyme 
discovered decades ago, can metabolize pro-oxidant 
heme into biliverdin, free iron, and carbon monoxide. 
This enzymatic reaction produces biological materials, 
contributing to major immunomodulatory effects. 
Specifically, HO-1 expression in myeloid cells has 
been generally acknowledged to drive potent anti-
inflammatory and immunosuppressive responses. 
In this review, the authors focused on elucidating 

the potential mechanisms underlying myeloid HO-
mediated immunomodulation phenotypes, and 
discussed the potential application of myeloid-specific 
HO-1 induction as an anti-inflammation therapeutic 
strategy. 

2. INTRODUCTION

When the immune system is activated after a 
detrimental attack, an organism must be able to balance 
the stimulated proinflammatory and corresponding 
anti-inflammatory processes to achieve homeostasis 
for maintaining normal physiologic status. This is 
significant as the production of proinflammatory factors 
is crucial for successfully eliminating the infective 
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agents, whereas the restoration of homeostasis is 
necessary for minimizing immune system disorders 
associated with pathology (1). Accumulating studies 
have demonstrated that the coordinated interplay 
between myeloid cells (e.g. macrophages, neutrophils, 
monocytes, and dendritic cells) is required for 
maintaining this delicate yet important physiologic 
balance (2, 3).

Heme oxygenase-1 (HO-1) is a microsomal 
enzyme catabolizing pro-oxidant heme into biliverdin, 
free iron, and carbon monoxide (CO) (4, 5). These 
by-products appear to have potent cytoprotective 
properties (6) as shown in Figure 1. HO-1 expression 
is ubiquitously induced as a response to diverse 
stimuli related to oxidative stress and inflammation, 
including cytokines, hypoxia, hyperoxia, heavy 
metals, nitric oxide (NO), heat shock, thiol-reactive 
substances, hydrogen peroxide, and shear stress, 
where this expression activates or suppresses 
cell-intrinsic pathways (7, 8). Moreover, increasing 
evidence indicates that HO-1 derived from myeloid 
cells contributes to the pathogenesis of numerous 
virus infections and alters responses of infectious and 
organ-specific autoimmune diseases (5, 9). This review 
highlights the current progress on: i) the association 
between myeloid cells and inflammation; ii) the 

contribution of myeloid HO-1 to immune responses; iii) 
the mechanisms underlying myeloid HO-1 regulation 
and this enzyme’s  capability for treating immune 
disorders. 

3. MYELOID CELLS AND INFLAMMATION

Myeloid cells include four subgroups, namely, 
granulocytes, monocytes, macrophages, and dendritic 
cells (DCs) (10). They can be promptly recruited to 
the infected or damaged sites through peripheral or 
lymphatic trafficking, with the facilitation of a number of 
different chemokine receptors (11-14). The infiltrated 
myeloid cells are activated for phagocytosis and 
secrete a diverse variety of inflammatory mediators to 
realize functional plasticity in immunity (15-17).

3.1. Functional of granulocytes in inflammation

Granulocytes, a differentiated lineage derived 
from hematopoietic stem cells in bone marrow (BM), 
are the most abundant component of the myeloid 
population. They include four subcategories, namely, 
neutrophils, eosinophils, basophils, and mast cells. 
Neutrophils are generated in high number in BM and 
can be triggered for activation while in circulation 
through communication with signals from the resident 

Figure 1. HO-1 metabolizes heme. The HO-1 promoter has elements for many transcription factors and responds to heme. These induce HO-1 protein, 
which then metabolizes carbon monoxide, iron, and biliverdin (which is converted into bilirubin in a coupled reaction). HO-1 and the three by-products 
appear to have anti-inflammatory and anti-oxidant properties. NADP, nicotinamide adenine dinucleotide phosphate; NADPH, β-nicotinamide adenine 
dinucleotide 2’-phosphate reduced tetrasodium salt.
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macrophages at the infected or injured site (17). 
Eosinophils, in addition to localizing in BM, are also 
found in various organs (e.g., gastrointestinal tract, 
heart, and lung). They are important in forming an 
immune barrier against parasites and allergens, 
and therefore support physiologic homeostasis 
(18). Basophils and mast cells can contribute to the 
development and progression of Type 2 T helper (Th2) 
cytokine-mediated inflammation (19). They are able 
to release potent inflammatory mediators, such as 
proteases, histamine, heparin, and other molecules, 
which can initiate and modulate an inflammatory 
response by acting on various tissues and cells (20). 

