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1. ABSTRACT

While zinc has had a well-established 
structural role for many years, it is only during the 
last two decades that its role as a signaling molecule 
has been recognized. Ionic zinc, Zn2+, that is 
endogenously released during physiological activity 
acts as a first messenger, triggering the activity of 
a distinct Zn2+-sensing-receptor, ZnR. The ZnR is a 
member of the Gq-coupled receptor family, and the 
molecular moiety mediating its activity is GPR39. In 
this review, we will discuss the role of the ZnR/GPR39 
in mediating Zn2+-dependent signaling in epithelial 
tissues and in neurons, where Zn2+ homeostasis 
plays physiological as well as pathological roles. 
Importantly, ZnR/GPR39 activates signaling that 
regulates a remarkably wide range of cell functions, 
including proliferation, differentiation and survival, 
as well as modulation of ion transport, and thereby, 
regulation of Na+, H+ and Cl- homeostasis. Moreover, 
signaling activated by ZnR/GPR39 plays a key role 
in mediating effects of Zn2+ in health and disease. 
Thus, ZnR/GPR39 provides a unique target for 
therapeutically modifying the actions of zinc in a 
specific and selective manner.

2. INTRODUCTION 

Ionic zinc, Zn2+, plays an essential role in the 
development and function of every system in the body. 
Its involvement is particularly prominent in the digestive, 
immune, nervous, secretory and integumentary 
systems (1-6). The utility of zinc in treatment of airway 
spasms or skin wounds, was described already in the 
19th century (7, 8). A link between Zn2+ and carbonic 
anhydrase was shown 70 years ago (9, 10), and this 
was followed by the identification of Zn2+ as a cofactor 
of numerous enzymes. Zinc was then found to play an 
important structural role in various proteins, particularly 
transcription factors (11-13). Based on its importance 
in numerous physiological and cellular processes, it is 
hardly surprising that changes in extracellular as well 
as intracellular Zn2+ content trigger cellular signaling 
pathways. Moreover, Zn2+ transport into or out of 
organelles or its release from buffering proteins into 
the cytoplasm trigger subcellular changes in Zn2+ that 
is now considered a second messenger (14, 15). In this 
way, Zn2+ is now recognized as a metal ion that acts as 
a first or second messenger in physiological processes 
(16, 17). While most cellular Zn2+ is bound to proteins, 
transient changes in its extracellular or intracellular 
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concentration occur under both physiological and 
pathological conditions. Its functional significance is 
shown definitively by the potentially lethal effects of 
Zn2+ deficiency or increases of cellular Zn2+ (18, 19). 

The strict maintenance of intracellular Zn2+ 
homeostasis is accomplished by means of a plethora 
of discrete Zn2+ transporters and buffer proteins 
(16, 20-22). These are largely represented by three 
families of proteins: 1) the 10 member zinc transporter 
family (ZnTs, SLC30), which transports this ion out of 
the cell or into cytoplasmic organelles and vesicles, 
2) the 14 member Zip (SLC39) family that moves 
Zn2+ into the cytoplasm, and 3) the Zn2+ chelating 
metallothioneins, loosely binding this ion within the 
cytoplasm (20, 21, 23-25). Cellular Zn2+- containing 
vesicles are particularly abundant in the pancreas, 
brain, mammary gland, salivary gland and digestive 
system, and exocytosis of these vesicles triggers 
transient changes in extracellular Zn2+ levels (26-31). 
Extracellular Zn2+ levels were also increased following 
injury of keratinocytic cells that resulted in release of 
endogenous Zn2+ (32). Activity of the released Zn2+ 
as a signaling molecule requires that changes in Zn2+ 
concentration are transient. Several mechanisms could 
operate to quickly induce reuptake of Zn2+ into the 
cells via the extensive transporter system consisting 
of Zip and ZnT proteins mentioned above. Buffering 
of intracellular Zn2+ by metallothioneins or extracellular 
Zn2+ by albumin or citrate may also serve to lower the 
extracellular free Zn2+ concentration (13, 33). 

Extracellular Zn2+ acts as a signaling 
molecule via the ZnR/GPR39 (34, 35), which has been 
functionally identified as a Zn2+-dependent, G-protein 
coupled receptor that senses changes in extracellular 
Zn2+ and, in response, activates downstream 
signaling pathways. Importantly, ZnR/GPR39 can be 
activated by endogenous Zn2+ released from vesicles 
or following injury (32, 36-38). Extracellular Zn2+ 
also indirectly activates cell signaling via allosteric 
modulation of ZnR/GPR39 signaling , and hence, 
dissection of the pathways activated by this ion may 
reveal specific therapeutic targets. For example, 
while Zn2+ interacts with major neuronal membrane 
transporters, e.g., the dopamine transporter, NMDA, 
glycine and GABA and modulates their activity (39-
43), the distinct downstream signaling pathways 
triggered by the ZnR/GPR39 may be essential for 
regulating neuronal inhibition (37, 38, 44). In epithelial 
cells, Zn2+ regulates the activity of purinergic receptors 
and the store-operated channel (SOC), representing 
an important link between Zn2+ and intracellular Ca2+ 
(45-47). In fibroblasts, extracellular Zn2+ upregulates 
the PI3 kinase pathway, leading to activation of AKT 
and increased cell survival (48). Similar effects have 
also been shown to be mediated by Zn2+-dependent 
activation of the mitogen-activated protein kinase 
(MAPK) (49). Although intracellular Zn2+ may affect 

these pathways via regulation protein phosphatases 
(50, 51), ZnR/GPR39 is the major link between Zn2+ 
and both, the PI3 and MAP kinase pathways (52, 53). 

