
1822

Effects of oxidized lipids and lipoproteins on cardiac function  

Tahar Hajri1

1Hackensack University Medical Center, Hackensack, New Jersey

TABLE OF CONTENTS 

1. Abstract
2. Introduction
3. Origin of oxidized lipids

3.1. Dietary oxidized lipids
3.2. Oxidized lipoproteins
3.3. Intracellular oxidized lipids 

4. Oxidized lipoprotein receptors
4.1. Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1)
4.2. Cluster differentiating 36 (CD36)

5. Toxic effects of oxidized lipids and lipoproteins
5.1. Oxidative stress

5.1.1. ROS production in mitochondria
5.1.2. ROS production by nicotinamide adenine dinucleotide phosphate (NADPH) oxidases

5.2. Inflammation
5.3. Apoptosis
5.4. Insulin resistance
5.5. Cardiac and cardiomyocyte dysfunction

6. Prevention and therapy
6.1. Vitamins
6.2. Polyphenols

7. Conclusions
8. Acknowledgment
9. References

[Frontiers In Bioscience, Landmark, 23, 1822-1847, June 1, 2018]

1. ABSTRACT

Oxidative modifications of lipids and 
lipoproteins have long been linked to the pathogenesis 
of cardiovascular diseases including atherosclerosis 
and coronary disease. Furthermore, overwhelming 
evidence indicate that oxidized lipids are also associated 
with myocardial dysfunction and cardiomyopathy. 
Oxidized lipid derivatives are generated by enzymatic 
and non-enzymatic reactions with unsaturated lipids in 
the cell and foods. In addition, blood LDL particles are 
prone to oxidation leading to the formation of oxidized 
LDL (oxLDL), which is often associated with obesity, 
diabetes and metabolic disease. Whether produced 
endogenously or delivered by the diet, oxidized lipid 
derivatives induce multiple metabolic and functional 
disturbances in the cell leading eventually to cell 
injury and death. As obesity is already associated with 
increased oxidative stress and excess lipid deposition 
in the heart, the cytotoxic effects of oxidized lipids 

in cardiomyocytes are more pronounced in obese 
subjects. The overall objective of this review is to 
provide a synthesis of recent findings about the effects 
oxidized lipids in the heart. First, the origin of oxidized 
lipids and lipoproteins is reported. Then, the effects 
of oxidized lipids in cardiomyocytes are reviewed and 
discussed. Finally, potential preventive interventions 
are highlighted and discussed.

2. INTRODUCTION

The prevalence of obesity has increased 
significantly during the last decades. This trend that 
has been reported in the United States of America and 
most countries of the world includes every age, sex, 
race and socioeconomic group (1) (2). The concern 
about the health risks associated with the rising obesity 
has become universal because obesity has been linked 
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to increased mortality resulting from acute and chronic 
co-morbidities including diabetes and cardiovascular 
diseases (3). Obesity is also associated with a state of 
oxidative stress and low grade chronic inflammation, 
conditions that are implicated in the development 
of multiple chronic diseases (4). Oxidative stress is 
initiated by excess production of reactive oxygen 
species (ROS) which are known to react with cellular 
lipids and generate highly reactive lipid oxidation 
derivatives. In addition, the concentration of oxidized 
low density lipoproteins (oxLDL) in blood and uptake 
by the cells are also increased by obesity and diabetes 
(5) (6), adding to risks of cardiovascular diseases (7) 
(8) (9) (10) (11). 

Cardiomyopathy refers to a group of diseases 
of the heart muscle, or myocardium. The disease is 
characterized by weakens and/or dysfunction of heart 
muscle which is often reflected in cardiomyocyte 
contractile function. Obesity is among the factors 
that contribute to the development and progression 
of cardiomyopathy (12) (13) (14). The mechanisms 
for this causal relationship is that excess nutrients 
resulting from over-nutrition exceeds the storage 
capacity of adipose tissue leading to excess lipid 
deposition in cardiomyocytes, which in turn increases 
metabolic stress leading to cell dysfunction (13) (15). 
Interestingly, enlarged pericardial fat depot is also 
indicative of myocardial lipid content and increased 
risk of cardiomyopathy (12) (16) (17) (18), suggesting 
that excess fat deposition in and around the heart may 
contribute to the onset of this pathology through some 
signaling processes (19). The fact that circulating 
oxLDL level is increased by obesity and that oxLDL 
is detected in pericardial fat suggests that oxLDL 
is also another risk factor for the pathogenesis of 
cardiomyopathy (20) (21). 

Oxidized lipids are derivatives of lipid oxidation 
initiated by enzymatic and non-enzymatic reactions 
with unsaturated lipids (22) (23) (24). The products 
of these reactions interact with cellular constituents 
and induce cell toxicity (25). Owing to the popularity 
of fried foods and the widespread of processed and 
fast-food industry, typical Western diet contains large 
quantities of oxidized fats (26) which could increase 
the level of oxidized lipoproteins in blood and therefore 
raises the risk of cardiovascular diseases. As obesity 
is associated with increased oxidative stress, the 
negative effects of dietary oxidized lipids are more 
pronounced in obese subjects. The toxicity of oxidized 
lipids and lipoproteins is demonstrated in a variety of 
cells and may compromise cell function and survival. An 
overwhelming number of studies demonstrate that the 
deposition of oxLDL in macrophages and endothelial 
cells is involved in the development and progression 
of vascular diseases (27) (28) (29). In addition, strong 
evidence indicate that oxidized lipids alter metabolic 
regulation and contractile function of cardiomyocytes 

leading to cardiac dysfunction and cardiomyopathy, 
independently of vascular alterations (11) (30) (31) 
(32). This review focuses primarily on the impact of 
oxidized lipids and lipoproteins on cardiomyocytes and 
cardiac dysfunction, and highlights the role of oxidized 
lipids in cardiomyopathy. 