3.2. Functional of macrophages in inflammation

Macrophages perform diverse roles in 
homeostasis and disease progression that can involve 
developmental integrity, tissue repair machinery, 
and immune modulations. These functions of 
macrophages could be executed in a well-controlled 
manner, and could involve multilevel cellular 
responses. For instance, recognition of pathogen-
associated molecular patterns (PAMPs), phagocytic 
clearance, and cytokine secretion are significant 
components of macrophage-mediated responses. The 
accumulative results could further lead to recruitment 
of other types of cells, triggering a systematic 
immune response. In general, macrophages can elicit 
inflammation, scavenge tissues, and actively regulate 
immune responses. Notably, the primary function of 
macrophages is to initiate adaptive immune responses 
by presenting pathogen-derived antigens to T cells 
(21). Moreover, macrophages are one major cell type 
responsible for efferocytosis, the process of engulfing 
and destroying dying cells, thus releasing harmful 
intracellular biomaterials to trigger inflammation that 
could lead to autoimmunity (22, 23).

3.3. Functional of monocytes in inflammation

Monocytes, an important component of the 
innate immune system, are among the first batches 
of cell types to sense and respond to the local insults 
by migrating from the peripheral blood to the infected 
site and differentiating into tissue macrophages and 
dendritic cells to take part in the immune response. 
Endowed with dualism due to their heterogeneity 
and functional plasticity, monocytes are able to exert 
versatile immune functions during the different stages 
of  immunity (24). They can produce proinflammatory 
factors (e.g., TNF-α, interleukin (IL)-6, IL-1β), reactive 
oxygen species (ROS), proteolytic enzymes, and other 
active molecules to actively dictate an early cascade 
of immune responses. On the other hand, by secreting 
anti-inflammatory factors (e.g., IL-10), monocytes can 
also actively engage in the inflammation suppression 
process which is essential for maintaining tissue 
homeostasis (25, 26).

3.4. Function of DCs in inflammation 

As discussed in previous studies, the immune 
system can be efficiently activated by anatomical, 
immunological, genetic, and environmental cues in 
the early stages of life. In addition to conventional 
DCs which arise from hematopoietic progenitor cells 
in the BM, a heterogeneous sub-population called 
inflammatory DCs can be derived from monocytes 
which are recruited to the local sites where inflammation 
occurs. It has also been observed that the nuclear factor 
kappa B (NF-κB) pathway engaged in TLR-4 signaling 
is well preserved in neonatal monocyte-derived DCs 
(MoDCs), which are in charge of maintaining the 
generation of pro-inflammatory factors  (e.g., TNF-α, 
IL-6, and IL-8). This helps scholars to better understand 
the molecular mechanisms underlying the diminished 
ability of circulating MoDCs to generate inflammatory 
cytokines such as TNF-α or IL-1β, contributing to the 
vulnerability of newborns to bacterial sepsis (27).

4. ROLE OF MYELOID HO-1 IN THE PATHO-
LOGICAL PROCESS OF INFLAMMATION

Inflammation is a dynamic process engaging 
diverse cellular and subcellular elements that undergo 
a complex interplay. Those elements operate in 
a collaborative fashion to defend the host against 
deleterious stimulation (28). Current views state 
that the inflammation process can involve both the 
innate immune system and adaptive immune system 
for orchestrated regulation of immunity. Essentially, 
modulating the myeloid HO-1 may cross-regulate 
these two processes.

4.1. Role of myeloid HO-1 effects on NKT and NK 
cells

Natural-killer-T (NKT) cells, harboring 
cytotoxicity and cytokine-producing functions, 
are significant components of the innate immune 
system. They can quickly respond to virally infected 
cells and tumor cells and can generate diverse 
cytokines correspondingly. In addition to their long-
term acknowledged effector lymphocyte function, 
recent discoveries underscore their regulatory role in 
communicating with other types of lymphocytes as 
well. For instance, antigen-presenting DCs can be 
activated by NKTs (29), and T cells can be induced 
to form differential Th1 cells after direct interaction 
with NKTs (30). Genetically, deletion of HO-1 in 
multi-drug resistance protein 2 (Mdr2) knockout mice 
leads to a more severe inflammation phenotype 
compared with Mdr2-only knockout littermates. This 
exacerbation could be explained by the corresponding 
elevated frequencies of T cells, NKT cells, and mature 
dendritic cells (DCs) compared to Mdr2-only knockout 
littermates (31). NK cells can interfere with the delicate 
balance between the regulatory and effector input part 
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of the immune response through eliminating regulatory 
T cells (T-reg) (32). Induced HO-1 expression in mice 
reveals a severe suppression of T cell and NK-cell-
mediated spleen cell toxicity (32). 