3. ZnR/GPR39 IN HEALTH AND DISEASE 

3.1. A distinct Zn2+-sensing Gq-protein coupled 
Receptor 

The ZnR/GPR39 is activated by physiological 
concentrations of extracellular Zn2+, inducing release 
of Ca2+ from thapsigargin-sensitive intracellular stores 
via the IP3 pathway (35, 54). Inhibitors of Gαq (55, 
56), inositol 1,4,5-trisphosphate (IP3) receptor and the 
phospholipase C (PLC) attenuate this Zn2+-dependent 
Ca2+ rise, indicating that the Ca2+ release is mediated 
by activation of a Gαq-coupled receptor (35, 52). ZnR/
GPR39-dependent Ca2+ release has thus far been 
observed in numerous epithelia, including colonocytes, 
keratinocytes, pancreatic cells, prostate cancer cells 
and salivary gland cells (52, 57-59). Interestingly, Zn2+ 
has a well-established role in the normal function of 
these tissues, and Zn2+ dyshomeostasis is associated 
with diarrhea, growth retardation, skin lesions, impaired 
salivary secretion and taste disorders (60, 61). The 
ZnR/GPR39-dependent Ca2+ rise induced by Zn2+, 
enhances activation of the mitogen activated protein 
kinase, MAPK, and PI3 kinase pathways that are closely 
linked to enhanced cell survival and proliferation (62). 
Thus, ZnR/GPR39 may be the mediator of many of the 
well-established, health-promoting functions of Zn2+ 
(63). Finally, Zn2+ dyshomeostasis is also associated 
with neurological disorders, including Alzheimer’s 
disease, ischemia and epilepsy (64-67). The ZnR/
GPR39 has been identified in neurons postsynaptic 
to vesicular Zn2+-containing synaptic boutons (68). 
The physiological role of ZnR/GPR39 in its diverse 
contexts will be discussed further in this review. 

It should be emphasized that ZnR/GPR39 is 
highly specific to Zn2+, as other biologically relevant 
heavy metal ions (e.g. Mn2+, Cu2+ and Fe2+) do not 
produce a Ca2+ response (35). In addition, ZnR/
GPR39 is sufficient and necessary to trigger Zn2+-
dependent signaling. Nevertheless, it can interact 
with another, well-described cation receptor, the Ca2+ 
sensing receptor (CaSR (69, 70)). Heterodimerization 
of GPCRs diversifies the physiological response 
of these receptors to their ligands and may play an 
important role in their regulation (71, 72). The ZnR/
GPR39 and CaSR exhibit similarities in their signaling 
pathways, for instance, both are activated via a Gq-
dependent mechanism. Although Zn2+-dependent 
activity does not require the presence of extracellular 
Ca2+, this ion alters the apparent cooperativity and 
affinity of ZnR/GPR39 to Zn2+ (57). Similarly, spermine, 
a CaSR ligand, synergistically increases the cellular 
response when applied with Zn2+, though it does not 
activate the ZnR/GPR39 itself (53). Finally, silencing 
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of the CaSR downregulates ZnR/GPR39 response, 
and direct interaction between the CaSR and ZnR/
GPR39 is monitored using co-immunoprecipitation 
(53). Previous studies have shown that changes in 
the surface expression of the CaSR occur following 
exposure to its ligand (73). We posit that CaSR 
localization, following spermine or Ca2+ application, 
also affects the surface expression of ZnR/GPR39, 
thereby enhancing the Zn2+-dependent response. 

Regulation of GPCRs activity is also achieved 
by desensitization, occurring after a brief exposure to 
their ligands. In this process, the desensitized receptor 
is internalized and may undergo degradation (74, 75). 
Differences in the degree of functional desensitization 
among GPCRs reflect the ratio between the recycling 
versus degradation of the receptor (76). Following its 
release, decrease of extracellular Zn2+ level may be 
facilitated by its reuptake via the Zip transporters, 
found in most cells, or chelation by Zn2+-binding 
proteins. However extracellular Zn2+, in contrast to most 
GPCRs ligands, is not rapidly degraded. Protection 
of cells from excessive Ca2+ signals triggered by 
continued activation of ZnR/GPR39 is achieved via 
desensitization of the ZnR/GPR39. Exposure to 
subtoxic concentrations of Zn2+ leads to profound and 
prolonged desensitization likely involving ZnR/GPR39 
degradation (52, 58, 68). In the normal prostate Zn2+ 
is found in the presence of citrate, an extracellular 
Zn2+ binding protein that is especially abundant in the 
prostate. While the complex of Zn2+ with citrate does 
not activate ZnR/GPR39 signaling, it does induce 
desensitization of the ZnR/GPR39 (58). This may 
suggest a mechanism by which the ZnR/GPR39 is 
quiescent in the normal prostate when Zn2+ is largely 
complexed with citrate, but nevertheless desensitizes 
the receptor. However, during carcinogenesis when 
citrate and Zn2+ levels decrease (77-78), ZnR/GPR39 
will be re-sensitized and can function to enhance cell 
proliferation in the prostate (58). 

