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1. ABSTRACT

53BP1 is known as a mediator in DNA 
damage response and a regulator of DNA double-
stranded breaks (DSBs) repair. 53BP1 was 
recently reported to be a centrosomal protein and a 
binding partner of mitotic polo-like kinase 1 (Plk1). 
The stability of 53BP1, in response to DSBs, is 
regulated by its phosphorylation, deubiquitination, 
and ubiquitination. During mitosis, 53BP1 is 
stabilized by phosphorylation at S380, a putative 
binding region with polo-box domain of Plk1, and 
deubiquitination by ubiquitin-specific protease 
7 (USP7). In the absence of DSBs, 53BP1 is 
abundant in the nucleoplasm; DSB formation results 
in its rapid localization to the damaged chromatin. 
Mitotic 53BP1 is also localized at the centrosome 
and spindle pole. 53BP1 depletion induces mitotic 
defects such as disorientation of spindle poles 
attributed to extra centrosomes or mispositioning 
of centrosomes, leading to phenotypes similar to 
those in USP7-deficient cells. Here, we discuss how 
53BP1 controls the centrosomal integrity through 
its interaction with USP7 and centromere protein 
F by regulation of its stability and its physiology in 
response to DNA damage.

2. INTRODUCTION

Centrosome, the main microtubule-organizing 
center, is composed of a pair of mother centriole and 
daughter centriole. It regulates the bipolar spindle 
formation in mitosis and forms the basal body of the 
primary cilia in senescence (1). The integrity of the 
centrosome in terms of its structure, function, and 
number is subject to tight control in cells. In cell cycle, 
the centrosome is duplicated in S phase, matured in 
G2-M transition, and separated in mitosis. The exact 
process of centrosome duplication and maturation is 
essential for the accurate formation of spindle poles 
(2). Tight regulation of centrosome integrity is critical for 
equal chromosomal segregation and transfer of genetic 
material (Figure 1) (2). Centrosome amplification 
by overduplication, abortion of cell division, and cell 
fusion induces extra centrosomes in cells (Figure 1) 
(3, 4). Extra centrosomes disturb normal cell division or 
induce multipolar spindle formation, leading to mitotic 
catastrophe. For cell survival, extra centrosomes are 
clustered to form pseudo-bipolar spindle, leading 
to successful cell division (4). However, cells still 
display supernumerary centrosome with aneuploidy, 
which leads to chromosomal instability (Figure 1). 
The regulation of centrosomal integrity is critical in 
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understanding cancer biology for developing novel 
cancer therapies.

Using a yeast two-hybrid screening, 53BP1 
was found as one of the tumor suppressor protein p53-
interacting proteins. 53BP1 has a tandem repeat of 
BRCA1 C-terminal (BRCT) domain and it is responsible 
for the interaction with p53 (Figure 2). BRCT repeats 
are frequently found in DNA damage response proteins 
including BRCA1 and BRCA2 (5–9). 53BP1 is a large 
protein of 1972 amino acids that regulates the cellular 
response to the DNA double-stranded break (DSB), 
although it has no enzymatic activity (Figure 2). 53BP1 
exhibits sites that interact with DNA damage signaling 
proteins; it functions to amplify the ataxia telangiectasia 
mutated (ATM) kinase activity and promote checkpoint 
signaling in response to DNA damage (9–11). Our 
recent study reported that the phosphorylation of 
53BP1 at serine residue 380 increased its stability 
through the interaction with ubiquitin-specific protease 
7 (USP7) (5). Here we discuss how 53BP1 controls the 
centrosomal integrity through its interaction with USP7 
and centromere protein F (CENPF) by regulation of its 
stability, as well as its physiology and functions in the 
DNA damage response.

3. FUNCTIONS OF 53BP1

3.1. Functions of 53BP1 in response to DNA 
damage

The cellular response to DNA DSBs is 
critical for the maintenance of genome integrity and 
proper functioning of cells. The failure to manage 
DSBs can lead to cell death and gross chromosomal 