4.2. Role of myeloid HO-1 effects  on T cells

T-lymphocytes are essential players and a 
core component for adaptive immunity, governing the 
host’s immune response toward different pathogens 
(33). T-lymphocytes are mainly divided into two 
subpopulations based on the marker expression 
pattern on their cell surface, namely, CD4+ and CD8+. 
In addition to carrying out multiple layers of functions 
in immunity, CD4+ helper T cells promote activation 
of cells engaged in the innate immune system, 
B-lymphocytes, and other nonimmune cell types. On 
the other hand, they contribute to dampening the 
active immune response based on their regulatory 
property. CD8+ cytotoxic T cells can specifically 
destroy their target (i.e., cancer cells, infected cells, or 
damaged cells from other sources) through releasing 
their cytotoxins to induce apoptosis. Releasing soluble 
factors and cytokines is an important means for T cells 
to communicate with other cells as well as defining 
the local immune environment. The distinct patterns 
of released cytokines could be proinflammatory or 
anti-inflammatory. Additionally, T cells release soluble 
factors that can activate and recruit immune cells 
or modulate their functions (34). Several studies 
have indicated that myeloid-derived HO-1 affects 
the function and development of human and murine 
CD4+ and CD8+ regulatory T cells (T-reg). Myeloid 
dendritic cells expressing HO-1 have been shown to 
potentially drive the enhancement of Foxp3 regulatory 
T cells through unknown mechanisms (35). However, 
the contribution of HO-1 activity in the inhibition of 
inflammatory molecules produced by T cells has 
not yet been identified. Findings support the notion 
that myeloid HO-1 expression can actively impact 
many aspects of T cell biology potentially through a 
dissected cell-cell communication network. Brandsma 
(36) reported that HO-1 induction, particularly in 
lung alveolar macrophages, was correlated with the 
inhibition of smoking-induced B-cell infiltrates in lung. 
This phenotype was accompanied with elevated 
CD4+CD25+ regulatory T cells in lung (36). These 
studies provided strong evidence about the myeloid 
HO-1 function in regulating inflammation, and further 
enabled scholars to infer that manipulation of myeloid 
HO-1 level could serve as a novel means to regulate 
immune cell (i.e., T-regs) responses toward an anti-
inflammation outcome. Moreover, our previous findings 
revealed that the application of the precursor of heme 
anabolism, 5-aminolevulinic acid (5-ALA), together 
with the byproduct of heme catabolism, ferrous iron, 
interestingly upregulated HO-1 expression in myeloid 
cells and led to T cell proliferation repression in a 
murine cardiac allograft model (37). However, in this 

model, regulatory T cells and myeloid cells received 
significant expansion, leading to alleviation of the organ 
allotransplantation rejection phenotype and eventually 
to successful allograft acceptance. Collectively, all 
these findings support the idea that myeloid-derived 
HO-1 plays a critical role in immune tolerance, and 
manipulation of its expression level adds a novel 
layer of regulation beneficial for clinical treatment of 
inflammation.

4.3. Role of myeloid HO-1 effects on B cells

B cells, a critical component of adaptive 
immunity, carry out the humoral immune response 
through secreting antibody molecules. Furthermore, B 
cells can also release cytokines and actively engage 
in regulating the function of other immune cells (e.g., T 
cells and DCs) to realize its regulatory role in immunity 
(38). Kapturczak et al. discovered that HO-1 gene 
deletion in mice led to diminishing the number of B220+ 

cells in the lymph nodes (39). In these animals, levels 
of serum immunoglobulin M (IgM) were dramatically 
increased and irregular immunoglobulin profiling was 
demonstrated (40). These data strongly support the 
concept that HO-1 gene expression can impact B cell 
functions (41). We can infer that myeloid-derived HO-1 
might contribute to the above-described phenotype, 
and that this enzyme is vital for B cell inflammation.