3.2. Crosstalk between Zn2+, pH and ZnR/GPR39 

Analysis of the structural basis for constitutive 
activity of GPR39, known then as an orphan receptor, 
revealed that application of Zn2+ increased the activity 
of this receptor (79, 80). Though constitutive activity 
of this receptor was less than half compared to other 
neurotensin- and ghrelin-receptor family members, 
Zn2+ was considered of little physiological significance 
and not suggested as an endogenous ligand of GPR39. 
Instead, obestatin, a short peptide linked to obesity, 
was suggested to activate GPR39 (81), but activation 
of GPR39 by this peptide was not reproduced in 
further studies (82, 83). In contrast, an unbiased study 
identified Zn2+ as the endogenous agonist of GPR39 
(84). The Zn2+ binding site on GPR39 was found to 
consist of two histidine residues: His17, His19 (85), 
and an aspartate residue: Asp313. This Asp313 

was suggested to act as a tethered inverse agonist 
that upon binding of Zn2+ is diverted to enable Zn2+ 
binding to the histidines. Binding of Zn2+ to histidine 
occurs via an imidazole group and is pH sensitive, 
being most efficient between pH 7-8. Hence, when the 
extracellular pH drops to 6.5, the Zn2+ activated, ZnR/
GPR39-dependent Ca2+ response and subsequent 
phosphorylation of MAP or PI3 kinase is completely 
abolished (32, 86, 87). Attenuation of Zn2+-dependent 
signaling at pH 6.5 is short-lived and reversible (86, 
87). By overexpressing GPR39 mutated at what was 
expected to be the pH sensitive residues, i.e., His17 
and His19, we showed that ZnR/GPR39 maintains its 
pH-dependence and Zn2+ signaling is still abolished at 
pH 6.5. Similarly, other extracellular-facing histidines 
fail to reverse the pH sensitivity. Eventually, Asp313 
was identified as the pH sensing component for ZnR/
GPR39. The replacement of this residue with the pH 
insensitive alanine results in Zn2+-dependent Ca2+ 
responses that are similar at pH 7.4. or 6.5, while 
its substitution by His or Glu pH-sensitive residues 
restores the pH sensitivity of the receptor (86). 
Reducing the activity of the ZnR/GPR39 following 
changes in extracellular, but not intracellular, pH may 
result from different protonation states of the involved 
residues (88). Yet another possible mechanism 
involves local conformational changes of the binding 
site as was shown for pH sensitivity of the Ca2+-sensing 
receptor and the mGluR4 glutamate receptor (89, 90). 

Altogether, ZnR/GPR39 mediates 
Zn2+-dependent signaling while tuned to sense 
physiologically-relevant changes in extracellular 
pH (86). Importantly, changes in this range of pH 
commonly occur under physiological conditions 
within the digestive system lumen, the epidermis 
and the brain (91-95). Hence, the pH sensitivity of 
ZnR/GPR39 may serve as an important regulator of 
physiological and pathological responses to Zn2+. For 
example, inflammatory bowel disease may induce 
local pH changes that render ZnR/GPR39 signaling 
inefficient for Zn2+ enhancement of proliferation. Such 
mechanism could underlie the erosion of the epithelial 
layer, occurring in this disease (96). 

Interestingly, ZnR/GPR39 itself regulates 
the pH of the intracellular and extracellular 
microenvironments via upregulation of Na+/H+ exchange 
(NHE) activity. The activity of NHE exchangers is 
upregulated following a drop in intracellular pH, serving 
as an important factor in the recovery from intracellular 
acid loads in many cell types (97). Activation of ZnR/
GPR39 signaling, and its downstream phosphorylation 
of the MAPK pathway, results in upregulation of NHE 
activity in colonocytes, keratinocytes and neurons (32, 
36, 52, 87, 98). In all of these cells, the effect of Zn2+ 
on regulation of NHE is completely lost in the absence 
of ZnR/GPR39. Such upregulation of NHE activity 
may have important effects on the function of neurons 
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or epithelial cells. In neurons, intracellular acid load, 
accumulated during repetitive firing, is largely the result 
of metabolic H+ generation (99). The intracellular pH 
changes can affect neuronal excitability by modulating 
the activity of ion channels, transporters and receptors 
(100-102). Thus, ZnR/GPR39-dependent regulation of 
intracellular pH may play a role in neuronal excitability. 

By mediating Na+-dependent H+ export, NHE 
exchangers may induce changes in the extracellular 
pH while accelerating recovery of the intracellular 
environment. In neurons, acidifying the cell surfaces 
that abut the synaptic cleft can regulate various 
functions, including GABA signaling or dendritic spine 
growth (103, 104). On the other hand, sustained NHE 
activity contributes to tissue acidosis during ischemic 
neuronal injury (105). Under these conditions, 
inhibition of NHE was claimed to be neuroprotective 
(106, 107). The pH sensitivity of neuronal ZnR/GPR39, 
which is inactive at acidic pH, suggests a homeostatic 
mechanism by which NHE-mediated decrease of 
the extracellular pH following Zn2+ activation of ZnR/
GPR39, serves to prevent excessive tissue acidification 
(87). In keratinocytes, ZnR/GPR39 also upregulates 
NHE activity (32), which may result in an acidic apical 
surface. In the skin, such acidification is required for 
formation of an effective permeability barrier (108) and 
NHE1 is an important regulator of this function (109). 
Interestingly, Zn2+ deficiency is commonly associated 
with inflammation, possibly reflecting breakdown of 
this barrier. Elegant in vivo experiments have shown an 
important role for NHE2 activation in gastric epithelial 
repair (110), interestingly NHE2 activity in this study 
did not induce changes in surface pH because they 
may have been masked by HCO3 buffering. It is not 
clear if ZnR/GPR39 upregulation of NHE activity in the 
presence of physiological HCO3 affects extracellular 
pH in various tissues, hence further studies comparing 
the role of ZnR/GPR39 and NHE in the presence of 
physiological concentrations of HCO3 are required. 