rearrangements, including translocations, deletions, 
and amplifications. Mammalian cells have well 
conserved DSB response signaling pathways that 
coordinate cell cycle checkpoint activation and DSB 
repair machineries (12). The early stage of DSB 
response signaling is characterized by the activation 
of the ATM kinase through autophosphorylation 
and monomerization (12, 13), leading to the 
phosphorylation of a series of mediator proteins such 
as histone 2A variant H2A.X (known as gamma-
H2A.X), mediator of DNA damage checkpoint protein 1 
(MDC1), checkpoint kinase 2 (Chk2), and 53BP1 (12, 
14–18). 53BP1 was first identified as a binding partner 
of the tumor suppressor protein p53 (6, 19). Now, 
numerous studies demonstrate that 53BP1 acts not 
only as a mediator of DSB response signaling (9–12) 
but also as a regulator of DSB repair pathway (20–22). 
The ATM-mediated phosphorylation of 53BP1 results 
in its rapid localization to the damaged chromatin 
upon DSB formation. Within chromatin it interacts with 
other DSB response proteins, including EXPAND1/
MUM1, RAP1-interacting factor 1 (RIF1), and Pax2 
transactivation domain interaction protein (PTIP) (23– 
25) and provides a platform for the recruitment of other 
DSB signaling and repair proteins. Recent evidence 
shows that 53BP1 localization to the damaged 
chromatin requires a series of chromatin ubiquitination, 
including that of histone H2A Lys13 and Lys15 
(H2AK13/K15). Ubiquitination of histone is carried 
out by an E3 ubiquitin ligase RNF168 and mediated 
by gamma-H2A.X, MDC1, and RNF8 (16, 26). 53BP1 
has an ubiquitination-dependent recruitment (UDR) 
motif that recognizes and binds to ubiquitinated H2A 
(27) (Figure 2). At least two other domains of 53BP1 
have crucial roles in its stable localization to DNA 

Figure 1. The centrosomal cycle and chromosomal instability due to centrosomal abnormalities. (Left panel) The centrosome consists of a pair of mother 
centriole and daughter centriole. In senescence, the centrosome provides the basal body for the primary cilia. In the cell cycle, the centrosome duplicates 
during DNA replication. Duplicated centrosomes mature in G2 phase and separate from each other. Centrosomes form two spindle poles in mitosis, 
distributing one centrosome to each daughter cell after cell division. (Right panel) The centrosome can be amplified by over-duplication in S phase, 
abortion of cell division, and cell fusion. Extra centrosomes will disturb normal cell division or induce multipolar spindle formation, leading to mitotic 
catastrophe. Mitotic catastrophe is avoided in cancer cells through centrosome clustering. Extra centrosomes may be clustered to form pseudo-
bipolar spindle, enabling successful cell division. After cell division, cancer cells still exhibit supernumerary centrosome with aneuploidy, which causes 
chromosomal instability.



recruitment of 53BP1 to DNA lesions was inhibited 
during mitosis in response to DSBs, although other 
factors involved in DSBs, including gamma-H2AX, 
MDC1, and MRN showed normal accumulation at DNA 
lesions (39, 40). The protein levels of 53BP1 were low 
in the presence of mitotic damage induced by polo-like 
kinase 1 (Plk1) depletion, although ATM signaling was 
activated (5, 41). Mitotic cells showed attenuated DNA 
damage signaling mediated by 53BP1; however, the 
phosphorylation of Chk2 at G1 resulted in the activation 
of the attenuated DNA damage response at interphase 
(40). Improper activation of DSB repair in mitotic cells 
may contribute to fusion of mitotic telomeres (42). As 
a result of fusogenic potentials of mitotic telomeres, 
mitotic kinases inhibit the recruitment of 53BP1 and 
RNF8 to DSB-chromatin (42). As mitotic telomeres 
might be prone to deprotection and fusions, mitotic 
cells must suppress DSB repair, which induces the 
inactivation of 53BP1 and RNF8 despite DNA damage 
during mitosis (42, 43).

Although most studies about 53BP1 function 
were performed in presence of DNA damage, a recent 
study explored the cellular physiology of 53BP1 in 
the absence of DNA damage. In this study, 53BP1 
stabilization was mediated by the interaction between 
USP7 and the polo-box domain (PBD) of Plk1. 
53BP1 regulated centrosome positioning through its 
interaction with CENPF involved in proper kinetochore 
attachments (5). PBD of Plk1 serves as the binding 
domain for potential substrates of Plk1 (44–46). The 
interaction between 53BP1 and Plk1 can be occurred 
in the centrosome. Depletion of 53BP1 induces 
extra centrosomes as a consequence of cytokinetic 
failure associated with the downregulation of CENPF 
and p53. The complex of 53BP1-USP7-CENPF 
increases the stability of CENPF, which maintains 
the centrosome integrity (5). Thus, in the absence 
of DNA damage during mitosis, 53BP1 is thought to 
regulate centrosome integrity. In addition, the function 
of 53BP1 in mitotic error induced by centrosome loss 
was reported recently (53–55). Centrosome loss and 
prolonged mitosis induced 53BP1/USP28-mediated 
stabilization of p53, leading to the activation of p53 
signaling pathway for cell cycle arrest (53–55). This 