3. ORIGINS OF OXIDIZED LIPIDS

Oxidized lipids could be subdivided in two 
main groups according to their origins; oxysterols 
which are the oxygenated derivatives of cholesterol 
(23) and derivatives of unsaturated fatty acid oxidation 
which could be free or complexed with phospholipids 
and triglycerides (22) (33). In healthy conditions, the 
level of oxidized lipids in blood is low but could increase 
significantly with diseases or consumption of unhealthy 
diet. For instance, average blood oxysterol is about 1 
mM in healthy subjects, but increases significantly with 
hyperlipidemia, obesity and diabetes, and could reach 
20-30 mM in hypercholesterolemic subjects (23). 
Oxidized lipids could be generated endogenously in 
the cell and bloodstream, or ingested in the diet. The 
relevance of these sources is discussed below.

3.1. Dietary oxidized lipids

While dietary sources of oxysterols are 
limited to foods of animal origin since only these 
contain cholesterol in appreciable amounts, 
derivatives of oxidized unsaturated fatty acids are 
found in both animal- and plant-derived foods. Several 
products of cholesterol oxidation have been identified 
in food including 7beta-hydroperoxycholesterol, 
7beta-hydroxycholesterol, 7-ketocholesterol, 
25-hydroxycholesterol, cholesterol-5alpha,6alpha-
epoxide (alpha-epoxide) and cholesterol-5beta,6beta-
epoxide (beta-epoxide) (23) (34), but the total amount 
is variable and can reach up to 10% of total cholesterol 
(23) (35). In addition, a multitude of fatty acid oxidation 
derivatives has been reported in the diet, which 
complexity depends on the number of unsaturation in 
the carbon chain of the precursors (monoene, diene and 
triene fatty acids) and on the severity of oxidation (33). 
The biological activity and toxic effects vary among lipid 
oxidized species, depending on the location of oxygen 
substitution and subsequent chemical reactions. The 
most known sources of oxidized fatty acid derivatives 
are oil-fried foods. Polyunsaturated fatty acids (PUFAs) 
in the oil are labile and can undergo peroxidative 
damage when subjected to high temperatures in the 
presence of oxygen, resulting in the formation of lipid 
hydroperoxides. With further heating, hydroperoxides 
are oxidized to secondary oxidation products including 
hydroxides and aldehydes. Among the omega 
6-PUFAs derivatives is 4-hydroxy-2-nonenal (4-HNE), 
a highly reactive and toxic derivative found in fried food 
that is also detected in oxLDL (36), which level could 
reach over 30 micro g/100 g in fast food fries could 
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(37). Substandard conditions of processing and/or 
preservations can also promote the oxidation of ome-
ga 3-PUFAs due to the large number of double bonds 
within fatty acid carbon chain. In these conditions, 
oxidative derivative 4-Hydroxy-2-hexenal (4-HHE) is 
detected in some fish oil supplements and in blood 
(38) (39) (40). In addition to being toxic, oxidation of 
fish oil supplements may interfere with its intended 
beneficial effects (41), such that a loss in omega-3 FA 
content to the detriment of peroxides diminishes the 
anti-inflammatory effect of these supplements. 

Because of the popularity of processed and 
fried foods and the wide-spread of fast food industry, 
the consumption of oxidized fats in the diet has 
increased worldwide (42) (43) (44). Oxidation products 
of PUFAs are cytotoxic and have been implicated 
in the development of cardiovascular diseases 
and other chronic diseases as well (45) (46) (47). 
Previous studies indicate that dietary oxidized lipids 
are absorbed and incorporated into chylomicrons by 
the small intestine, and secreted into the lymph for 
delivery to the bloodstream (48) (49) (50). Although the 
mechanisms of absorption of oxidized lipids are not 
clear, some studies indicate that dietary oxidized lipids 
undergo further modifications in the gastrointestinal 
tract (51)  (52) (53), and can react with proteins of 
the intestinal mucosa (40) which may interfere with 
the absorption process. Interestingly, oxidized lipids 
are more efficiently absorbed in diabetic subjects and 
animal models increasing the level of blood oxidized 
lipids and adding more risk to already high oxidative 
stress conditions (54) (55). Furthermore, dietary 
oxidized lipids taken by the liver are re-packaged 
in VLDL and secreted into the circulation, thereby 
increasing the oxidized lipids availability (56). 

3.2. Oxidized lipoproteins

In blood, oxidized lipids have been detected 
in circulating lipoproteins, of which oxLDL is the 
mostly studied (7) (6) (10). Blood level of oxLDL is 
significantly increased in chronic metabolic diseases 
such as obesity (5) (6) (57) (58), diabetes (59) (60) 
and metabolic syndrome (61) (62) (63). In addition, 
oxidative modification of LDL is enhanced by 
hyperlipidemia, hyperglycemia and oxidative stress, 
conditions which are common in obese and diabetic 
subjects. Interestingly, the association of oxLDL with 
abdominal obesity, expressed as waist circumference, 
is stronger than the association with body mass index 
(BMI) expressed in kg/m2 (7) (58) (64) (65) (66). While 
the production of oxLDL has been demonstrated 
experimentally in vitro, the mechanisms of formation 
of oxLDL in vivo is not fully elucidated. Some 
investigations speculate that lipids of LDL particles 
could be oxidized in blood in the vascular system when 
they are in contact with extracellular matrix where they 
are exposed to ROS and inflammatory mediators 