3.3. Zn2+ acts as a neurotransmitter via ZnR/
GPR39 

3.3.1. The Zn2+-containing neuron 

Deficiency of Zn2+ is associated with 
developmental malformations and impaired cognitive 
performance (66, 111). There is an increasing body 
of evidence suggesting that disturbances of Zn2+ 
homeostasis play an important role in the etiology of 
various neurological disorders, including Alzheimer’s 
disease (112, 113), amyotrophic lateral sclerosis 
(114, 115), ischemia (116-118), spreading depression 
(119-121) and autistic spectrum disorders (122, 123). 
Zinc deficiency has also been closely associated 
to epilepsy, with lack of dietary Zn2+ leading to 
enhanced susceptibility to epileptic seizures in mouse 
models (124, 125) as well as in humans (126-133). 

Furthermore, Zn2+ administrated to mice, in studies 
using a kindling model of epilepsy, reduced seizure 
activity (134, 135). In contrast, excessive rise of 
extracellular as well as intracellular Zn2+, correlates 
with neurotoxicity and cell death (51, 118, 136-138). 
Rapid increases in the concentration of intracellular 
Zn2+ may occur following an episode of oxidative or 
nitrosative stress, inducing liberation of Zn2+ bound to 
intracellular proteins and frequently resulting in cell 
death (18, 51, 118, 139). For this reason, Zn2+ chelation 
is increasingly contemplated as a potentially viable 
therapeutic strategy in some neurological conditions 
such as ischemia/stroke (138, 140-142), though such 
an approach could be detrimental in others (143). In 
contrast, in Alzheimer’s disease, metal ionophores 
that may restore intracellular Zn2+ levels have been 
considered for use as therapeutic agents (144). 

A unique pool of Zn2+, representing a mere 
10% of total brain zinc, is concentrated in synaptic 
vesicles within a subclass of excitatory cortical 
neurons, it is often referred to as ‘synaptic Zn2+’. It is 
this Zn2+ that is demonstrated by the so-called ‘Timm’s’ 
staining method (29, 145, 146). Loading of Zn2+ into 
synaptic vesicles is mediated by a specific transporter, 
ZnT3, which is expressed in discrete regions of the 
brain, including hippocampus, amygdala, neocortex 
and auditory brainstem among other regions. Knockout 
of the ZnT3 gene results in mice lacking synaptic Zn2+ 
(125, 147). Early studies did not show a clear phenotype 
of these mice except for enhanced susceptibility to 
seizure, yet later studies indicate that ZnT3 knockout 
mice may also have impaired learning, memory and 
fear-conditioning processes and autistic-like behavior 
(148-154). Synaptic Zn2+ is stored together with 
glutamate, the principle excitatory neurotransmitter of 
the mammalian CNS, and is co-released with it into 
the synaptic cleft (136, 155) in a Ca2+- and activity-
dependent manner (156-159). Synaptic Zn2+ has 
been suggested to modulate membrane excitability 
via direct interaction with post synaptic targets, e.g., 
GABAA, NMDA and glycine receptors (39, 66, 160-
165). Binding of synaptic Zn2+ to ZnR/GPR39 provides 
a pathway underlying, for example, the effects of Zn2+ 
during seizure (44). 

3.3.2. ZnR/GPR39 in neurons 

Metabotropic pathways, triggering slow 
intracellular second messenger systems, play a critical 
role in neurotransmission (166). Indeed, metabotropic 
receptors activate intracellular signaling leading to 
delayed modulation of ion channels and membrane 
transporters. Glutamate receptors (mGluRs), for 
example, mediate changes in synaptic plasticity by 
activating the mitogen-activated protein kinase, MAPK, 
pathway (167, 168). Hence, we hypothesized that the 
metabotropic Zn2+ sensing receptor ZnR/GPR39 is a 
distinct target of synaptic Zn2+ that may underlie the 
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effects of this ion in the brain. Initial efforts focused on 
the hippocampus, as this region demonstrates intense 
Timm’s staining, particularly of mossy fiber boutons 
aligned with their postsynaptic, CA3 neurons (28). 
Application of exogenous Zn2+ resulted in intracellular 
Ca2+ release from the endoplasmic reticulum stores 
in these neurons, but not in adjacent astroglia (38, 
68). Pharmacological dissection of the signaling 
pathway triggered by Zn2+ revealed that intracellular 
Ca2+ rise is PLC and Gq dependent (see Figure 1), 
in accordance with ZnR/GPR39 activity seen in 
epithelial cells. Furthermore, activation of MAP kinase 
by Zn2+ in neurons requires ZnR/GPR39 activation 
and the resulting Ca2+ release (68, 87). Importantly, 
physiological stimulation of the mossy fibers was 
shown to trigger endogenous synaptic Zn2+ release 
(157, 158) and ZnR/GPR39-dependent Ca2+ rises in 
the post synaptic CA3 neurons (38). The presence of a 
non-membrane permeable, extracellular, Zn2+ chelator 
reduced the stimulus-induced Ca2+ rise suggesting 
that the endogenous synaptic Zn2+ is sufficient for 
activating ZnR/GPR39. ZnR/GPR39-dependent Ca2+-
signaling was monitored when exogenous Zn2+ was 
applied to hippocampal slices from ZnT3 knockout 
mice, which lack synaptic Zn2+, but stimulation of the 
mossy fibers in these slices yielded a significantly 
decreased Ca2+ signal in the CA3 neurons that was 
similar to the signal triggered in WT slices in the 
presence of the Zn2+ chelator (38). Thus, synaptic Zn2+ 
release is essential for a postsynaptic metabotropic 
response, indicating the physiological relevance of 
this receptor (68). Importantly, the Zn2+-dependent 
Ca2+ signaling is absent in GPR39 knockout mice 
supporting the conclusion that the molecular moiety 
mediating neuronal ZnR responses is GPR39 (38, 
169). Similar ZnR/GPR39 activity, triggered by 