4.4. Molecular mechanisms of myeloid HO-1 gene 
regulation

HO-1 gene expression primarily responds to 
numerous biological stress stimuli including oxidative 
stresses and their inductions, which are regulated 
through diverse signaling pathways primarily at 
the transcriptional level (42). Among the identified 
HO-1 gene regulatory DNA motifs in mouse models, 
stress-responsive elements or antioxidant response 
elements (ARE) have been shown to be a dominant 
cis-regulatory element which also exists in the human 
HO-1 gene promoter region. Transcriptional regulation 
of the HO-1 gene can be carried out through dynamic 
interactions between transcriptional activators 
or repressors and the regulatory DNA motifs. 
Transcriptional activators such as nuclear factor 
erythroid 2-related factor-2 (Nrf2) or transcriptional 
repressors (e.g., Bach1) can competitively occupy the 
ARE domain of the HO-1 gene promoter, which can 
lead to modulation of gene expression. Furthermore, 
evidence supports the notion that inactivation of Bach1 
was indeed a prerequisite for HO-1 gene induction. To 
add an extra regulatory layer to this dynamic process, 
it was shown that HO-1 gene expression can also be 
regulated by its substrate heme, which is able to form 
a complex with the transcriptional repressor Bach1 to 
prevent its binding with the HO-1 gene enhancer and 
promote its nuclear export as well. Previous results, 
obtained by the authors, showed that application of 
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the precursor of heme anabolism (5-ALA) together 
with the byproduct of heme catabolism (ferrous iron) in 
the macrophage cell line RAW264.7. up-regulated the 
HO-1 gene expression for an anti-inflammation effect, 
which could be suppressed by mitogen-activated 
protein kinase (MAPK) pathway inhibitors (43). 
NFE2L2 (Nrf2) activator, and intracellular increment 
at the heme level, were observed in the treated 
RAW264.7. cells, suggesting a Bach1 inactivation 
mechanism to facilitate HO-1 gene upregulation, as 
shown in Figure 2) (43).

A number of other proximal promoter 
components, such as upstream stimulatory factor, 
basic helix loop helix proteins, NF-κB, signal 
transducer and activator of transcription 3 (STAT3), 
activator protein-2, hypoxia-inducible factor (HIF)-
1, activating transcription factor 2 (ATF2), and heat 
shock factor 1 (HSF1) are all among the growing 
inventory list contributing to HO-1 gene regulation. The 
multiplicity of this complex gene fine-tuning network 
establishes a platform for developing pharmaceutical 
intervention methods targeting HO-1 gene production 
for therapeutic application. Pharmaceutical activation 
or inhibition of some promoter elements can induce 
expression of HO-1 proteins that efficiently rescue 
cells from inflammatory stress (44). 

MAPK signaling is well acknowledged for its 
significant role to elicit a variety of biological changes 
in response to extracellular cues. Our lab and other 
groups revealed that MAPK signaling cascade is a 
crucial player involved in Nrf2 transcription factor 
activation, which is required for inducing HO-1 
expression to exert its anti-oxidative stress function 
(43, 45-48). In addition, other signaling molecules 
including tyrosine kinase, protein kinase C, NF-κB, and 
phosphatidylinositol 3-kinase/Aktare are all included 
in the critical list for  HO-1 expression regulation (see 
Figure 3) (49-51).

4.5. Protective role of myeloid HO-1 in inflamma-
tion diseases

In mammals, HO-1, as a stress-responsive 
enzyme, catabolizes heme into CO, free iron, and 
biliverdin in the presence of molecular oxygen 
and electron source for nicotinamide adenine 
dinucleotide phosphate (NADPH) cytochrome 
p450 reductase. The generated biliverdin is further 
reduced to bilirubin by biliverdin reductase. Both 
biliverdin and bilirubin showed direct anti-oxidative 
properties by eliminating excessive ROS whose 
elevated level is believed to significantly contribute 
to chronic inflammation and pathogenesis (52-

Figure 2. A model of HO-1 induction based on our observations. 5-ALA metabolism induced HO-1 expression through (A) and (B) pathways in myeloid 
cells (RAW264.7.). Treatment with 5-ALA combined with Fe2+ induces the phosphorylation of ERK and p38 MAPK. These activated MAPKs lead to HO-1 
expression through their effects on post-transcriptional factors, such as Nrf2. On the other hand, exposure to 5-ALA/Fe2+ increases the intracellular levels 
of heme. Under conditions with a higher concentration of heme, the HO-1 repressor, Bach1, is inactivated by direct binding of heme to Bach1, which 
allows for increased expression of HO-1. The induction of HO-1 via at least two pathways leads to reduced levels of inflammatory cytokines.
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mechanism under stress which is also significant for 
modulating the inflammation process and immune 
functions (57). HO-1 or exogenous application of 
its reaction product CO, has been shown to confer 
a cytoprotective role through the modulation of 
apoptotic-autophagy and/or inflammatory signaling 
in models of inflammatory stress, as depicted in 
Figure 4 (58-60). Indeed, the HO-1/CO axis has 
also been shown to protect stress-insulted cells 
from incurred apoptosis, therefore shifting cell fate 
toward survival.