(67). Others propose that enzymes originating from 
neutrophils or macrophages, such as myeloperoxidase 
or lipoxygenases, are involved in LDL oxidation (7) 
(68). In addition, prenylcysteine oxidase 1, a pro-
oxidation enzyme present in circulating lipoproteins, 
is also suspected to initiate LDL oxidation (69). In 
these conditions, cholesterol and PUFAs in LDL are 
susceptible to oxidation, leading to the formation of 
oxidized lipids, which in turn induce modifications of 
apolipoprotein B (apoB). Another possible route of 
apoB oxidation is through the interaction with dietary 
oxidized lipids incorporated in intestine-derived 
lipoproteins (70). It has been shown that aldehydes, 
the oxidative products of PUFAs, form covalent bonds 
with lysine amino groups of apoB100, a process that 
reduces the negative charge of LDL and increases 
its electrophoretic mobility (71). In addition to LDL, 
VLDL and HDL are also susceptible to oxidation and 
some studies detected significant amounts of oxidized 
VLDL (oxVLDL) and HDL (oxHDL) in blood (7) (56). 
Intravascular lipoprotein oxidation is also counter-
regulated by the presence of anti-oxidation factors 
including anti-oxidation vitamins, such as vitamin 
E, and proteins such as paraoxonase and platelet-
activating factor acetyl hydrolase present mainly in HDL 
(72). In general, oxidized lipoproteins, such as oxLDL 
and oxVLDL, comprise a multitude of oxidized lipids 
that includes oxysterols and derivatives unsaturated 
oxidized fatty acids which are demonstrated by several 
lipidomic studies (22) (73) (74) (75).

3.3. Intracellular oxidized lipids 

In the cell, oxidized lipids can be formed 
by non-enzymatic pathways that involve interaction 
with ROS (24) (76) (77) or by enzymatic reactions 
catalyzed by cyclooxygenases, lipoxygenases and 
P450 monooxygenases (33). These reactions target 
PUFAs in phospholipids of the cell membrane as 
well as membranes of the cell organelles. The rate 
of production of oxidized lipids is further enhanced 
by the availability of free PUFA in the cell, and it has 
been demonstrated that phospholipase A2 (PLA2), an 
enzyme which releases fatty acids from phospholipids 
of the membrane, increases the formation oxidized 
lipids (22) (33). Among the products of enzymatic 
reactions of PUFAs are prostaglandins, leukotrienes, 
thromboxanes, and hydroxy- and epoxy-FAs. Some of 
these derivatives are required for normal physiology 
and function, but also could be damaging when 
present at abnormal levels (78). Interestingly, most 
of these derivatives are increased in the heart under 
ischemic condition (79), though it is not clear if they 
are active players in cardiac toxicity. The metabolism, 
and biological activity of these derivatives have 
been described in details elsewhere (78), and are 
not discussed in this review. The non-enzymatic 
peroxidation of PUFAs acts through oxygen radical-
dependent reactions and generates more stables 
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and toxic derivatives including 4-HNE, 4-HHE, 
malonaldehyde (MDA), isoprostanes (IsoPs), epoxides 
and other end-products. Several studies indicate 
that products of lipid peroxidation are increased by 
obesity, diabetes and metabolic syndrome (80) (81) 
(82) (83), pathological conditions which are associated 
with concomitant increase of oxidative stress and 
ectopic lipid deposition in vital organs including 
the heart (83). In these conditions, the presence of 
excess lipids and free radicals jointly promotes lipid 
oxidation and enhances the contents of lipid oxidation 
products including hydroxides and isoprostanes in 
cardiomyocytes (83). 

4. RECEPTORS OF OXIDIZED LIPOPROTEINS

Several membrane receptors are involved in 
the uptake of oxLDL among which Lectin-like oxidized 
low-density lipoprotein receptor-1 (LOX-1) and cluster 
differentiating 36 (CD36) are the mostly studied. 

4.1. Lectin-like oxidized low-density lipoprotein 
receptor-1 (LOX-1)

LOX-1 is a cell membrane receptor with an 
apparent molecular weight of 50 kDa discovered by 
Sawamura et al. (84). LOX-1 has the specificity to bind 
oxLDL (85) and oxidized phospholipids (oxPLs), but 
not native LDL (86). The role of LOX-1 as a receptor 
for oxLDL is first demonstrated in endothelial cells 
(84) and macrophages (87), and has been implicated 
in foam cell formation and atherosclerosis (88). 
Interestingly, LOX-1 is also expressed in cardiac 
cells including fibroblast (89) and cardiomyocytes 
(90), and there is a strong interest to examine the 
role of LOX-1 in these cells. In normal conditions, 
the expression of LOX-1 is low, but is upregulated in 
several pathological conditions, including obesity (91), 
hypertension (92), diabetes mellitus (93), oxidative 
stress (94) and hyperlipidemia (93). LOX-1 expression 
is also induced by several mediators including 
glucose (95), VLDL (93), inflammatory markers CRP 
(96) and angiotensin II (97). Since most of these 
pathological conditions (inflammation, hyperlipidemia, 
hypertension and diabetes) are directly or indirectly 
associated with obesity, their presence could have 
additive or synergistic effects on the regulation of 
LOX-1 expression. Recent investigations indicate that 
LOX-1 expression is also important in cardiomyocyte 
function (98) (99) (100). In this regard, LOX-1 deletion 
in mice reduces cardiac hypertrophy and remodeling 
induced by hypertension or myocardial ischemia, and 
prevents collagen deposition and fibrosis (98) (99). 
By contrast, activation of LOX-1 by oxLDL induces 
oxidative stress and instigates damages in isolated 
cardiomyocytes (100), effects that could implicated 
in cardiomyocyte dysfunction (101). Because LOX-
1 is an important mediator of ROS generation it may 
induce inflammation and metabolic dysfunction under 

pathological conditions such as obesity and diabetes 
(102).