physiologically relevant electrostimulation of synaptic 
Zn2+-containing fibers, has been described in the dorsal 
cochlear nucleus, a region of the auditory brainstem 
(37). In these neurons, activation of ZnR/GPR39 
inhibits glutamate release by inducing synthesis of 
the endocannabinoid, 2-arachidonoylglycerol (2-AG), 
which reduces synaptic strength (37). A role for ZnR/
GPR39 in regulation of the CREB/BDNF/TrkB pathway, 
and thereby in depression, has also been postulated, 
though it is not clear at present how Gq signaling 
activates this pathway or whether these effects are lost 
in ZnR/GPR39 knockout mice (170, 171). 

In the hippocampus, ZnR/GPR39 activation 
by synaptic Zn2+ results in enhancement of inhibitory 
tone, apparently by means of an increase in the 
neuronal Cl- efflux pathway (38, 169). The major 
neuronal outward transporter of Cl- is the K+/Cl- 
cotransporter, KCC2, which is necessary and sufficient 
to create a Cl- equilibrium potential that is negative with 
respect to the resting membrane voltage (172, 173). 
The activity of KCC2 is therefore crucial for rendering 
Cl- channels, i.e. GABAA and glycine receptors, activity 
as inhibitory (174, 175). This important co-transporter 
is highly regulated via its phosphorylation, and by 
changes in its expression during neuronal activity, 
thereby modulating the inhibitory effect of GABA and 
glycine (176-178). Interestingly, ZnR/GPR39 activation 
in neurons and downstream phosphorylation of MAPK 
results in enhanced K+-dependent Cl- transport that 
is mediated by KCC2. This activity is not reproduced 
in ZnR/GPR39 knockout mice (38, 169). It has been 
shown that Gq-dependent signaling enhances KCC2 
surface expression and thereby upregulates KCC2-
dependent transport (38). These results were the 
first demonstration of a direct and distinct target 

Figure 1. Schematic representations of ZnR/GPR39 signaling in CA3 neurons. Zn2+ is transported into synaptic vesicles by ZnT3 and is stored and co-
released together with glutamate. Synaptically released Zn2+ may then bind ZnR/GPR39, inducing post-synaptic intracellular Ca2+ rises and activation of 
the MAPK pathway. ZnR/GPR39 signaling enhances KCC2 activity and the Cl- gradient, affecting GABAA inhibitory responses. Image was created using 
Servier Medical Art. ZnT3 - Zn2+ transporter 3, VGLUT – Vesicular glutamate transporter, ZnR/GPR39 – metabotropic Zn2+-sensing receptor, mGluR – 
metabotropic glutamate receptor, AMPA and NMDA are ionotropic glutamate receptors, MAPK – mitogen activated kinase.
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for synaptic Zn2+ and suggest that this ion acts as a 
neurotransmitter (Figure 1). Moreover, in this way, 
neuronal inhibitory tone is enhanced by Zn2+ binding 
to ZnR/GPR39. 

3.3.3. ZnR/GPR39 plays a homeostatic role during 
seizure activity 

Importantly, decreased KCC2 function 
renders the, normally inhibitory, GABAA post-synaptic 
potentials excitatory thereby increasing seizure 
susceptibility (175, 176, 179). On the other hand, a 
study in neonatal rats revealed that a single seizure 
episode in vivo or a brief treatment of acute brain 
slices with the excitotoxin, kainite, result in activation 
of KCC2 in the hippocampus. This correlated with an 
increase in the plasmalemal fraction of KCC2, and not 
with an increase in its overall concentration (180). As 
suggested above, loss of synaptic Zn2+, thought to act 
as an inhibitory neuromodulator, is associated with 
epileptogenesis (181, 182). Moreover, administration 
of a Zn2+-deficient diet is sufficient to reduce synaptic 
Zn2+ levels, and results in greater susceptibility to 
kainate-induced seizures (183, 184). Similarly, ZnT3 
knockout mice show enhanced sensitivity to seizure-
inducing pharmaceuticals, including the glutamatergic 
excitotoxin, kainite, which induces limbic seizures (124). 
More recent studies show that ZnT3 knockout mice 
are also more prone to febrile hyperthermia induced 
seizures (133). Interestingly, Zn2+ supplementation may 
decrease febrile seizure recurrence in children (185). 