lesions. One is the tandem Tudor domain that can 
recognize and bind to dimethylated histone H4 Lys20 
and the other is the oligomerization motif that enables 
the protein to form dimers on DNA lesions (28–32) 
(Figure 2). In addition, 53BP1 is thought to select a 
proper repair pathway during DSB repair (20–22). 
Nonhomologous end-joining (NHEJ) and homologous 
recombination (HR) are the two major DSB repair 
pathways. 53BP1 seems to promote NHEJ-dependent 
DSB repair pathway by antagonizing BRCA1 and 
inhibiting DSB end recession by CtIP (CtBP-interacting 
protein) required for HR repair (Figure 3), although the 
exact mechanism is unclear (33, 34). RIF1, PTIP, and 
REV7 have been identified as downstream effectors 
of 53BP1 promoting NHEJ pathway (25, 35). There 
are other factors that are important for DSB repair 
pathway choice, including histone modifications, cell 
cycle stages, and chromatin organization. 53BP1 
can mediate the crosstalk among DSB response 
proteins, cell cycle checkpoint proteins, and epigenetic 
regulators for proper DSB repair.

3.2. Functions of 53BP1 in mitosis

Although 53BP1 has been established well as 
a mediator in DNA damage response and a decision 
maker in repair pathway, its mitotic function is relatively 
unexplored. Accumulating evidence suggests that 
53BP1 regulates mitotic progression. Mitotic cells 
synchronized with nocodazole or double-thymidine 
block exhibited higher levels of 53BP1 expression 
and phosphorylation (36–38). As a mediator of DNA 
damage response, 53BP1 is involved in the regulation 
of spindle checkpoint through its interaction with 
kinetochore-associated proteins such as centromere 
protein E, suggestive of its role in the metaphase 
checkpoint (36). In addition, the highly expressed 
53BP1 is phosphorylated by Cdk1 and Plk1 in mitotic 
cells synchronized with double thymidine block and 
the interaction between 53BP1 and Plk1 during mitosis 
is required for proper inactivation of the DNA damage 
checkpoint (38). Thus, 53BP1 is suggested to exhibit a 
role as a common molecular component between DNA 
damage response machinery and mitotic checkpoint 
signaling (36, 38). Recent studies revealed that the 

Figure 2. Schematic representation of 53BP1 domain. 53BP1 has an N-terminal domain with 28 SQ/TQ-motifs that can be phosphorylated by ATM/ATR. 
The N-terminal domain interacts with RIF1 and PTIP. In addition, serine 380 of 53BP1 can be phosphorylated by Cdk1 and interacted with Plk1 during 
mitosis. Oligomerization domain (OD) mediates homodimerization of 53BP1 in response to DNA damage. Tudor domain (TD) recognizes and binds to 
methylated H4K20 and acetylated H4K16 interferes the interaction between 53BP1 and methylated H4K20. Ubiquitin-dependent recruitment (UDR) 
is responsible for the interaction with ubiquitinated H2A in response to DNA damage. BRCT domain mediates the interaction with p53 and EXPAND1
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specifically ubiquitinate nucleoplasmic 53BP1 but 
not chromatin-bound 53BP1. It is possible that RNF8 
and RNF168 interact with different E2 ubiquitin-
conjugating enzymes at different sites. RAD6 is an 
E2 ubiquitin-conjugating enzyme thought to interact 
with RNF168 and ubiquitinate histone H2A and other 
chromatin proteins at the site of DSB (57). Another 
E2 ubiquitin-conjugating enzyme is UbcH7 that 
mediates replicative stress-induced ubiquitination 
and degradation of 53BP1 and promotes BRCA1-
mediated homologous recombination repair (58). 
Therefore, RNF8 and RNF168 may regulate DSB 
response signaling and 53BP1 stability through their 
interaction with at least two different E2 ubiquitin-
conjugating enzymes.