4.2. Cluster Differentiating 36 (CD36)

 CD36 is a transmembrane glycoprotein from 
the class B scavenger receptor family (103). Several 
ligands bind to CD36 including long chain fatty acids 
(LCFAs) (103) (104), apoptotic cells, oxLDL and 
oxPLs (103) (105) (106). CD36 is identified in multiple 
cell types including cardiomyocytes, adipocytes and 
macrophages (83) (107). The expression of CD36 is 
markedly increased by obesity and diabetes, and is 
induced by FAs, glucose, inflammation mediators (83) 
(107) (108) and oxidized lipids (109). Binding of CD36 
to ligands such as oxidized lipids activates several 
intracellular pathways related to lipid metabolism, 
inflammation and oxidative stress (83). Multiple studies 
have linked high expression of CD36 to cardiovascular 
diseases including cardiomyopathy and cardiac 
dysfunction (83) (110).

5. TOXIC EFFECTS OF OXIDIZED LIPIDS 
AND LIPOPROTEINS

Whether delivered in oxLDL or formed 
endogenously, oxidized lipids in the cell represent a 
large mixture of primary and secondary lipid derivatives 
including aldehydes, electrophilic lipids and other 
oxidized lipids (24) (111) (112) (113). The toxicity of 
oxidized lipids have been demonstrated in multiple 
cell types including macrophages and endothelial 
cells, which are known to be among the initiating 
factors of cardiovascular diseases. In addition to being 
involved in coronary vascular diseases, oxidized lipids 
are also linked to cardiomyocytes dysfunction. While 
the involvement of oxidized lipids in macrophages 
and endothelial cells have been discussed in several 
previous publications (102) (88) (114), this review 
summarizes existing knowledge regarding the 
effects of oxidized lipids in cardiomyocytes. Indeed, 
oxLDL and variety of oxidized lipid derivatives have 
been detected in the heart (115) (116) (117) and 
isolated cardiomyocytes (118) (74) (119) (120), and 
have been linked to cardiomyocyte hypertrophy and 
dysfunction (117) (118) (120). Furthermore, oxidized 
lipid derivatives, such as 4-HNE, 4-HHE, gamma-
ketoaldehydes (gamma-KAs) and others, are capable 
of reacting with nucleophilic groups in proteins and 
generate adducts (121) (122). These adducts have 
been identified in cardiomyocytes (121) (122), and 
their levels are associated with the induction of 
inflammation, endoplasmic reticulum (ER) stress 
and apoptosis. Because oxidized lipids have higher 
polarity than their non-oxidized precursors they share 
the common property of moving faster between 
the cell compartments, and are able to interact with 
various components of the cell and affect multiple 
pathways. Taking this in consideration, the toxic 
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effects of oxidized lipids are linked to multiple cellular 
disturbances including oxidative stress, inflammation, 
apoptosis and insulin resistance. 

5.1. Oxidative stress 

Oxidative stress is defined as the damages 
and disturbances related to ROS overproduction. In 
physiological conditions, ROS are produced in the 
cell at low rate, and they play an important role in 
signaling and defense mechanisms. The life-time of 
ROS is relatively short, and their rate of production is 
regulated by powerful and divers antioxidant systems 
to minimize their damaging effects. ROS are, however, 
highly reactive and can inter-react with cell components 
including lipids, proteins and DNA leading to serious 
irreversible damages. In some medical conditions, 
the imbalance between pro-oxidants and ant-oxidant 
mechanisms in favor of the former result in oxidative 
stress that could lead the development of multiple 
diseases. Oxidized lipids induce ROS production 
and oxidative stress mainly through two mechanisms 

involving mitochondria and nicotinamide adenine 
dinucleotide phosphate (NADPH) oxidase (fig1).

5.1.1. ROS production in mitochondria

The mitochondria are considered the “power 
house” of cardiomyocytes which are in continuous need 
of energy. It is thus understandable that dysregulation 
of the function and integrity of mitochondria will have 
a major impact on the cell function and survival. 
Mitochondria are also an important site of ROS 
production mainly through aerobic oxidation of fatty 
acids (123). Several studies indicate that oxidized 
lipids exert multiple undesirable effects in mitochondria 
(124) (125). Oxidized lipids could act directly in 
mitochondria as demonstrated by the measurement of 
ROS production in cardiomyocytes with mitochondria-
specific fluorescent dye showing strong increase 
immediately following exposure to oxLDL or 4-HNE 
(126) (127). This effect is also associated with 
dysregulation of mitochondrial electron transport chain, 
alteration of Ca2+ channel and cell contractile response 

Figure 1. Proposed mechanisms by which oxidized lipids induces oxidative stress in cardiomyocyte. Membrane receptors CD36 band LOX-1 mediate 
the process of binding and endocytosis of oxLDL particles. In the cell, oxidized lipids liberated from oxLDL can act at different site to promote ROS 
production. In mitochondria, oxidized lipids increase ROS production which in turn react with PUFAs in cardiolipin and other complex lipids, and generate 
endogenously formed oxidized lipids. Oxidized lipids could also interact with the cell membrane phospholipids and activate ceramide production. 
Ceramides and ROS activate PKC, which in turn induces NOX2 and NOX4 leading to the production of ROS. In addition, NOX-derived ROS react with 
PUFAs in the cell membrane and increase the production of oxidized lipids. oxLDL, oxidized lipoproteins; CD36, cluster differentiating 36; LOX-1, Lectin-
like oxidized low-density lipoprotein receptor-1; PL, phospholipids; ROS, reactive oxygen species; NOX, NADPH oxidase; PKC, protein kinase C; PUFAs, 
polyunsaturated fatty acids.
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(126) (127). Similarly, oxLDL induces ROS production 
in other cell models exposed to oxLDL including 
mesangial cells (128), macrophages (129), vascular 
smooth muscle cells (130) and endothelial cells (131) 
(132). In addition, ROS generated in mitochondria 
are able to inter-react with mitochondrial lipids and 
increase the production of toxic lipid derivatives (133) 
(134) leading to membrane depolarization (31) (126). 
The presence of oxidized lipids in mitochondria, such 
as 4-HNE, is well demonstrated and is attribute to 
the oxidation of PUFAs of cardiolipin (134), protein 
that is present almost exclusively located in the inner 
mitochondrial membrane. Since cardiolipin plays a 
crucial role in maintaining the structure of mitochondria 
membrane, the presence of 4-HNE may affect the 
structural integrity and function of mitochondria (135). 
Because of their proximity, lipids of the mitochondrial 
respiratory chain complexes are exposed first-hand 
to mitochondrial ROS and oxidative modification. 
Moreover, the respiratory chain complexes contain 
iron-sulfur clusters, heme groups and copper, all of 
which can interact with ROS leading to a reduction of 
their enzymatic activity and dysfunction of the whole 
respiratory chain (135)  (136) (137). This oxidative 
damages not only result in a reduction ATP generation 
(138) but can also increase ROS production by 
the oxidative phosphorylation (OXPHOS) subunits, 
contributing to the intensification of oxidative stress 
(137). All of these modifications indicate that oxidized 
lipids, in the cell or delivered by oxLDL, trigger a 
sequence of reactions in cardiomyocytes starting by 
the induction of ROS production which in turn reacts 
with mitochondrial lipids leading to further increase of 
oxidized lipids (fig1).