It was demonstrated that Zn2+, acting via 
ZnR/GPR39, upregulates KCC2 activity and may 
be sufficient to decrease seizure severity. Indeed, 
ZnR/GPR39 knockout animals exhibit an enhanced 
susceptibility to kainate-induced seizures, exhibiting 
significantly higher behavioral seizure severity 
scores and more seizures over longer periods of 
time, compared to wildtype controls (44). Treating 
hippocampal slices with kainate is sufficient to 
upregulate KCC2 activity in an extracellular Zn2+-
dependent manner. Kainate-induced upregulation of 
KCC2 is also dependent on ZnR/GPR39 signaling, 
as it is abolished by treatment with Gq, PLC or MAPK 
inhibitors. Finally, kainate-induced KCC2 upregulation 
is absent in ZnR/GPR39 knockout mice, suggesting 
that the receptor itself is necessary for this process. 
Taken together, these findings support a homeostatic 
role for ZnR/GPR39 triggered by seizure-induced 
synaptic Zn2+ release (44). 

3.4. ZnR/GPR39 signaling in epithelial cells 

3.4.1. The digestive system 

The intestinal epithelial layer separates 
the body from the luminal contents, which includes 
metabolites but also toxins, bacteria and pathogens. 

Hence, it is hardly surprising that this layer undergoes 
continuous renewal of its cell population every 3-4 
days, a process requiring continuous cell proliferation 
and differentiation. This layer of epithelium, on one 
hand, is responsible for the selective uptake of digested 
metabolites from the lumen, which necessitates 
multiple transporter proteins. On the other hand, this 
epithelium requires tight anatomical and physiological 
barrier to prevent invasion by foreign organisms and 
substances. Numerous studies link Zn2+ to proper 
function of the digestive system, including absorption 
and barrier functions (186-189). At the cellular level, 
Zn2+ promotes proliferation, differentiation, survival (17, 
98) and barrier formation (190-193) in colon epithelial 
cell (colonocyte) cultures. The presence of a Zn2+-
triggered, Gq-dependent mechanism for activation 
of Ca2+ cellular signaling in colonocytes enabled the 
demonstration of a functional ZnR/GPR39 in these 
cells (35). 

Initial studies indicated that GPR39 is widely-
expressed throughout the digestive system (194, 195). 
We subsequently showed that luminal application of 
Zn2+ is sufficient to activate ZnR/GPR39, suggesting 
that the receptor is present on the apical side of 
colon epithelial cells, facing the colonic lumen (98). 
Sources of luminal Zn2+ that could interact with ZnR/
GPR39 include exogenous or dietary Zn2+, as well 
as endogenous sources, e.g., Zn2+ released from 
pancreatic digestive enzymes, Zn2+ from salivary 
gland vesicles or from Paneth cells in the intestinal 
epithelium (26-31, 196). In addition, Zn2+ is released 
from all mammalian cells following injury or death 
(32), and more selectively via a process mediated 
by Zn2+ transporters such as ZnT6 (196). Finally, 
endogenous Zn2+ released into the gastrointestinal 
lumen via epithelial shedding alone may account for its 
physiological concentration (98), sufficient to activate 
the ZnR/GPR39. 

As mentioned above, Zn2+- activated, ZnR/
GPR39-dependent Ca2+ signaling plays a key role 
in enhancing proliferation of epithelial cells (35, 
98). The downstream pathways activated by ZnR/
GPR39 include MAPK and AKT, both hallmarks of 
cell proliferation and survival (36, 52). Both are of 
major importance to the constant renewal of the 
epithelium, required to replace those cells constantly 
shed into the intestinal lumen. It seems noteworthy 
as well that ZnR/GPR39 has been implicated in 
accelerating proliferation and differentiation of pre-
adipocytes (198). The short chain fatty acid, butyrate, 
present at high concentrations in the colon (199), 
imposes an acidic stress and exerts a pro-apoptotic 
effect on colonocytes (199-202). The acidic load 
imposed on colonocytes by the presence of butyrate 
(203) is reduced by activation of ZnR/GPR39 and its 
downstream activation of NHE (52, 98). Colonocyte 
cell death, induced by prolonged exposure to 
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butyrate, is attenuated by activation of ZnR/GPR39-
dependent MAP and PI3 kinase pathways (98). The 
rescue of cells from butyrate-induced cell death, 
however, requires further activation of the pro-survival 
glycoprotein, clusterin, also known as apolipoprotein 
J (204, 205). A role for ZnR/GPR39 in enhancing 
proliferation and cell survival (see Figure 2) may also 
underlie the effects of Zn2+ in therapies accelerating 
healing of gastric ulcers (206). 

It has been suggested that Zn2+ reduces 
the severity and extends the times between bouts 
of inflammatory ulcerative disease, such as occur in 
Crohn’s disease and colitis (186, 187, 207-209)). A major 
factor in these diseases is breakdown of the epithelial 
barrier that precedes the inflammatory response (210, 
211). Under conditions of Zn2+ deficiency, occurring 
due to insufficient dietary Zn2+ or genetically-induced 
by loss of transporters responsible for Zn2+ absorption, 
barrier function is compromised, leading to increased 
permeability (190, 212, 213). On the other hand, 
Zn2+-dependent activation of ZnR/GPR39 enhances 
expression of junctional complex proteins ZO-1 and 
occludin, (36), critical elements of the specialized 
junctions between adjacent colonocytes that compose 
the intestinal barrier (214, 215). Moreover, the role of 
ZnR/GPR39 in regulating expression of these proteins 
was elucidated by their significant reduction in the 
colon epithelium of ZnR/GPR39 knockout mice (98). 

Interestingly, redistribution of ZO-1 takes place early 
on during epithelial cell shedding, as it is essential for 
maintaining the barrier function during the ongoing 
epithelial renewal in the intestines (216). It would be of 
interest, then, to examine the effect of Zn2+, released 
from redundant colon epithelial cells, on the expression 
and reorganization of ZO-1 during incorporation of new 
cells into the epithelial layer. 