Using pharmacological intervention or 
genetic manipulation methods, in vivo evidence 
highlights the importance of HO-1 and its end products 
in affording protective effect in tissue injury models 
through induction of autophagy (61). Furthermore, 
in macrophages stimulated by lipopolysaccharide 
(LPS), HO-1 was shown to mediate autophagy 
which further leads to anti-inflammation and cytokine 
production repression phenotype (60-63). A previous 
study also suggested that HO-1 induction by 5-ALA 
together with ferrous iron (SFC) inhibited hypoxia-
caused cellular injury in cardiomyocytes through 
autophagy (45).

5. COMPOUNDS AS MYELOID HO-1 EXPRES-
SION INDUCER

Various inducers for HO-1 expression are 
known to have potent cytoprotective properties, such 

54). In addition, CO, through directly regulating 
diverse transcription regulation programs and 
inflammation-associated molecules, significantly 
conveys the beneficial effect of HO-1 protein in 
combating inflammation (55). Recently, it was 
discovered that HO-1’s anti-inflammation and 
immunomodulation function can be tightly linked 
to myeloid or endothelial origin-derived expression 
(56). In myeloid cells, HO-1 is believed to induce 
downregulation of tumor necrosis factor (TNF-α) and 
upregulation of IL10; these HO-1 mediated events 
at the molecular level are further associated with 
cell differencing commitment to tolerogenic antigen 
presenting cells, which are promising mediators 
for treating inflammatory diseases. Importantly, in 
multiple elegantly established in vivo organ-system 
inflammatory models, evidence indicated that HO-1 
could positively execute its protective potential for 
homeostasis recovery through modulation of tissue 
responses to injury, as shown in Table 1. 

4.6. Myeloid HO-1 bridges a crosstalk between auto-
phagy, apoptosis, oxidative stress, and inflammation

A growing body of evidence supports the 
concept that autophagy, an adaptive cell catabolic 
program that eliminates harmful intracellular 
components, can play diverse roles in response to 
ROS-triggered oxidative stress signals. Through 
preserving mitochondrial integrity and degrading 
nonfunctional proteins, autophagy provides a survival 

Figure 3. A diagram of the HO-1 signaling pathways. External and internal stimulus factors, such as hypoxia, oxidants, endotoxin, nitric oxide, 
pharmacological agents, or proinflammatory stress, up-regulate HO-1 expression via several kinase cascades and transcription factors.
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Table 1. Protective role of HO-1 expression in inflammation diseases

Organ Injury/Disease Model Mechanism Reference

Brain •	 HIV infection
•	 Diabetes
•	 Parkinson’s disease
•	 Hypoxia-induced brain injury 
•	 Lipopolysaccharide-induced acute inflammation

•	 Endogenous antioxidant and immune modulatory 
•	 NF-κB p65 inhibition
•	 Nrf2 pathway
•	 PI3K/Akt/Nrf-2 signal pathways
•	 Oxidative reaction

(66) 
(67) 
(68) 
(69)
(70)

Eyes •	 Endotoxin-induced uveitis •	 Increased cytokine production (71)

Skin •	 UVB irradiation
•	 TPA-induced inflammation

•	 Nrf2 pathway
•	 IL-1 beta and TNF-alpha

(53, 72)
(73)

Lung •	 LPS-induced inflammation
•	 Acute pulmonary inflammation 

•	 p38MAPK-dependent
•	 Inhibiting the release of segmented PMNs from 

the BM

(74) 
(75)

Heart •	 Cardiac dysfunction •	 Inhibition of oxidative stress, inflammation, and 
apoptosis

(76)

Gastrointestinal 
tract

•	 Inflammatory diseases •	 Anti-inflammatory, anti-proliferative, antioxidant, 
and anti-apoptotic

(77)

Liver •	 Liver fibrosis
•	 Ischemia and reperfusion

•	 Nrf2/ARE signaling pathway
•	 Nrf-2/Akt-p70S6k signaling pathway
•	 Notch1/Hes1/Stat3 signaling