5.1.2. ROS production by nicotinamide adenine 
dinucleotide phosphate (NADPH) oxidases

 In addition to mitochondria, ROS are derived 
from several enzymes including xanthine oxidase, 
uncoupled nitric oxide synthases and NADPH oxidase 
(NOX), with the latter being the mostly studied enzyme 
in relation to oxidized lipids. Alteration of NOX activity 
is often associated with heart disease including 
ventricular remodeling and heart failure (139). Among 
NOX isoforms, NOX2 and NOX4 are the main isoforms 
expressed in cardiomyocytes (39) (140), and they 
are involved in heart hypertrophy through increased 
production of ROS (140) (141) (142). Oxidized lipids 
regulate the expression and activity of NOX as 
indicated by the fact that knockdown of LOX-1, oxLDL 
receptor, in cardiomyocytes significantly reduces the 
expression of NOX2 and NOX4 (143). Moreover, 
oxidized lipid derivatives including oxLDL, oxysterols 
and oxPLs, induce NOX expression and increase ROS 
production (144) (145) (146) (147) (148). Furthermore, 
inhibition of NOX with specific inhibitor VAS2870 
diminishes oxLDL-induction of ROS production 
(149). While cholesterol derivative 7-ketocholesterol 

(7-Kchol) induces the expression of NOX4 and 
enhances ROS production, silencing NOX expression 
with siRNA reduces 7-Kchol-induced ROS generation 
suggesting that NOX is an important mediator of the 
cytotoxic effects of oxysterols through the increase of 
ROS production (148). These findings highlight the 
role of NOX as a mediator of oxidized lipids in ROS 
production and cardiac remodeling (fig1).

5.2. Inflammation 

Inflammation is another adverse effect 
of oxidized lipids, which is associated with the 
pathogenesis of cardiomyopathy. Several studies 
indicate that oxLDL increases the production of pro-
inflammatory cytokines including interleukin-6 (IL-6) 
and tumor necrosis factor alpha (TNF-alpha) (90) (150). 
Oxidized lipids induce inflammation in cardiomyocytes 
through the activation of inflammatory pathways 
controlled by p38-mitogen-activated protein kinase 
(p38MAPK) and NF-kB (151) (152), a mechanism 
which is also reported in other type of cells (142). An 
early study by Cominacini et al. indicates that binding 
of oxLDL to LOX-1 receptor induces the activation of 
NF-kB through and increases ROS production (131). 
In line with this, a study by Yakoyama et al. shows that 
deletion of LOX-1 in mice reduces the expression of 
p38MAPK and NF-kB, blunts the production of TNF-
alpha and interleukin-1 beta (IL-1beta), and abrogates 
the symptoms of cardiomyopathy (90). These findings 
are corroborated by the findings that cardiac LOX-1 
transgenic mice increases the accumulation of oxLDL, 
and enhances oxidative stress and inflammation 
(153). Moreover, these studies demonstrate the 
existence of interconnections between inflammation 
and oxidative stress, both of which are increased by 
oxidized lipids. On the one side, activation of NOX and 
increased production of ROS activate p38MAPK and 
contribute significantly to cardiac inflammation (154). 
On the other side, exposure of cardiomyocytes to TNF-
alpha induces strong increase of intracellular ROS and 
lipid peroxidation leading to cell injury (155) (156). 
This mechanism is in line with the investigations by 
Shah and colleagues in which they show that silencing 
NOX in cardiomyocytes reduces oxidative stress and 
prevents cardiac hypertrophy and remodeling (157). 
Although the effect of oxidized lipids on oxidative 
stress and inflammation are sometimes examined 
independently, it is clear that these effects are inter-
connected and share common target elements and 
downstream signaling pathways.

Ceramides are also another possible 
mediator of oxidized lipid-induced inflammation. 
Activation of neutral sphingomyelinase (N-SMase), an 
enzyme that catalyze ceramide synthesis, is activated 
by oxLDL leading to increased production of ceramides 
and activation of inflammatory kinase p38MAPK 
(158) (159). In support of this, direct exposure of 
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cardiomyocytes to cell-permeable C2- and C6-
ceramides activates the pathway of pro-inflammatory 
kinases c-Jun NH2-terminal Kinase (JNKs) (160), a 
process that may involve protein kinase C (PKC) (161). 