In addition to ubiquitination, the degradation 
of 53BP1 requires phosphorylation by ATM and 
ATM- and Rad3-related (ATR) kinases (58). 53BP1 
bears a phosphodegron sequence that triggers 
the ubiquitination and degradation of 53BP1 upon 
phosphorylation in the nucleoplasm but not chromatin. 
In addition, a deubiquitination enzyme USP28 
copurified with 53BP1 by tandem affinity purification is 
thought to be potentially involved in stabilizing 53BP1 

combined function of 53BP1 and USP28 is independent 
of their previously characterized role in DNA damage 
response and promoting mitotic efficiency (53–55). 
These studies suggested that 53BP1 functions for the 
stabilization of p53 in response to centrosome loss, 
although the signaling may be different with previously 
characterized DNA damage response.

4. REGULATION OF 53BP1 STABILITY

4.1. The stability of 53BP1 in DNA damage

In the absence of DSBs, 53BP1 is an 
abundant protein in the nucleoplasm. The formation 
of DSB is characterized by rapid recruitment of 
53BP1 at the damaged chromatin site in the presence 
of the ubiquitinated histone H2A (27). Ubiquitination 
of H2A is mediated by RNF168 that is recruited to the 
site of DSBs by RNF8. RNF8 and/or RNF168 may 
also promote 53BP1 degradation in the nucleoplasm 
but not chromatin (56) (Figure 4A). In addition, 
RNF8 and RNF168 facilitate the focal localization 
of 53BP1 to promote recruitment of other factors 
involved in DSB response and repair of the damaged 
chromatin (56). It is unclear how RNF8 and RNF168 

Figure 3. Localization of 53BP1 at DSB and its role in DSB repair pathway. Upon DSB formation, ATM rapidly localizes to the DSB site and phosphorylates 
Ser 139 of histone H2A.X, followed by recruitment of MDC1. The homologous recombination (HR) repair is characterized by the acetylation at histone 
H4K16. Acetylation is mediated by a histone acetyltransferase that prevents the binding of 53BP1 to H4K20me2 and recruits BRCA1 and CtIP to initiate 
HR repair. For the nonhomologous end-joining (NHEJ) repair, phosphorylated MDC1 recruits RNF8 that can ubiquitinate unknown chromatin protein 
and RNF168 to the damaged chromatin. RNF168 ubiquitinates H3K13/15. H3K13/15 ubiquitination promotes the binding of 53BP1 to the damaged 
chromatin. HDAC1/2 deacetylate H4K16 to promote the binding of 53BP1 to H4K20me2. 53BP1 prevents BRCA1 and CtIP binding to DSB site and 
promotes NHEJ repair.
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5. THE LOCALIZATION OF 53BP1

5.1. The localization of 53BP1 in DNA damage

The localization of 53BP1 to the damaged 
chromatin is crucial for DNA damage response signaling 
(59). In the absence of DSB, 53BP1 is abundant in 
the nucleoplasm; DSBs result in rapid localization 
of 53BP1 to the damaged chromatin. 53BP1 bears 
important structural domains such as BRCT repeats, 
tandem Tudor domains, an oligomerization domain, 
and UDR motif that mediate the interaction with other 
DNA damage response proteins and the localization 
to the site of DNA damage (Figures 2 and 3) (59). As 
mentioned above, tandem Tudor domains interact 
with dimethylated histone H4K20 at the site of DNA 
damage, thereby facilitating the localization of 53BP1 
to the damaged chromatin. However, human H4K20 
is always methylated in the chromatin and may not 
be regulated by DNA damage. Therefore, 53BP1 may 
require an additional marker to recognize the damaged 
chromatin.

At least three different markers exist at 
the site of DNA damage. First, gamma-H2A.X and 
MDC1 are phosphorylated by ATM and localized to 
the damaged chromatin in the early stage of damage 
response (9, 11–14). Although gamma-H2A.X has no 
role in the initial localization of 53BP1 to the damage 
site, it assists, together with MDC1, RNF8 and 
RNF168 in the modification of adjacent chromatin. 
Second, ubiquitinated histone H2AK13/K15 residues 
are recognized by the 53BP1 UDR motif, which 
is required for stable localization of 53BP1 to the 
damaged chromatin (22). Third, acetylation status of 
H4K16 is important for the binding of tandem Tudor 
domains of 53BP1 to dimethylated H4K20 (58, 59). 
Acetylation of H4K16 by histone acetyltransferase 
Tip60 interferes the interaction between 53BP1 Tudor 
domain and H4K20, while deacetylation by histone 
deacetylase (HDAC) 1 and HDAC2 permits the 
interaction (58, 59). HDAC1 and HDAC2 are shown to 
deacetylate H4K16 in response to DNA damage and 
promote the NHEJ repair instead of HR repair, which 
corresponds to the function of 53BP1 at the damage 
site (62–64). In addition, the localization of 53BP1 to 
the damaged chromatin requires selective degradation 
of 53BP1 in the nucleoplasm during the DNA damage 
response (Figure 4A). Thus, it is plausible that both 
the stability and localization of 53BP1 are regulated 
simultaneously by ATM-mediated phosphorylation, 
RNF8- and RNF168-mediated ubiquitination, and 
USP28-mediated deubiquitination based on the 
proximity of 53BP1 from the site of DSB.