(78) 
(79) 
(80)

Bone marrow •	 Transplantation •	 Reduced T-cell activation ex vivo (81)

Kidney •	 Ischemia/reperfusion
•	 Polycystic kidney disease

•	 Produce the potent cellular antioxidant bilirubin
•	 Reduced  antioxidant enzyme

(52, 82)
(83, 84)

GI: Gastrointestinal, BM: Bone marrow,

Figure 4. Crosstalk between autophagy, apoptosis, oxidative stress and inflammation by HO-1 overexpression.

as hemin, epigallocatechin-3-gallate, rosiglitazone, 
gastrodin, methotrexate (MTX), and curcumin. This 
review details the effects of two compounds, 5-ALA 
and dihydroquercetin (DHQ), which have been recently 
studied by our research group. 

5.1. Aminolevulinic acid (5-ALA)

 5-ALA, a naturally occurring important 
metabolic intermediate, is a necessary precursor of 
heme. A previous study discovered that in a renal 
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ischemia reperfusion injury (IRI) model, a 5-ALA/SFC 
combination application before the surgery dramatically 
attenuated the severity of the IRI with significantly 
alleviated tubular damage and apoptosis inhibition. 
Furthermore, the detected amount of renal thiobarbituric 
acid-reactive substance was considerably lower in 
the 5-ALA/SFC combination application group, which 
could be attributed to the elevated HO-1 regulation 
followed by the corresponding high production of the 
end product CO in initiating the protective effect through 
downregulating TNF-α and interferon gamma (IFN-γ) in 
the renal parenchymal tissue. Interestingly, macrophage 
infiltration was found to be diminished in the 5-ALA/SFC 
combination-treated renal group, suggesting a potential 
mechanism of 5-ALA/SFC—HO-1—CO axis-induced 
immunomodulatory effect in protecting kidney from 
detrimental stimuli, IRI in this case (64).

5.2. Dihydroquercetin (DHQ)

DHQ, a natural compound found in plants, 
has been long perceived as a potent anti-oxidant agent 
that holds promise for fighting a variety of diseases, 
including liver disease. Using our established in vivo 
experimental platform (65), we were able to show that 
DHQ application efficiently protected mouse livers from 
concanavalin A (ConA)-induced damage, evidenced by 
reduced liver function impairment index serum alanine 
transaminase (ALT) and aspartate transaminase 
(AST) levels,  improved histopathological outcome, 

and boostered animal survival rate. We further found 
that various proinflammatory cytokine mRNA levels 
underwent remarkable reduction in the liver tissues 
from DHQ-treated animals, suggesting involvement 
of an immunomodulation process as a potential 
mechanism explaining DHQ’s beneficial effect in liver 
protection. Based on the belief that liver macrophages/
Kupffer cells carry essential distinct functions in 
response to oxidative stress and inflammatory stimuli 
for governing liver homeostasis and pathogenesis, 
the authors were prompted to explore their response 
by applying ConA to a mouse RAW264 macrophage 
cell line. The results showed that DHQ treatment can 
obviously block the transcription level of IFN-γ and 
TNF-α, and further diminish their secretion in culture. 
To dissect the potential underlying mechanisms, the 
authors focused on HO-1 and demonstrated that 
its expression was markedly raised in a dose- and 
time-dependent fashion by DHQ, probably through 
the signaling from the upregulated transcriptional 
activation factor Nrf2. Furthermore, DHQ stimulated 
phosphorylation of three MAPK family members, and 
application of the inhibitors of MEK/ERK (PD98059), 
p38 (SB203580), and JNK (SP600125) blocked DHQ-
mediated HO-1 upregulation (65) (see Figure 5).

6. SUMMARY AND CONCLUSION 

In summary, the presence of myeloid 
HO-1 serves a protective role at the site of tissue 

Figure 5. Dihydroquercetin (DHQ) ameliorated concanavalin A-induced experimental fulminant hepatitis in mice and enhanced HO-1 expression through 
the MAPK/Nrf2 antioxidant pathway in RAW cells.
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injury. Given this positive role, perhaps laboratory 
approaches, in order to increase myeloid HO-1 levels 
for anti-inflammation therapeutic purposes, should be 
considered for translation from benchtop to clinical 
applications. However, further understanding the 
mechanisms of myeloid HO-1 in the pathogenesis 
of inflammation diseases may be required to safely 
create and efficiently design treatments for use in 
clinical practice.
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