5.3. Apoptosis

There is a general agreement that oxidized 
lipids induce apoptosis (162), an effect that has been 
demonstrated for different types of oxidized lipids 
including oxysterols, oxPLs and PUFA-oxidized 
products. In general, there are at least two main 
apoptotic pathways; the death receptor mediated by 
TNF-receptor (TNFR) also called extrinsic pathway 
and the mitochondrial or intrinsic pathway. The pro-
apoptotic effect of oxidized lipids is mostly linked 
to mitochondrial intrinsic pathways (35) (163). 
Several investigations demonstrate that oxysterols, 
such as 7beta-hydroxycholesterol and cholesterol-
5beta,6beta-epoxide, and oxidative products of 
PUFAs such as NHE-1, initiate the intrinsic pathway 
by inducing a loss of mitochondrial membrane 
potential and increasing ROS production (31) (164) 
(165) (35) leading to the release of pro-apoptotic 
molecules cytochrome C and caspases (164) (166). 
Similarly, oxysterols are pro-apoptotic (167) (165). 
In this regard, several investigations indicate that 
exposure of cells to oxysterols, such as 7-kchol and 
7 beta-hydroxycholesterol (7beta-OH), increases the 
release of cytochrome C from the mitochondria, where 
it is normally localized, into the cytosol where it could 
initiate the intrinsic pathway (34) (35) (165) (168). 

Peroxidation of omega-6 PUFAs generates 
an array of primary lipid oxidation products and 
lipid electrophiles, among which 4-HNE is the most 
investigated aldehydic end-product. In cardiomyocytes, 
the mechanism of 4-HNE-induced apoptosis is linked 
to mitochondrial dysregulation and the release of 
cytochrome C and activation of caspase-3 (138) 
(169) (170) (171). The involvement of 4-HNE in 
cardiomyocyte apoptosis is also demonstrated in 
vivo in hypertensive rats in which inhibition of 4-HNE 
reduces TUNEL staining-positive apoptotic cells and 
blunts the expression of pro-apoptotic mediators BAX 
and caspase-3 (164) (172). The prevention of apoptosis 
by 4-HNE inhibition is associated with an improvement 
of mitochondrial permeability accompanied with a 
reduction of cardiac hypertrophy (172). In agreement 
with these results, 20-Hydroxyeicosatetraenoic acid 
(20-HETE), a hydroxylated derivative of arachidonic 
acid, sensitizes mitochondria to the calcium-induced 
loss of membrane potential which may lead to cell 
injury and apoptosis (79).

Other possible mediators of oxLDL-induced 
mitochondrial apoptosis are ceramides (163) 
(173) (174) (175). It has been reported that oxLDL 
enhances sphingomyelinase activity in mitochondrial 

outer membrane, increases ceramide production 
and activates caspases (174), suggesting that 
ceramide generation is indispensable for oxLDL-
induced apoptosis (176). In addition, oxPLs which 
are abundant in oxLDL increase ceramide production 
(177), and induce damage in mitochondria triggering 
the intrinsic apoptotic cascade (166). The involvement 
of ceramides in stress-induced cardiac dysfunction 
and mitochondrial apoptosis is also demonstrated 
in myocardial ischemia or hypoxia (160) (178) (179) 
(180) (181). In addition, the accumulation of ceramide 
is also reported in in vitro in cardiomyocyte undergoing 
apoptosis (179) (182), and in other types of cells 
exposed to oxLDL (176) (183). Ceramides can also 
exert a negative inotropic effects in cardiac myocytes 
by the inhibition of intracellular Ca2+ mobilization, 
thereby adding stress on mitochondria that could 
further induce the intrinsic apoptosis pathways (184). 

Increased ROS production can also mediate 
oxidized lipid-induced mitochondrial apoptosis (167). 
It is known that ROS can induce apoptosis through 
the modulation of the expression of pro-apoptosis 
mediators caspases and BAX (130) (162) (168), 
and anti-apoptotic protein B cell lymphoma-2 (Bcl-
2) (162). In addition, oxLDL, oxysterols and oxPLs 
are all inducers of NOX activity and catalyzes the 
production of ROS, which in turn induces mitochondrial 
apoptosis pathways. In support of this hypothesis, 
overexpression of NOX4 in cardiomyocytes induces 
oxidative stress, mitochondrial insufficiency and 
apoptosis (185). Interestingly, while ceramides are 
known to stimulate NOX activity (186), inhibition of 
NOX with specific inhibitors abrogates ceramide-
induced ROS production and prevents cell apoptosis 
(187). In addition, ceramides are able to activate PKC 
(161), which in turn induces NOX activity leading to 
increased ROS production and apoptosis (188). TNF-α 
also increases NOX subunit p47phox phosphorylation 
and translocation to cell membrane, a mechanism 
required for the assembly and activation NOX (189). 

Finally, another important effect of oxidized 
lipids is related to their interaction with cytoplasmic 
cell membrane. Several studies report that oxidized 
lipids react with lipids in the cell membrane and 
induce important changes in lipid content and/
or organization, effects that are demonstrated 
for oxysterols 7-ketocholesterol and 7beta-
hydroxycholesterol (25) (190), and oxLDL (191). 
These interactions enhance the accumulation of 
polar lipids, destabilize the cell membrane and 
increase cell permeability leading to cell death 
(192). Interestingly, investigations by Leonarduzzi et 
al. demonstrate that while 7-ketocholesterol alone 
induces apoptosis, but adding a mixture of oxysterols 
diminishes the apoptotic effect of 7-ketocholesterol 
(193). These findings suggest that oxysterols are 
not equally apoptotic and they may interact with one 
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another probably through competition mechanisms. 
Likewise, ROS production and inflammatory markers 
are differentially induced by specific oxidized species 
(194) leading to the speculation that different 
pathways might be involved (35) (190) (195).