5.2. The localization of 53BP1 in mitosis

Although 53BP1 localizes to the DNA 
lesion in response to DNA damage as discussed 

at the damaged chromatin (59). Using short hairpin 
RNAs, USP28 was shown to stabilize 53BP1 and 
Chk2 in response to DSBs. Furthermore, the activity of 
USP28 can also be regulated by ATM. USP28 displays 
two SQ motifs (Ser 67 and Ser 714) as potential ATM/
ATR phosphorylation sites; gamma-irradiation induced 
phosphorylation at both sites (59). Taken together, 
the stability of 53BP1 can be modulated in response 
to DSB by at least three following events: ATM-
mediated phosphorylation of 53BP1 and other effector 
proteins, including USP28; deubiquitination of 53BP1 
at damaged chromatin by USP28 deubiquitinase; and 
selective ubiquitination of 53BP1 in the nucleoplasm 
by RNF8 and RNF168 E3 ubiquitin ligases through 
their interaction with UbcH7 E2 ubiquitin-conjugating 
enzyme.

4.2. The stability of 53BP1 in mitosis

As discussed above, the expression of 
53BP1 varies at different stages of cell cycle, with 
high-level expression observed in mitosis (36–38). 
At the same time, 53BP1 turnover is regulated by its 
phosphorylation and ubiquitination (5). Inhibition of 
Plk1 kinase activity with Plk1-specific inhibitor or Plk1-
targeting shRNA results in increased degradation of 
the dephosphorylated 53BP1, while its activity may 
be restored following treatment with MG132 protease 
inhibitor. 53BP1 turnover is regulated by ubiquitination 
in an ubiquitination assay, which is restored by 
phosphorylation of S380, a PBD-binding site of Plk1 
and priming phosphorylation site by Cdk1 in mitosis 
(38). Treatment with a Cdk1 inhibitor roscovitine 
reduced 53BP1 levels, indicative of the importance of 
Cdk1 (as a priming kinase) and Plk1 in regulation of 
53BP1 stability.

Liquid chromatography tandem-mass 
spectrometry (LC-MS/MS) analysis revealed the 
interaction between 53BP1 and USP28 or USP7 in 
nocodazole-treated mitotic cells (5, 59). USP28 and 
USP7 deubiquitinating enzymes remove ubiquitin from 
specific substrates to prevent their degradation (60). 
The interaction of USP28 or USP7 with phosphomimic 
mutant of 53BP1 at S380 during mitosis was verified 
by immunoprecipitation (5). The interaction of USP7 
with the phosphomimic mutant of 53BP1 was higher 
than that with dephosphomimic mutant 53BP1. USP28 
exhibited no such difference. Inhibition of USP7 activity 
with specific inhibitor P22077, catalytic dead mutant, 
or shRNA resulted in decreased stability of 53BP1, 
suggesting that the deubiquitinating activity of USP7 
increased the stability of 53BP1 (5). In addition, the 
treatment with Cdk1 inhibitor roscovitine reduced the 
interaction between 53BP1 and USP7 as compared 
with the control. Thus, it can be concluded that USP7 
binds to 53BP1 phosphorylated at S380 and that the 
phosphorylation is important for the stabilization of 
53BP1 (Figure 4B).
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mitosis induced by depletion of 53BP1 was dependent 
on the spindle checkpoint kinase BubR1 that showed 
increased expression, suggestive of an important role 
of 53BP1 in mitotic progression.