A crucial function of the intestinal epithelium 
is regulation of ion and solute transport, by which 
osmotic gradients for water movement are maintained 
(217). Interestingly, under normal conditions or during 
experimentally-induced diarrhea, Zn2+ was suggested 
to modulate ion transport in the colon (218, 219). In 
colon cell lines and native colonocytes, Zn2+, acting 
via ZnR/GPR39, promotes upregulation of Na+/H+ 
exchanger activity (52, 98). While this reduces the 
intracellular acid load, it also induces rapid uptake of 
Na+ from the lumen. Because of the key role played 
by the colonocytic apical NHE3 in attenuating diarrhea 
(217, 220, 221), its upregulation by ZnR/GPR39 in the 
presence of Zn2+ is likely to enhance this protective 
effect. 

3.4.2. Skin 

One of the first physiological functions 
demonstrated for extracellular zinc involves its 

Figure 2. Schematic representations of ZnR/GPR39 signaling in colonocytes. Colonocytes form a permeability barrier via expression of tight junction 
complexes on the apical side and express ion transporters regulating Na+, Cl- and K+ absorption. Zn2+ on the luminal side may activate the ZnR/GPR39 
and trigger downstream Ca2+ rises and ERK1/2 pathway activation. This results in upregulation of the Na+/H+ exchanger and the formation of tight 
junctions. Image was created using Servier Medical Art. NHE - Na+/H+ exchanger, ZnR/GPR39 – metabotropic Zn2+-sensing receptor, MAPK – mitogen 
activated kinase, Na/KATPase – Na+/ K+ ATPase, NKCC1 – Na+/K+/Cl- cotransporter 1.
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enhancement of wound healing. Zinc deficiency has 
long been linked to skin lesions (222, 223). Topical 
application of zinc-containing ointments, moreover, 
stimulates wound healing and re-epithelialization 
processes (8, 223-225). Importantly, severe skin lesions 
manifest in both dietary and genetic Zn2+ deficiencies 
and can be reversed by dietary Zn2+ supplementation 
(226, 227). Congenital Zn2+ deficiency, accompanied 
by severe skin lesions, is also characteristic to 
disorders linked to dysfunction of Zn2+ transporters, 
such as Acrodermatitis Enteropathica (AE), a genetic 
mutation in the intestinal Zn2+ uptake transporter ZIP4, 
or the Transient Neonatal Zinc Deficiency (TNZD), 
a symptomatic disorder in breastfed babies that is 
associated with mutations in the mammary gland Zn2+ 
transporter ZnT2 (60, 228-230). Extracellular Zn2+, at 
concentrations found in the epidermis (222, 223, 231) 
triggers Ca2+ release from thapsigargin-sensitive stores 
that is largely mediated by ZnR/GPR39 (32). Moreover, 
injury of keratinocytes releases Zn2+ at concentrations 
that are sufficient to trigger ZnR/GPR39 response in 
neighboring keratinocytes (32). Surprisingly, this Zn2+-
dependent Ca2+ response in a keratinocyte epithelial 
skin cell-line possesses a dramatically higher affinity 
to Zn2+ compared to other cells (32). This may be 
explained by the tendency of G-protein coupled 
receptors to form dimers with other members, thereby 
affecting their affinity to their endogenous ligands 
(71, 72). Indeed, ZnR/GPR39 is able to interact with 
CaSR (53), suggesting interaction between GPCRs 
may underlie the high affinity of the keratinocytic ZnR/
GPR39 to Zn2+. In keratinocytes, Zn2+-dependent 
upregulation of MAPK activity and NHE ion transport 
are both mediated via activation of ZnR/GPR39 (32). 
The importance of ZnR/GPR39 upregulation of NHE 
activity in keratinocytes is underlined by the role of 
this transport in induction and maintenance of an 
acidic local extracellular microenvironment essential 
to the efficacy of the permeability barrier in the skin 
(108, 203, 232). It appears likely, therefore, that ZnR/
GPR39 activation may regulate the formation of the 
permeability barrier and enhance anti-inflammatory 
effects, associated with topical Zn2+ application during 
wound healing. Moreover, accelerated wound closure 
in the presence of Zn2+ indicates that activation of ZnR/
GPR39 also directly promotes healing, while silencing 
the receptor or pharmacologically inhibiting its signaling 
pathway reverses the effect (32). Interestingly, 
although in colonocytes ZnR/GPR39 upregulation of 
NHE does not affect cell survival (98), this pathway 
clearly enhances keratinocytes proliferation (32). 
Since the keratinocytic-ZnR/GPR39 undergoes rapid 
and profound desensitization following exposure to 
high levels of extracellular Zn2+ (32), topical application 
of Zn2+ for extended periods (for example in bandages) 
may actually hinder wound healing. As such, the 
discovery of agonists that activate, but that do not 
desensitize, ZnR/GPR39 could provide better wound 
healing solutions. 