5.4. Insulin resistance

The link between oxidized lipids and insulin 
resistance has been reported in several studies, 
but there is a question whether oxidized lipids are 
the cause or the results of resistance. A large study 
involving 2,774 insulin resistant subjects shows a 
strong positive association between blood levels 
of oxLDL and insulin resistance index (HOMA-IR), 
independently of obesity (196). These finding led 
to the conclusion that the level of oxLDL in blood is 
a strong precursor of the risk of insulin resistance, 
independently of obesity. Other studies indicate that 
oxLDL blood levels are associated with BMI (197) and 
markers of insulin resistance and diabetes (7) (63) 
(65) (196) (198). Likewise, diets enriched with oxidized 
fatty acid derivatives (199) and high concentrations 
of oxysterols 7alpha-hydroxycholesterol and 7beta-
hydroxycholesterol in blood (57) are associated with 
obesity and insulin resistance. In agreement with 
these observational studies, blocking oxLDL with 
specific antibody in obese primates improved insulin 
sensitivity (200).

Although the association between oxidized 
lipids and insulin resistance has been established, 
the mechanistic basis of the causal effect of this 
relationship is still in discussion. To address these 
questions, some investigations tested the effect of 
oxidized lipids on insulin signaling in cell culture (201). 
A recent study in cardiomyocytes indicate that low 
doses of oxLDL increases the activity of protein kinase 
C and reduces the expression of glucose transporter 
4 (GLUT4) (201). Similarly, oxLDL disrupts insulin 
signaling in macrophages and myocytes, an effect 
which is linked to the induction of CD36 expression 
(202) (203). In agreement with this, 4-HNE, the 
peroxidation products of omega 6-PUFAs, reduces 
glucose uptake and insulin signaling in hepatocytes 
(204) (205), adipocytes (206) (207), isolated muscle 
(208) (209) and myocytes (208). This inhibitory effect 
of insulin signaling by oxidized lipids is attributed to 
the activation of inflammatory pathways regulated 
by JNK and NF-κB (207). Oxidized lipids could 
also impair insulin sensitivity indirectly through the 
induction of intracellular oxidative stress which in 
turn induces inflammation (210) (211). Alternatively, 
oxLDL could alter insulin signaling indirectly through 
intracellular lipo-toxic pathways and mediators, such 
as ceramides which are increased by oxidative stress 
and inflammation. Several studies indicate that oxLDL 
increases the activity of sphingomyelinase (SMase) 
and enhances intracellular content of ceramides 

(158) (183) (212) (213) (214) (215). Excess ceramide 
production is known to stimulate p38MAPK and NF-kB 
pathways leading to insulin resistance (158) (159) (183) 
(212). A summary of these regulatory mechanisms is 
presented in fig2. 

5.5. Cardiac and cardiomyocyte dysfunction

There is strong evidence to indicate that 
oxidized lipids are implicated in cardiac remodeling 
and cardiomyopathy. First, the levels of oxidized 
lipids are elevated in myocardium of patients and 
animal models with cardiomyopathy and cardiac 
dysfunction (216) (217) (218). Furthermore, immuno-
histochemical examinations of myocardium biopsies 
coupled with cardiac echography in patients with 
cardiomyopathy and/or cardiac failure show that 
4-HNE protein  adducts are increased in the heart 
(217) (219) (120), and are positively correlated with 
reduced cardiac performance (120). Likewise, the 
concentration of blood soluble LOX-1, an indicator of 
LOX-1 expression in tissues, is significantly increased 
in patients with cardiac hypertrophy and is positively 
associated with a reduction of heart performance as 
indicated with an abnormally low ejection fraction 
(220) (221). These findings led to the conclusion 
that LOX-1 expression could be used as an earlier 
indicator of heart dysfunction. These observational 
studies are corroborated with experiments in isolated 
cardiomyocytes and animal models with hypertrophied 
failing heart (90) (222). In addition, while silencing 
LOX-1 expression prevents the progression of 
experimentally-induced cardiomyopathy in mice (90), 
blocking LOX-1 with specific antibody inhibits oxLDL-
induced cardiomyocyte hypertrophy (223). All together, 
these findings highlight the involvement of oxLDL 
and LOX-1 in cardiac dysfunction (90), suggesting a 
prominent role of LOX-1 in cardiomyocytes. 

Some investigations attempted to elucidate 
the molecular mechanisms by which oxidized lipids 
induce cardiac remodeling and failure (127). In 
cardiomyocyte cultures, oxLDL induces cell damage 
and irregular electrical activity characterized by 
intense contractile and electrophysiological response 
including prolongation of action potential duration, 
depolarization of resting membrane potential, and 
modification of transmembrane ion currents (20) (31). 
All of these effects are dependent on the amount of 
lipid hydroperoxides in oxLDL (31). Other studies 
indicate that short perfusion of hearts with 4-HNE 
induces coronary vasodilation (224) and decreases 
systolic pressure (225), an indication of a decline in 
heart performance. In agreement with this, perfusion 
of cardiomyocytes with of 4-HNE solution induces 
changes in the cell electrophysiology and metabolism 
characterized by rapid depletion of ATP content and 
alteration of current through K+ channels (226). 
Similarly, acute exposure of cardiomyocytes to 4-HNE 
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increases ROS production which in turn causes 
intracellular Ca2+ overload (127). All together, these 
findings demonstrate that oxidized lipid derivatives, 
alter cardiomyocyte contractile function and induce a 
depletion of energy source, effects that may explain 
the links between oxidized lipid cytotoxicity and cardiac 
dysfunction. 