6. REGULATION OF CENTROSOMAL  
INTEGRITY BY 53BP1 IN MITOSIS

Aberrations in the number and positioning of 
centrosomes generate multipolar spindle intermediates, 
consequently leading to centrosomal missegregation 
with lagging chromosomes, as observed in many 
different cancers (3). A recent study reported 53BP1 
is a mitotic centrosomal protein (5). Downregulation of 
53BP1 expression induces aberrations of positioning 
of centrosome and mislocalization of the spindle pole, 
leading to defects in chromosomal alignment and 
segregation (5). Cytokinetic failure results in polyploid 
cells with centrosome amplification (1, 3). Loss of 

above, mitotic 53BP1 shows different locations. A 
previous report revealed the localization of 53BP1 in 
the kinetochore of chromosomes, which may be in 
association with its function in checkpoint signaling 
during mitosis (36). A recent study found that 53BP1 
localizes to the centrosome and spindle pole during 
mitosis, consistent with the localization of Plk1 in the 
absence of DNA damage (5). Endogenous 53BP1 
was found to be localized with gamma-tubulin in 
the centrosome and spindle pole in mitosis, while 
exogenous enhanced green fluorescent protein 
(EGFP)-53BP1 or hemagglutinin (HA)-tagged 53BP1 
localized at the centrosome and spindle pole (5). 
Depletion of 53BP1 using shRNA or CRISPR/Cas9 
disrupted the structure of the spindle pole and induced 
chromosomal misalignment, segregation defects, and 
chromosome lagging (5). In addition, 53BP1 silencing 
or expression of the unstable 53BP1 mutant induced 
supernumerary centrosomes (5). The prolonged 

Figure 4. Regulation of 53BP1 stability during DSB repair or mitosis. In the absence of DSB, 53BP1 is in abundance in the nucleus. (A) Upon DSB 
formation, RNF168 mediates polyubiquitination of 53BP1 in the nucleoplasm and promotes its proteomic degradation. UBC13 or other E2 ubiquitin-
conjugating enzyme may assist in this process. However, RNF168 ubiquitinates only the histones at the damaged chromatin and allows 53BP1 localization 
at the damaged chromatin. (B) In mitosis, 53BP1 turnover is regulated by its phosphorylation and deubiquitination. The priming phosphorylation of 53BP1 
by Cdk1 at S380, a PBD-binding site of Plk1, recruits Plk1 and USP7 complex. The deubiquitinating activity of USP7 increased the stability of 53BP1 
in mitotic cells. In addition, the complex of 53BP1-USP7-CENPF increases the stability of CENPF, which maintains the centrosome integrity. Thus 
phosphorylation of 53BP1 at S380 accelerates the formation of 53BP1-Plk1-USP7-CENPF complex, which is important for the stabilization of 53BP1 
and the centrosome integrity.
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common function of CENFP in kinetochore assembly 
(71). 53BP1 depletion in cells was associated with 
the downregulation of CENPF; thus, the loss of 
53BP1 may affect the stability of CENPF, which is 
degraded by APCCdc20 at the end of anaphase (76). 
53BP1 may prevent its degradation by formation of 
53BP1-USP7-CENPF complex in mitosis to ensure 
proper kinetochore assembly as well as chromosome 
alignment and segregation. Future studies may throw 
light on the exact function of these factors affecting 
centrosome integrity.

The tumor suppressor p53 is another 
possible regulatory factor in 53BP1-depleted cells; 
the reduction in p53 level may be associated with 
phenotypic changes (extra centrosomes) in 53BP1-
depleted cells (67, 68). 53BP1 stimulates the 
transcriptional activation of p53 (77); therefore, the 
reduction in p53 level in 53BP1-depleted cells may 
be attributed to the loss of 53BP1, leading to the 
formation of extra centrosomes (68). In addition, the 
non-functional p53 encouraged extra centrosomes 
formation. An increase in extra centrosomes of around 
1.5.-fold was observed in H460p53- 53BP1-depleted 
cells as compared with H460p53+ 53BP1-depleted 
cells (5). Therefore, the supernumerary centrosomes 
induced by 53BP1 depletion may be a consequence 
of an increase in genomic instability caused by p53 
downregulation. The regulatory mechanisms of 
53BP1 in the kinetochore machinery for centrosome 
integrity including positioning and number await further 
investigation.
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INTEGRITY BY 53BP1

Although the molecular mechanisms involved 
in regulation of centrosome integrity by 53BP1 are 
unclear, two possible hypotheses are suggested (5). 
CENPF that interacts with 53BP1 plays a critical role 
in centrosome positioning by maintaining the tension 
between microtubules and kinetochores (71, 72). 
Cancer cells lacking a functional 53BP1 exhibited 
low level of CENPF protein (5), which may disturb the 
regulation of centrosome integrity. This is supported 
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