3.5. A paracrine role for ZnR/GPR39 

Signaling pathways activated by ZnR/GPR39 
are also involved in secretion of first messengers that 
may trigger paracrine signaling in neighboring cells. 
Indeed, activation of ZnR/GPR39 in a salivary gland 
duct epithelial cell line, HSY, induces release of ATP 
(57). Moreover, application of Zn2+ to co-cultures of 
HSY cells, expressing a functional ZnR/GPR39, and 
vascular smooth muscle cells (VSMCs) that do not 
express a functional ZnR (57), induces a Ca2+ rise 
in both cell types. To determine a paracrine effect, 
we showed that treatment with the non-permeable 
ATP scavenger apyrase inhibited the Zn2+-dependent 
Ca2+ rise in the VSMC but not in the HSY cells (57). 
Altogether these experiments suggested that ZnR/
GPR39 activity in HSY cells triggers ATP release that 
activated metabotropic signaling in the neighboring 
VSMC. 

Such paracrine effects influence and could 
amplify the increased proliferation and migration 
processes elicited by Zn2+- activated ZnR/GPR39 to 
neighboring cells, not expressing the receptor. Hence, 
Zn2+-activated ZnR/GPR39 may enhance the wound 
healing ability by promoting proliferation and migration 
of both keratinocytes and fibroblasts (233), although 
fibroblasts lack a functional ZnR (35). Taken together, 
ZnR/GPR39 may be capable of augmenting growth 
of neighboring metastatic cells following increased 
secretion of ATP or S100A4 (234). 

3.6. ZnR/GPR39 in cancer 

Since ZnR/GPR39 enhances cell proliferation 
and migration a role in carcinogenesis must be 
considered. A role for Zn2+ in the development of 
breast cancer has been explored, and changes in the 
expression or function of transporters from the ZIP 
and ZnT families have been linked to the development 
and progression of the malignant process (235-237). 
Similarly, butyrate has been shown to induce apoptosis 
of colon cancer cells. The finding that ZnR/GPR39 
rescues colonocytes from butyrate-induced apoptosis 
(98), suggests a potential role for this receptor in the 
etiology of colon cancer that has yet to be addressed. 
In contrast, Zn2+ via ZnR/GPR39 signaling-induces 
release of intracellular Ca2+ in androgen-independent, 
but not in androgen-dependent prostate cancer 
cells (58). Changes in intracellular Ca2+ may also 
regulate S100A calcium binding proteins that enable 
cell migration and invasion of cancer cells, and are 
specifically linked to enhanced prostate cancer growth 
(238-240). Specifically, S100A4 is present in tumor 
interstitial fluid and is thought to enhance metastatic 
cell proliferation and angiogenesis (241). Proliferation 
and invasiveness of a prostate cancer cell line 
(PC3) is enhanced by S100A4 via induction of the 
metalloprotease, MMP-9 (242). Importantly, S100A4 
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expression is triggered in PC-3 cells by extracellular 
Zn2+ at concentrations that activate ZnR/GPR39 (53). 
In contrast, S100A4 expression is reduced following 
silencing of ZnR/GPR39 with siGPR39 (53). It will 
be interesting to assess the effect of ZnR/GPR39 
expression on the level of extracellular S100A4 in 
prostate tumors and its relation to metastasis. 

Robust changes in extracellular Zn2+ during 
prostate tumorigenesis have been suggested to serve 
as a marker for prostate cancer (243, 244). In PC-3 
cells, ZnR/GPR39 activation induces PI3K pathway 
upregulation, measured via phosphorylation of AKT 
(53). Surprisingly, ZnR/GPR39 expression is itself 
associated with higher levels of total AKT expression, 
which are associated with a more malignant phenotype 
of adrenal carcinomas (245). In addition, constitutive 
activation of the PI3K signaling pathway is correlated 
with severity of prostate tumors (246). Importantly, 
zinc itself and zinc transporters, most prominent 
ZIP1, ZIP2, ZIP3 and ZnT7, have been implicated 
in playing an important role in prostate cancer (5, 
77, 243, 247-250), but whether there is a causative 
or synergistic link between these changes and ZnR/
GPR39 activity is not understood. Finally, changes in 
GPR39 expression levels and patterns were observed 
in human esophageal squamous cell carcinoma (251) 
and in gastric adenocarcinomas (252), but a role for 
Zn2+ in activation of ZnR/GPR39 was not determined. 

4. CONCLUSIONS AND FUTURE PROSPECTS 

It is now established that ZnR/GPR39 is a 
distinct target for free ionic Zn2+ released in response 
to physiological or pathological activity. The receptor 
is a functional GPCR that mediates Zn2+-dependent 
signaling in epithelial cells and in neurons, providing 
for the first time, a molecular target to explain many of 
the physiological actions of Zn2+. Described for many 
years as a ubiquitous structural element of virtually all 
cells, Zn2+ is now identified, in addition, as a signaling 
molecule in a wide variety of contexts. The ZnR/GPR39 
is an important regulator of Zn2+-dependent signaling, 
and may serve as a handle to modulate physiological 
processes. 

Although Zn2+ plays a role in many 
pathological conditions, Zn2+ itself, because of its lack 
of specificity and the often conflicting intracellular 
versus extracellular effects, offers a far less attractive 
address for therapeutic interventions than a distinct 
GPCR. Hence, ZnR/GPR39 is a potentially promising 
candidate for therapeutic intervention in diseases as 
diverse as epilepsy and colitis, which in general are 
poorly controlled by existing therapies. By focusing 
on ZnR/GPR39, the molecular pathways responsible 
for the symptoms of diseases may be directly and 
effectively targeted. That the Gq protein-coupled 
receptor family (GPCR) is currently a major focus 

of the pharmaceutical industry (253, 254), provides 
reason for optimism that specific and effective agonists 
and antagonists for ZnR/GPR39 will be forthcoming. 
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