6. PREVENTIONS 

In chronic metabolic disease such as obesity 
and diabetes, oxidative stress is often associated 
with inflammation and metabolic alterations. These 
disorders are strongly interconnected and mutually 
reinforced. Once this chronic vicious circle is 
established, therapeutic interventions designed to 
reverse this cycle of negative events is complicated. 
In this scheme of events, focusing on prevention 
is the most effective approach, at the first place. To 
reduce oxidized lipids and prevent oxidative stress, 
there are some preventive nutritional interventions 

that could be considered. As stated in the first parts 
of this review, oxidized lipids could be ingested in the 
diet or formed endogenously in the body. Therefore, 
effective preventions should target both sides; reduce 
the amount of oxidized lipids in the diet and limit 
endogenous production of oxidized lipids. The first and 
the most obvious prevention is to reduce the amount 
of consumption of oxidized lipids. In addition, adhering 
to a healthy balanced diet containing adequate 
amounts of anti-oxidants should limit weight gain and 
reduce oxidative stress, and consequently diminish 
endogenous production of oxidized lipids. 

The most important factor that regulate 
endogenous production of oxidized lipids is oxidative 
stress, in other term excess production ROS. 
Enhancing anti-oxidant system in the body is an 
important and achievable action to reduce oxidative 
stress. In healthy conditions, ROS production is 
countered by an efficient anti-oxidant enzymes such 
as superoxide dismutase, catalase and glutathione 

Figure 2. Proposed mechanisms depicting the effects of oxidized lipids on insulin signaling and glucose uptake in cardiomyocytes. In the cell, oxidized 
lipids, liberated from oxLDL or formed endogenously by ROS reactions, activate p38MAPK and NF-kB pathways leading to the production of inflammatory 
cytokines, which in turn inhibit the phosphorylation of proteins that mediate insulin signaling. In addition, oxidized lipids and ROS activate PKC which 
is known to block insulin signaling. Consequently, insulin signal is not transmitted to vesicles containing glucose transporters (Glut) to initiate their 
transduction to the plasma membrane. oxLDL, oxidized lipoproteins; CD36, cluster differentiating 36; LOX-1, Lectin-like oxidized low-density lipoprotein 
receptor-1; IRS-1, insulin receptor substrate 1; GLUT, glucose transporter; p38MAPK, p38mitogen-activated protein kinase; NF-κB, nuclear factor κB.
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peroxidase. Dietary micro-nutrients such as vitamins 
and polyphenols are also important anti-oxidants.

6.1. Anti-oxidant vitamins

Vitamins E is considered the most prevalent 
natural anti-oxidant vitamin known to scavenge 
ROS. Several clinical trials have been conducted to 
determine the effects of vitamin E supplementation 
on blood oxLDL in healthy subjects (227) (228) or 
patients with diverse chronic diseases (229) (230). 
Although the doses and length of treatment vary 
among these studies, there is a large agreement that 
vitamin E reduces blood level of oxLDL and could be 
used efficiently as a preventive measure to protect 
LDL from oxidation (231) (232). Interestingly, vitamin 
E supplementation also downregulates the expression 
of oxLDL receptor CD36 (233), suggesting that this 
component is beneficial to prevent LDL oxidation as 
well as reduce cellular uptake. These mechanisms 
could explain the protective effect of vitamin E against 
oxLDL induction of inflammation and insulin resistance 
in fibroblast culture (234). 

Given its reducing ability, vitamin C is also 
a potential water-soluble antioxidant that could act 
in the aqueous phase both intra- and extracellularly, 
and therefore could enhance the action of lipophilic 
antioxidants such as vitamin E. Some studies also 
tested the ability of vitamins A and beta carotene 
to reduce oxidative stress (235) (236). Although 
vitamin C and beta-carotene may have the ability 
to prevent LDL oxidation in vitro (235) (236) (237), 
controversy still exist as to the ability and efficacy of 
these components when used separately (238) (239). 
Some investigations, however, indicate that vitamin C 
and beta carotene could enhance the anti-oxidation 
capability of vitamin E, when used in combination 
(240) (241). 

6.2. Polyphenols

Polyphenols are a large group of phenolic 
compounds with high anti-oxidant activity found in 
various vegetables and fruits (242). Polyphenols 
are categorized into flavonoids, such as flavonols, 
flavones, flavan-3-ols, anthocyanidins, flavanones 
and isoflavones, and non-flavonoids including major 
subclasses of stilbenes and phenolic acids, all of 
which exhibit anti-oxidation proprieties (243) (244). In 
cardiomyocytes, polyphenols extracted from various 
plants suppress NOX activity, reduce lipid oxidation, 
regulate mitochondria function (245) (246), and prevent 
cell hypertrophy and apoptosis (247) (248) (249). In 
support of these in vitro studies, investigations in animal 
models (248) (250) (251) and clinical trials (252) (253) 
(254) indicate that consumption of polyphenols reduce 
blood oxLDL, decrease ROS production, and prevent 
cardiomyopathy (248) (250).

7. CONCLUSIONS

The involvement of oxidized lipids and 
lipoproteins in cardiovascular diseases is well 
established and the effects of oxidized lipid in 
macrophages and endothelial cells have been 
reported by numerous studies. More recent 
investigations also indicate the existence of strong 
links between oxidized lipids and cardiac dysfunction. 
The expression and functionality of oxidized 
lipoprotein receptors, LOX-1 and CD36, and the 
presence of oxidized lipids have been demonstrated 
in cardiomyocytes. Furthermore, strong evidence 
indicate that oxidized lipids are detrimental to cardiac 
metabolism and function, and instigate multiple 
cellular disturbances in cardiomyocytes including 
oxidative stress, inflammation and insulin resistance. 
In addition, several in vitro investigations demonstrate 
that derivatives of lipids oxidation alter the structure 
and integrity of mitochondria leading to the initiation 
of intrinsic apoptosis pathway. Obesity, in addition 
to unhealthy diet rich in oxidized lipids, promotes 
oxidative stress and increases the availability of 
oxidized lipids. Therefore, adhering to a low calorie- 
antioxidant-rich balanced diet is possibly the most 
effective preventive way to avoid the detrimental 
effect of oxidized lipids.
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